Phase Relations of the Hydroxyl Felspathoids in the System Naalsi0 -Naoh-H 0 4 2

Total Page:16

File Type:pdf, Size:1020Kb

Phase Relations of the Hydroxyl Felspathoids in the System Naalsi0 -Naoh-H 0 4 2 THE HYDROXYL FELSPATHOIDS PHASE RELATIONS OF THE HYDROXYL FELSPATHOIDS IN THE SYSTE14 NaAlSiO4-NaOH-H 0 2 By PETER ASCROFT MACKENZIE ANDERSON, B.Se., M.Se. A Thesis Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Doetor of Philosophy McMaster University May 1968 DOCTOR OF PHILOSOPHY (1968) McMASTER UNIVERSITY (Geology) Hamilton, Ontario TITLE: Phase Relations of the Hydroxyl Felspathoids in the System NaAlSi0 -NaOH-H 0 4 2 AUTHOR: Peter A.M. Anderson, B.Sc. (London University) M.Sc. (McMaster University) SUPERVISOR: Dr. B.J. Burley NUMBER OF PAGES: ix, 78 SCOPE AND CONTENTS: A stUdy was made of the phase relationships in the system NaAlSi0 -NaOH-H 0, at 15,000 p.s.i. and at 450°C, 520°C, 4 2 600°C and 700°C. The following phases were found and characterised: hydroxyl varieties of nosean, sodalite and cancrinite, with formulae approximating to 3NaA1Si04.NaOH.xH20, l6:.xbl.5, sodic nepheline and phase X, apparently a previously unreported phase, with composition approaching Na Al Si 0 • Approximate phase diagrams were deduced 4 2 2 9 for the four temperatures. i1 ACKNOWLEOOEMENTS The writer is very deeply indebted to Dr. B.J. Burley, without whose continued guidance and support, this investigation would have been quite impossible. Drs. C. Calvo and H.P. Schwarcz have also been generous with time and advice, throughout the project. The assist- ance of others, too numerous to mention individually, has been readily given and gratefully accepted; these include most of the members of the Department of Geology. The care and resourcefulness of Mr. J. Muysson, in effecting the chemical analyses under difficult conditions, is greatly appreciated. The essential financial support included research funds from the National. Research Council of Canada, bursaries from the Bickell Foundation, and an Ontario Graduate Fellowship. iii TABLE OF CONTENTS Page CHAPTER I. Introduction, and synopsis of the thesis ••••••••••••• 1 CHAPTER II. Relevant previous information, and design of this investigation ••••••••••••••••••••••••••••••••••••••• 4 A. The felspathoids •••••••••••••••••••••••••••••••••••••••• 4 Nepheline family •••••••••••••••••••••••••••••••••••••••• 5 .' Nosean and 50dalite ••••••••••••••••••••••••••••••••••••• 6 Cancrinite •••••••••••••••••••••••••••••••••••••••••••••• 8 B. The system NaAlSi0 -NaOH-H 0, and its Parts ••••••••••••• 10 4 2 NaOH-H 0 ••••••••••••••••••••••••••••• ~ •••••••••••••••••• 10 2 NaA1Si0 -H 0 •••••••••••••••••••••••••••••••••••••••••••• 11 4 2 NaA1Si04-NaOH ••••••••••••••••••••••••••••••••••••••••••• 11 NaAISi0 -NaOH-H 0 ••••••••••••••••••••••••••••••••••••••• 11 4 2 C. The design of this investigation •••••••••••••••••••••••• 13 The "natural" fe1spathoid system •••••••••••••••••••••••• 14 The minimal felspathoid system •••••••••••••••••••••••••• 14 Specific problems for study............................. 14 Choice of values for experimental parameters, and experimental method •••••••••••••••••••••••••••••••••••• 15 CHAPTER III. Experimental method ••••••••••••••••••••••••••••••••• 17 Hydrothermal synthesis ••••••••••••••••••••••••••••••••••••• 17 Examination of reaction products ••••••••••••••••••••••••••• 18 Optical and x-ray procedures ••••••••••••••••••••••••••••••• 18 Analytical procedures •••••••••••••••••••••••••••••••••••••• 19 Calculation of charge compositions ••••••••••••••••••••••••• 19 iv TABLE OF CONTENTS (continued) Page The use of palladium black in charges ••••••••••••••••••••••• 20 CHAPTER IV. The properties of the phases .......................... 