Palaeobiology and Geobiology of Fossil Lagerstätten Through Earth History

Total Page:16

File Type:pdf, Size:1020Kb

Palaeobiology and Geobiology of Fossil Lagerstätten Through Earth History Exceptionally preserved fossils from Fossil Lagerstätten contribute greatly to resolving details on the history of life on Earth. For the first time, the “Paläontologische Gesellschaft” (PalGes) and the Joachim Reitner, Yang Qun, Wang Yongdong and Mike Reich (Eds.) “Palaeontological Society of China” (PSC) combined forces to jointly present an international confe- rence aimed to highlight and encourage the study of exceptionally well-preserved fossil sites world- wide. The conference focused on all aspects of palaeontology and geobiology, also incorporating related fields like biogeochemistry, biology, sedimentology and stratigraphy. The present volume contains the abstracts of more than 275 lectures and posters presented during the joint international Palaeobiology and Geobiology of conference “Palaeobiology & Geobiology of Fossil Lagerstätten through Earth History”. This year’s conference was held at the northern campus of the Georg-August University in Göttingen, Germany, Fossil Lagerstätten through Earth History from September 23-27, 2013. More than three hundred palaeontologists, biologists, geologists and Fossil Lagerstätten other scientists and researchers from sixteen countries, mainly from Germany and the P. R. of China, participated. Joachim Reitner, Yang Qun, Wang Yongdong, Mike Reich (Eds.) Qun, Wang Joachim Reitner, Yang ISBN: 978-3-86395-135-1 Universitätsdrucke Göttingen Universitätsdrucke Göttingen Joachim Reitner, Yang Qun,Wang Yongdong and Mike Reich (Eds.) Fossil Lagerstätten This work is licensed under the Creative Commons License 3.0 “by-sa”, allowing you to download, distribute and print the document in a few copies for private or educational use, given that the creator is mentioned. erschienen in der Reihe der Universitätsdrucke im Universitätsverlag Göttingen 2013 Joachim Reitner, Yang Qun, Wang Yongdong and Mike Reich (Eds.) With the collaboration of Luo Cui, Vanessa J. Roden, Tanja R. Stegemann Palaeobiology and Geobiology of Fossil Lagerstätten through Earth History A Joint Conference of the “Paläontologische Gesellschaft” and the “Palaeontological Society of China”, Göttingen, Germany, September 23-27, 2013 Abstract Volume Universitätsverlag Göttingen 2013 Bibliographische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet über <http://dnb.ddb.de> abrufbar. In accordance with Chinese naming customs, personal names are listed in order of: last name, first name. Editorial contact Professor Dr Joachim Reitner Dr Mike Reich Geoscience Centre of the Georg-August University of Göttingen Goldschmidtstraße 1-5 37077 Göttingen, Germany http://www.gzg.uni-goettingen.de http://www.geobiologie.uni-goettingen.de http://www.geomuseum.uni-goettingen.de Professor Dr Yang Qun Professor Dr Wang Yongdong Chinese Academy of Sciences, Nanjing Institute of Geology and Palaeontology 39 East Beijing Road Nanjing 210008, P. R. of China http://english.nigpas.cas.cn/ http://www.nigpas.cas.cn/ This work is protected by German Intellectual Property Right Law. It is also available as an Open Access version through the publisher’s homepage and the Online Catalogue of the State and University Library of Goettingen (http://www.sub.uni-goettingen.de). Users of the free online version are invited to read, download and distribute it. Graphics and Layout: Mike Reich Cover Design: Conny Hundertmark & Mike Reich Cover Photos: Jörg Ansorge, Gerhard Hundertmark, Georg Oleschinski, Mike Reich, Jes Rust © 2013 Universitätsverlag Göttingen http://univerlag.uni-goettingen.de ISBN: 978-3-86395-135-1 7th European Conference on Echinoderms, Göttingen, October 2-9, 2010 Preface Contents Preface I ......................................................................................................................... 7 Vorwort .......................................................................................................................... 8 Preface II ....................................................................................................................... 9 前 言 .............................................................................................................................. 10 Welcome Address .................................................................................................... 