21 Nepheline ••••••••••••••••••••••••••••••••••••••••••••••••••• 21 Hydroxyl nosean ••••••••••••••••••••••••••••••••••••••••••••• 25 Hydroxyl sodalite ••••••••••••••••••••••••••••••••••••••••••• 26 The nomenclature of hydroxyl nosean and hydroxyl sodalite ••• 28 Hydroxyl cancrinite ••••••••••••••••••••••••••••••••••••••••• 29 Phase X ••••••••••••••••••••••••••••••••••••••••••••••••••••• 30 Fluid phase ••••••••••••••••••••••••••••••••••••••••••••••••• 31 CHAPTER V. The general phase relationships •••••••••••••••••••••••• 32 Experimental results in the isothermal sections ••••••••••••• 32 General relationships in the isothermal sections •••••••••••• 32 Quench phases ••••••••••••••••••••••••••••••••••••••••••0.... 33 The inclusion of phases ••••••••••••••••••••••••••••••••••••• 34 Kinetic effect experiments •••••••••••••••••••••••••••••••••• 34 The anomalous occurrence of sodalite •••••••••••••••••••••••• 35 The widespread occurrence of nepheline, at higher temperatures 36 The fluid phase analyses •••••••••••••••••••••••••••••••••••• 38 The pseudo-ternary nature of the plane •••••••••••••••••••••• 41 Specific relationships at the four temperatures ••••••••••••• 42 CHAPTER VI. Discussion •••••••••••••••••••••••••••••••••••••••••••• 43 Equilibrium in the experimental results ••••••••••••••••••••• 43 The relationship of hydroxyl nosean and hydroxyl cancrinite. 45 The relationship of hydroxyl nosean and hydroxyl sodalite... 47 v TABLE OF CONTENTS (continued) Page The application of these results ••••••••••••••••••••••••••• 48 Summary •••••••••••••••••••••••••••••••••••••••••••••••••••• 49 REFERENCES CITED ••••••••••••••••••••••••••••••••••••••••••••••••• 51 APPENDIX I. Section 1. Experimental method ••••••••••••••••••••••••••••• 56 A. The reactant gels •••••••••••••••••••••••••••••••••••• 56 B. Execution of the reactions ••••••••••••••••••••••••••• 57 C. Treatment of the reaction products ••••••••••••••••••• 59 D. Optical examination of the reaction products ••••••••• 60 E. X-ray examination of the reaction products ••••••••••• 60 F. Analytical p~ocedures •••••••••••••••••••••••••••••••• 62 Section 2. Detailed experimental results ••••••••••••••••••• 65 General ••••••••••••••••••••••••••••••••••••••••••••••••• 65 The compositions and reaction products of the charges ••• 65 The results of the fluid phase analyses ••••••••••••••••• 66 APPENDIX II. Comprises the x-ray diffraction patterns, crystals and other products of experimentation, and is under separate cover. vii LIST OF TABLES Page TABLE 1. Summary of the properties of the crystalline phases •••• 23 2. Comparison between nepheline from charges very rich in NaOH, and those of lower NaOH content ••••••••••••••• 24 App.-l. Analyses of the Reagent Gels •••••••••••••••••••••••••••• 67 App.-2. Analyses of the Synthetic Crystalline Phases •••••••••••• 68 App.-3. X-ray Reflections of the Crystalline Phases ••••••••••••• 69 App.-4. Compositions and Reaction Products of the charges ••••••• 74 App.-5. Results of the Fluid Phase Analyses ••••••••••••••••••••.• 78 viii LIST OF FIGURES Page TIGURE A. The Sodic End of the System NaA1.Si0 -KAlSi0 ............. 4 4 6a 6a C. The Join NaAlSi04-NaOH ••••••••••••••••••••••••••••••••••• l3a D. Photographs of the Phases •••••••••••••••••••••••••••••••• 2la E. Compositions of the Analyses Phases •••••••••••••••••••••• 2ld F. Cell Parameters of Hydroxyl Nosean and Hydroxyl Sodalite.. 26a G. The Experimental Results at 450°0......................... 32a H. The Experimental Results at 520°0......................... 32b I. The Experimental Results at 600°0......................... 32c J. The Experimental Results at 700°0......................... 32d K. The Fluid Phase Analyses • •••••••••••••••••••••••••••••••• 38a L. The Inferred Relationships at 450°0....................... 42a M. The Inferred Relationships at 520°C....................... 42a N. The Inferred Relationships at 600°0....................... 