11 Grußwort ..................................................................................................................... 12 Abstracts of Oral & Poster Presentations .................................................... 13 Index of Authors .................................................................................................... 209 5 Preface 7th European Conference on Echinoderms, Göttingen, October 2-9, 2010 The printing of this volume was funded by: 6 7th European Conference on Echinoderms, Göttingen, October 2-9, 2010 Preface Preface I Following the years 1926, 1937, 1977 and 2004, the annual meeting of the Paläontologische Gesellschaft will take place at the Georg-August University in Göttingen for the fifth time. This year, the meeting is hosted together with the slightly younger Palaeontological Society of China, our “sister society”, founded in 1929. The joint international conference will take place on true historical grounds: Firstly, intensive palaeontological research has been conducted in Göttingen for over 260 years; secondly, the two founding members of the Palaeontological Society of China, Sun Yunzhu (1895–1979) and Yang Zhongjian (1897–1979), decided to found “their” Chinese palaeontological society on an excursion to the Harz mountains (1927, on the occasion of the annual meeting of the German geological society in Goslar), led by palaeontologists and geologists from Göttingen. The founder of our Paläontologische Gesellschaft – Otto Jaekel (1863–1929) – also had close ties with China. In addition to his interest in Chinese ethnology, cultural anthropology and history, Jaekel followed an invitation as professor of palaeontology at the Sun Yat-sen University (Guangzhou; formerly Canton) in the autumn of 1928. He only held this position for a short time, as he died of pneumonia (March 6th) shortly after participating in the sixth annual meeting of the Geological Society of China in Peking in February (13th-14th) of 1929, where he was then buried in a German cemetery. About 300 palaeontologists, biologists, geologists and other scientists from 16 countries, especially from Germany and the People’s Republic of China, followed our invitation to a joint meeting in Göttingen. The conference theme Palaeobiology & Geobiology of Fossil Lagerstätten through Earth History refers to the significance of Fossil Lagerstätten with exqui- sitely preserved organism remains, which enable us to gain insights into important details of the history of life on Earth as well as into the evolution of plants and animals. The term Fossillagerstätten is also closely tied to our university – Adolf Seilacher (*1925), professor for palaeontology at the Georgia Augusta between 1963 and 1965, first coined and specified this term in 1970. This volume contains the abstracts for over 275 presentations (oral and poster) that have been contributed by more than 600 authors from 34 countries worldwide and will be presented at the joint meeting. We wish all participants a pleasant and interesting conference, paired with a desire to strengthen and secure “our” science – today and in the future. Joachim Reitner Mike Reich Göttingen, September 2013 7 Vorwort Nach 1926, 1937, 1977 und 2004 findet nun zum fünften Mal die Jahrestagung der Paläontologischen Gesellschaft an der Georg-August-Universität Göttingen statt. In diesem Jahr erstmals gemeinsam mit unserer „Schwestergesellschaft“, der etwas jüngeren, 1929 gegründeten, Palaeontological Society of China. Die gemeinsame internationale Tagung findet durchaus auf historischem Boden statt: Zum einen wird in Göttingen seit mehr als 260 Jahren intensiv paläontologische Forschung betrieben; zum anderen fassten die beiden Gründungsmitglieder der Palaeontological Society of China, Sun Yunzhu (1895–1979) und Yang Zhongjian (1897–1979) auf einer von Göttinger Paläontologen und Geologen geführten Exkursion im Harz (1927, anläßlich der Jahrestagung der Deutschen Geologischen Gesellschaft in Goslar) den Entschluss, „ihre“ Chinesische Paläontologische Gesellschaft zu gründen. Auch der Gründer unserer Paläontologischen Gesellschaft – Otto Jaekel (1863– 1929) – war eng mit China verbunden. Neben seinem Interesse für chinesische Ethnologie und Geschichte, folgte Jaekel auch im Herbst 1928 dem Ruf auf eine Professur für Paläontologie an der Sun Yat-sen Universität (Guangzhou; früher Kanton). Diese übte er jedoch nur kurz aus, da er Anfang März 1929, nach der Teilnahme an der 6. Jahres- versammlung der Geological Society of China (13./14. Februar 1929) in Peking, an einer Lungenentzündung verstarb und dort auch auf dem deutschen Friedhof beerdigt wurde. Annähernd 300 Paläontologen, Biologen, Geologen und andere Wissenschaftler aus 16 Ländern, vor allem aus Deutschland und der Volksrepublik China, sind dem Aufruf zu einer gemeinsamen Tagung nach Göttingen gefolgt. Das Tagungthema Palaeobiology & Geobiology of Fossil Lagerstätten through Earth History verweist auf die Bedeutung von Fossillagerstätten mit vorzüglich erhaltenen Organismenresten, die detaillierte Einblicke in die Geschichte des Lebens auf unserer Erde, wie auch in die Evolution von Pflanzen
Recommended publications
  • The Dashanpu Dinosaur Fauna of Zigong Sichuan Short Report V - Labyrinthodont Amphibia
    The Dashanpu Dinosaur Fauna of Zigong Sichuan Short Report V - Labyrinthodont Amphibia Zhiming Dong (Institute of Vertebrate Paleontology, Paleoanthropology, Academia Sinica) Vertebrata PalAsiatica Volume XXIII, No. 4 October, 1985 pp. 301-305 Translated by Will Downs Department of Geology Bilby Research Center Northern Arizona University December, 1990 Abstract A brief discussion is presented on the morphological characteristics and phylogenetic position of Sinobrachyops placenticephalus (gen. et sp. nov.). The specimen is derived from the well-known Middle Jurassic Dashanpu dinosaur quarries of Zigong County, Sichaun Province. Sinobrachyops is the youngest geological occurrence of a labyrinthodont amphibian known to date. Its discovery extends the upper geochronological limit for the Labyrinthodontia into the Middle Jurassic. Introduction The first fossils collected from Dashanpu, Zigong, in 1979, were a pair of rhachitomous vertebrae. This discovery created a sense of perplexity among the workers, for the morphology of these pleurocentra and intercentra suggested an assignment to the Labyrinthodontia. This group of amphibians, however, was traditionally believed to have become extinct in the Late Triassic, a traditional concept that must be abandoned if scientific investigation is to be advanced and left unfettered. In 1983 the Institute of Vertebrate Paleontology, Paleoanthropology Academia Sinica launched a paleontological expedition in the Shishugou Formation (Middle-Late Jurassic) from the Kelameili region, northeast Jungar Basin, Xinjiang Autonomous Region, where several rhachitomous vertebrae were discovered. Later, a fragmentary skull of a labyrinthodont amphibian was collected, confirming that this group extended into the Middle Jurassic. The discovery from the Shishugou Formation convinced the workers that the rhachitomous vertebrae at Dashanpu belonged to the Labyrinthodontia.
    [Show full text]
  • Volume 2, Chapter 10-2: Arthropods: Crustacea
    Glime, J. M. 2017. Arthropods: Crustacea – Ostracoda and Amphipoda. Chapt. 10-2. In: Glime, J. M. Bryophyte Ecology. Volume 2. 10-2-1 Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 10-2 ARTHROPODS: CRUSTACEA – OSTRACODA AND AMPHPODA TABLE OF CONTENTS CLASS OSTRACODA ..................................................................................................................................... 10-2-2 Adaptations ................................................................................................................................................ 10-2-3 Swimming to Crawling ....................................................................................................................... 10-2-3 Reproduction ....................................................................................................................................... 10-2-3 Habitats ...................................................................................................................................................... 10-2-3 Terrestrial ............................................................................................................................................ 10-2-3 Peat Bogs ............................................................................................................................................ 10-2-4 Aquatic ...............................................................................................................................................