42b o. The Inferred Relationships at 700°0....................... 42b ix CHAPTER I INTRODUCTION, AND SYNOPSIS OF THE THESIS This is the record of an experimental study, concerning those hydroxyl analogues of the felspathoidal minerals, which form in the sys~em NaAlSi0 -NaOH-H 0. The intention was to delineate the pro­ 4 2 perties and stability relationships of these SUbstances, at 15,000 p.s.i. total pressure, and at temperatures from 450°C to 600°c. The chemical compositions of this system range far from those likely to be found in nature, and the connection with natural rocks and minerals is, at first sight, tenuous. Investigation of this system is, however, a logical early step in the experimental study of the fels­ pathoids, the natural forms of which require at least eleven ohemical components for description of their compositions. The system Na20-A1203-Si02-H20 is an obvious starting point for the felspathoids, because it would appear to be the only system of four components in which representatives of all distinct groups of this type of mineral are found. In fact, the compositions of these hydroxyl felspathoids lie on, or near to, the plane NaA1Si0 -NaOH-H 0. Know­ 4 2 ledge of the phase relationships on this plane should be an excellent foundation for extension into more complex systems. 1 2 About two hundred charges, with chemical compositions lying at various points on or near the composition plane NaAlSi0 -NaOH-H 0, 4 2 were held at fixed temperature and pressure for two to three weeks. The crystalline contents of the charges were then examined optically. by x-ray diffraction and by chemical analysis. and the relationships of the crystalline types were studied. The range of the investigation was somewhat extended. to include the temperature of 700°C. and some excess Na 0 in the range of compositions. 2 Five crystalline phases were encountered and characterised. Nepheline. hydroxyl-nosean. hydroxyl-cancrinite and hydroxyl-sodalite were present, as had been expected. A further substance, with compo­ sition approximating
Recommended publications
  • Marinellite, a New Feldspathoid of the Cancrinite-Sodalite Group
    Eur. J. Mineral. 2003, 15, 1019–1027 Marinellite, a new feldspathoid of the cancrinite-sodalite group ELENA BONACCORSI* and PAOLO ORLANDI Dipartimento di Scienze della Terra, Universita` di Pisa, Via S. Maria 53, I-56126 Pisa, Italy * Corresponding author, e-mail: [email protected] Abstract: Marinellite, [(Na,K)42Ca6](Si36Al36O144)(SO4)8Cl2·6H2O, cell parameters a = 12.880(2) Å, c = 31.761(6) Å, is a new feldspathoid belonging to the cancrinite-sodalite group. The crystal structure of a twinned crystal was preliminary refined in space group P31c, but space group P62c could also be possible. It was found near Sacrofano, Latium, Italy, associated with giuseppettite, sanidine, nepheline, haüyne, biotite, and kalsilite. It is anhedral, transparent, colourless with vitreous lustre, white streak and Mohs’ hardness of 5.5. The mineral does not fluoresce, is brittle, has conchoidal fracture, and presents poor cleavage on {001}. Dmeas is 3 3 2.405(5) g/cm , Dcalc is 2.40 g/cm . Optically, marinellite is uniaxial positive, non-pleochroic, = 1.495(1), = 1.497(1). The strongest five reflections in the X-ray powder diffraction pattern are [d in Å (I) (hkl)]: 3.725 (100) (214), 3.513 (80) (215), 4.20 (42) (210), 3.089 (40) (217), 2.150 (40) (330). The electron microprobe analysis gives K2O 7.94, Na2O 14.95, CaO 5.14, Al2O3 27.80, SiO2 32.73, SO3 9.84, Cl 0.87, (H2O 0.93), sum 100.20 wt %, less O = Cl 0.20, (total 100.00 wt %); H2O calculated by difference. The corresponding empirical formula, based on 72 (Si + Al), is (Na31.86K11.13Ca6.06) =49.05(Si35.98Al36.02)S=72O144.60(SO4)8.12Cl1.62·3.41H2O.
    [Show full text]
  • Action of Ammonium Chloride Upon Silicates
    Bulletin No. 207 Series E, Chemistry and Physics, 36 DEPARTMENT OF TEiE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR THE ACTION OF AMMONIUM CHLORIDE UPON SILICATES BY AND GKKOKG-IE Srj::ir, WASHINGTON GOVERNMEN.T PllINTING OFFICE 1902 CONTENTS. Page. Introductory statement......--..-..---.--.------.--.-..--.-.-----------. 7 Analcite-.....-.-.-.--.-.....-.--.'--------....--.-.--..._.-.---.-...---.--. 8 Leucite .....................'.................-....................^-..... 16 The constitution of analcite and leucite.........-..--.-..--...--.---------. 17 Pollucite---. ............................................................ 21 Natrolite--------------------------..-..-----------------.------ --------- 22 Scolecite ................,.:............-.....-.................--.--.... 24 Prehnite .....--.-............--.------------------------------ --------- 25 The trisilicic acids-.--.-.--..---..........-._-----...-.........-...----.- 26 Stilbite.............-..................-....-.-.-----...--.---.......... 29 Henlandite .......... .......................---.-..-.-..-...-----.--..--.. 81 Chabazite............................................................... 32 Thoinsonite...-.-.-..-...._.................---...-.-.-.----..-----..--.. 34 Lanmontite -.-.------.-..-------------.-..-.-..-.-------.-.-----........ 35 Pectolite ......:......... ......................................'.......;.., 36 Wollastonite ....'............................ ................:........... 39 Apophyllite. _.--._..._-....__.....:......___-------------....----..-...._
    [Show full text]
  • 26 May 2021 Aperto
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino The crystal structure of sacrofanite, the 74 Å phase of the cancrinite–sodalite supergroup This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/90838 since Published version: DOI:10.1016/j.micromeso.2011.06.033 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 05 October 2021 This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is posted here by agreement between Elsevier and the University of Turin. Changes resulting from the publishing process - such as editing, corrections, structural formatting, and other quality control mechanisms - may not be reflected in this version of the text. The definitive version of the text was subsequently published in MICROPOROUS AND MESOPOROUS MATERIALS, 147, 2012, 10.1016/j.micromeso.2011.06.033. You may download, copy and otherwise use the AAM for non-commercial purposes provided that your license is limited by the following restrictions: (1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND license. (2) The integrity of the work and identification of the author, copyright owner, and publisher must be preserved in any copy.
    [Show full text]
  • New Minerals Approved Bythe Ima Commission on New
    NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI.
    [Show full text]
  • Nucleation and Growth Process of Sodalite and Cancrinite from Kaolinite-Rich Clay Under Low-Temperature Hydrothermal Conditions
    Materials Research. 2013; 16(2): 424-438 © 2013 DOI: 10.1590/S1516-14392013005000010 Nucleation and Growth Process of Sodalite and Cancrinite from Kaolinite-rich Clay under Low-temperature Hydrothermal Conditions Carlos Alberto Ríos Reyesa*, Craig Williamsb, Oscar Mauricio Castellanos Alarcónc aEscuela de Geología, Universidad Industrial de Santander, Carrera 27 Calle 9, Ciudad Universitaria, Bucaramanga, Colombia bSchool of Applied Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1SB, England cPrograma de Geología, Universidad de Pamplona, Ciudad Universitaria, Pamplona, Colombia Received: October 28, 2011; Revised: August 24, 2012 The synthesis of low-silica zeotypes by hydrothermal transformation of kaolinite-rich clay and the nucleation and growth processes of sodalite and cancrinite in the system Na2O–Al2O3–SiO2–H2O at 100 °C were investigated. The synthesis products were characterized by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), 29Si and 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) and thermogravimetric analysis (TGA). Our data show that the sequence of the transformation of phases is: Poorly crystalline aluminosilicate → zeolite LTA → sodalite → sodalite + cancrinite → cancrinite. Synthesized materials appeared stable thermodynamically under the experimental conditions, with zeolite LTA (a metastable phase) occurring as a minor phase, compared with the presence of sodalite and cancrinite. Keywords: synthesis, low-silica, hydrothermal, kaolinite, transformation 1. Introduction The Bayer process is the principal industrial means positively charged species to neutralise them3. Cations can of refining bauxite to produce alumina (Al2O3), which enter these porous materials to balance the charge of their must be purified before it can be refined to aluminium structural frameworks6.
    [Show full text]
  • High-Pressure Study of a Natural Cancrinite
    American Mineralogist, Volume 97, pages 872–882, 2012 High-pressure study of a natural cancrinite PAOLO LOTTI,1 G. DIEGO GATTA,1,2,* NICOLA ROTIROTI,1,2 AND FERNANDO CÁMARA3 1Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, 20133 Milano, Italy 2CNR, Istituto per la Dinamica dei Processi Ambientali, Via M. Bianco 9, 20131 Milano, Italy 3Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, 10125 Torino, Italy ABSTRACT The high-pressure elastic behavior and the P-induced structure evolution of a natural cancrinite from Cameroun {Na6.59Ca0.93[Si6Al6O24](CO3)1.04F0.41·2H2O, a = 12.5976(6) Å, c = 5 .1168(2) Å, space group: P63} were investigated by in situ single-crystal X-ray diffraction under hydrostatic conditions up to 6.63(2) GPa with a diamond-anvil cell. The P-V data were fitted with an isothermal Birch-Murnaghan type equation of state (BM EoS) truncated to the third order. Weighted fit (by the 3 uncertainty in P and V) gave the following elastic parameters: V0 = 702.0(7) Å , KV0 = 51(2) GPa, and KV´ = 2.9(4). A linearized BM EoS was used to fit the a-P and c-P data, giving the following refined parameters: a0 = 12.593(5) Å, Ka0 = 64(4) GPa, Ka´ = 4.5(9), for the a-axis, and c0 = 5.112(3) Å, Kc0 = 36(1) GPa, K´c = 1.9(3) for the c-axis (elastic anisotropy: Ka0:Kc0 = 1.78:1). A subtle change of the elastic behavior appears to occur at P > 4.62 GPa, and so the elastic behavior was also described on the basis of BM EOS valid between 0.0001–4.62 and 5.00–6.63 GPa, respectively.
    [Show full text]
  • Crystal Chemistry of Cancrinite-Group Minerals with an Ab-Type Framework: a Review and New Data
    1151 The Canadian Mineralogist Vol. 49, pp. 1151-1164 (2011) DOI : 10.3749/canmin.49.5.1151 CRYSTAL CHEMISTRY OF CANCRINITE-GROUP MINERALS WITH AN AB-TYPE FRAMEWORK: A REVIEW AND NEW DATA. II. IR SPECTROSCOPY AND ITS CRYSTAL-CHEMICAL IMPLICATIONS NIKITA V. CHUKANOV§ Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow Oblast, Russia IGOR V. PEKOV, LYUDMILA V. OLYSYCH, NATALIA V. ZUBKOVA AND MARINA F. VIGASINA Faculty of Geology, Moscow State University, Leninskie Gory, 119992 Moscow, Russia ABSTRACT We present a comparative analysis of powder infrared spectra of cancrinite-group minerals with the simplest framework, of AB type, from the viewpoint of crystal-chemical characteristics of extra-framework components. We provide IR spectra for typical samples of cancrinite, cancrisilite, kyanoxalite, hydroxycancrinite, depmeierite, vishnevite, pitiglianoite, balliranoite, davyne and quadridavyne, as well as the most unusual varieties of cancrinite-subgroup minerals (Ca-deficient cancrinite, H2O-free cancrinite, intermediate members of the series cancrinite – hydroxycancrinite, cancrinite–cancrisilite, cancrinite– kyanoxalite, K-rich vishnevite, S2-bearing balliranoite). Samples with solved crystal structures are used as reference patterns. Empirical trends and relationships between some parameters of IR spectra, compositional characteristics and unit-cell dimensions 2– are obtained. The effect of Ca content on stretching vibrations of CO3 is explained in the context of the cluster approach. The existence of a hydrous variety of quadridavyne is demonstrated. Keywords: cancrinite, cancrisilite, kyanoxalite, hydroxycancrinite, depmeierite, vishnevite, pitiglianoite, balliranoite, davyne, quadridavyne, cancrinite group, infrared spectrum, crystal chemistry. SOMMAIRE Nous présentons une analyse comparative des spectres infrarouges obtenus à partir de poudres de minéraux du groupe de la cancrinite ayant la charpente la plus simple, de type AB, du point de vue des caractéristiques cristallochimiques des composantes externes à la charpente.
    [Show full text]
  • Unusual Silicate Mineralization in Fumarolic Sublimates of the Tolbachik Volcano, Kamchatka, Russia – Part 2: Tectosilicates
    Eur. J. Mineral., 32, 121–136, 2020 https://doi.org/10.5194/ejm-32-121-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia – Part 2: Tectosilicates Nadezhda V. Shchipalkina1, Igor V. Pekov1, Natalia N. Koshlyakova1, Sergey N. Britvin2,3, Natalia V. Zubkova1, Dmitry A. Varlamov4, and Eugeny G. Sidorov5 1Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia 2Department of Crystallography, St Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia 3Kola Science Center of Russian Academy of Sciences, Fersman Str. 14, 184200 Apatity, Russia 4Institute of Experimental Mineralogy, Russian Academy of Sciences, Akademika Osypyana ul., 4, 142432 Chernogolovka, Russia 5Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia Correspondence: Nadezhda V. Shchipalkina ([email protected]) Received: 19 June 2019 – Accepted: 1 November 2019 – Published: 29 January 2020 Abstract. This second of two companion articles devoted to silicate mineralization in fumaroles of the Tol- bachik volcano (Kamchatka, Russia) reports data on chemistry, crystal chemistry and occurrence of tectosil- icates: sanidine, anorthoclase, ferrisanidine, albite, anorthite, barium feldspar, leucite, nepheline, kalsilite, so- dalite and hauyne. Chemical and genetic features of fumarolic silicates are also summarized and discussed. These minerals are typically enriched with “ore” elements (As, Cu, Zn, Sn, Mo, W). Significant admixture of 5C As (up to 36 wt % As2O5 in sanidine) substituting Si is the most characteristic. Hauyne contains up to 4.2 wt % MoO3 and up to 1.7 wt % WO3.
    [Show full text]
  • Archivio Istituzionale Open Access Dell'università Di Torino
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino Thermoelastic behavior and dehydration process of cancrinite This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/142918 since Published version: DOI:10.1007/s00269-014-0656-2 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 06 October 2021 This is an author version of the contribution published on: Questa è la versione dell’autore dell’opera: Physics and Chemistry of Minerals, 41, 5, 2014, http://dx.doi.org/10.1007/s00269‐ 0114‐0656‐2 ] The definitive version is available at: La versione definnitiva è disponibile alla URL: linkk.springer.com Revision_1 THERMOELASTIC BEHAVIOR AND DEHYDRATION PROCESS OF CANCRINITE Running title: HT behavior of cancrinite Abstract Introduction Experimental methods - Sample preparation - Calibration of the furnace - Unit-cell parameters and intensity data collections - Thermal Equation of State - Structure refinements Results and discussion - Unit-cell parameters evolution with T - High-temperature structural evolution and the effects of the dehydration process - Comparison with previous studies Acknowledgements References Figures/Tables Corresponding author: G. Diego GATTA Dipartimento di Scienza della Terra Universita' degli Studi di Milano Via Botticelli, 23 I-20133 Milano, Italy Tel. +39 02 503 15607 Fax +39 02 503 15597 E-Mail: [email protected] Operating system: Windows XP THERMOELASTIC BEHAVIOR AND DEHYDRATION PROCESS OF CANCRINITE G.D.
    [Show full text]
  • Lapis Lazuli
    LAPIS LAZULI Among the world’s many gemstones, lapis lazuli, or “lapis” as it is familiarly known, has a distinction. Many scholars and archaeologists believe that it was the first gemstone ever mined in quantity. The oldest known lapis deposits, located in Afghanistan, have been systematically mined since about 4000 B.C. Few gemstones display color as rich as the deep, royal blue of fine lapis. Adding to its visual appeal, lapis often exhibits glittering, golden flecks of pyrite. When cut and polished into cabochons and set in gold, lapis gemstones have a distinctive beauty all their own. Understanding lapis lazuli, which is a rock, requires a basic understanding of lazurite, which is a mineral. Lazurite is the primary component of lapis lazuli and is also the cause of its blue color. Lazurite, or basic sodium calcium aluminum sulfate chlorosilicate (Na,Ca)8Si6Al6O24[(SO4),S,Cl,(OH)]2, is a tectosilicate or framework silicate that is made up of 13.5 percent sodium, 7.8 percent calcium, 15.8 percent aluminum, 16.3 percent silicon, 6.0 percent sulfur, 38.1 percent oxygen, and small percentages of chlorine and hydrogen. The color of pure lazurite is a deep azure. It crystallizes in the isometric (cubic) system, usually as dodecahedral and occasionally as cubic crystals, but most often occurs in massive form. Lazurite is usually opaque, has a dull-to-greasy luster, poor cleavage in six directions, a pale-blue streak, a Mohs hardness of 5.0-5.5, and a specific gravity of 2.4-2.5. Lazurite forms from high-grade, contact metamorphism of silica-poor marine limestone that contains available sulfur and chlorine.
    [Show full text]
  • Alphabetical List
    LIST L - MINERALS - ALPHABETICAL LIST Specific mineral Group name Specific mineral Group name acanthite sulfides asbolite oxides accessory minerals astrophyllite chain silicates actinolite clinoamphibole atacamite chlorides adamite arsenates augite clinopyroxene adularia alkali feldspar austinite arsenates aegirine clinopyroxene autunite phosphates aegirine-augite clinopyroxene awaruite alloys aenigmatite aenigmatite group axinite group sorosilicates aeschynite niobates azurite carbonates agate silica minerals babingtonite rhodonite group aikinite sulfides baddeleyite oxides akaganeite oxides barbosalite phosphates akermanite melilite group barite sulfates alabandite sulfides barium feldspar feldspar group alabaster barium silicates silicates albite plagioclase barylite sorosilicates alexandrite oxides bassanite sulfates allanite epidote group bastnaesite carbonates and fluorides alloclasite sulfides bavenite chain silicates allophane clay minerals bayerite oxides almandine garnet group beidellite clay minerals alpha quartz silica minerals beraunite phosphates alstonite carbonates berndtite sulfides altaite tellurides berryite sulfosalts alum sulfates berthierine serpentine group aluminum hydroxides oxides bertrandite sorosilicates aluminum oxides oxides beryl ring silicates alumohydrocalcite carbonates betafite niobates and tantalates alunite sulfates betekhtinite sulfides amazonite alkali feldspar beudantite arsenates and sulfates amber organic minerals bideauxite chlorides and fluorides amblygonite phosphates biotite mica group amethyst
    [Show full text]
  • Identification Tables for Common Minerals in Thin Section
    Identification Tables for Common Minerals in Thin Section These tables provide a concise summary of the properties of a range of common minerals. Within the tables, minerals are arranged by colour so as to help with identification. If a mineral commonly has a range of colours, it will appear once for each colour. To identify an unknown mineral, start by answering the following questions: (1) What colour is the mineral? (2) What is the relief of the mineral? (3) Do you think you are looking at an igneous, metamorphic or sedimentary rock? Go to the chart, and scan the properties. Within each colour group, minerals are arranged in order of increasing refractive index (which more or less corresponds to relief). This should at once limit you to only a few minerals. By looking at the chart, see which properties might help you distinguish between the possibilities. Then, look at the mineral again, and check these further details. Notes: (i) Name: names listed here may be strict mineral names (e.g., andalusite), or group names (e.g., chlorite), or distinctive variety names (e.g., titanian augite). These tables contain a personal selection of some of the more common minerals. Remember that there are nearly 4000 minerals, although 95% of these are rare or very rare. The minerals in here probably make up 95% of medium and coarse-grained rocks in the crust. (ii) IMS: this gives a simple assessment of whether the mineral is common in igneous (I), metamorphic (M) or sedimentary (S) rocks. These are not infallible guides - in particular many igneous and metamorphic minerals can occur occasionally in sediments.
    [Show full text]