    [Show full text]
  • 1 Revision 2 1 K-Bentonites
    1 Revision 2 2 K-Bentonites: A Review 3 Warren D. Huff 4 Department of Geology, University of Cincinnati, Cincinnati, OH 45221 USA 5 Email: [email protected] 6 Keywords: K-bentonite, bentonite, tephra, explosive volcanism, volcanic ash 7 Abstract 8 Pyroclastic material in the form of altered volcanic ash or tephra has been reported and described 9 from one or more stratigraphic units from the Proterozoic to the Tertiary. This altered tephra, 10 variously called bentonite or K-bentonite or tonstein depending on the degree of alteration and 11 chemical composition, is often linked to large explosive volcanic eruptions that have occurred 12 repeatedly in the past. K-bentonite and bentonite layers are the key components of a larger group of 13 altered tephras that are useful for stratigraphic correlation and for interpreting the geodynamic 14 evolution of our planet. Bentonites generally form by diagenetic or hydrothermal alteration under 15 the influence of fluids with high Mg content and that leach alkali elements. Smectite composition is 16 partly controlled by parent rock chemistry. Studies have shown that K-bentonites often display 17 variations in layer charge and mixed-layer clay ratios and that these correlate with physical 18 properties and diagenetic history. The following is a review of known K-bentonite and related 19 occurrences of altered tephra throughout the time scale from Precambrian to Cenozoic. 20 Introduction 21 Volcanic eruptions are often, although by no means always, associated with a profuse output 22 of fine pyroclastic material, tephra. Tephra is a term used to describe all of the solid material 23 produced from a volcano during an eruption (Thorarinsson, 1944).
    [Show full text]
  • Download Download
    Dorjnamjaa et al. Mongolian Geoscientist 49 (2019) 41-49 https://doi.org/10.5564/mgs.v0i49.1226 Mongolian Geoscientist Review paper New scientific direction of the bacterial paleontology in Mongolia: an essence of investigation * Dorj Dorjnamjaa , Gundsambuu Altanshagai, Batkhuyag Enkhbaatar Department of Paleontology, Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia *Corresponding author. Email: [email protected] ARTICLE INFO ABSTRACT Article history: We review the initial development of Bacterial Paleontology in Mongolia and Received 10 September 2019 present some electron microscopic images of fossil bacteria in different stages of Accepted 9 October 2019 preservation in sedimentary rocks. Indeed bacterial paleontology is one the youngest branches of paleontology. It has began in the end of 20th century and has developed rapidly in recent years. The main tasks of bacterial paleontology are detailed investigation of fossil microorganisms, in particular their morphology and sizes, conditions of burial and products of habitation that are reflected in lithological and geochemical features of rocks. Bacterial paleontology deals with fossil materials and is useful in analysis of the genesis of sedimentary rocks, and sedimentary mineral resources including oil and gas. The traditional paleontology is especially significant for evolution theory, biostratigraphy, biogeography and paleoecology; however bacterial paleontology is an essential first of all for sedimentology and for theories sedimentary ore genesis or biometallogeny Keywords: microfossils, phosphorite, sedimentary rocks, lagerstatten, biometallogeny INTRODUCTION all the microorganisms had lived and propagated Bacteria or microbes preserved well as fossils in without breakdowns. Bacterial paleontological various rocks, especially in sedimentary rocks data accompanied by the data on the first origin alike natural substances.
    [Show full text]
  • UFRJ a Paleoentomofauna Brasileira
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004).
    [Show full text]
  • Palaeobiology of the Early Ediacaran Shuurgat Formation, Zavkhan Terrane, South-Western Mongolia
    Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: http://www.tandfonline.com/loi/tjsp20 Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia Ross P. Anderson, Sean McMahon, Uyanga Bold, Francis A. Macdonald & Derek E. G. Briggs To cite this article: Ross P. Anderson, Sean McMahon, Uyanga Bold, Francis A. Macdonald & Derek E. G. Briggs (2016): Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia, Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2016.1259272 To link to this article: http://dx.doi.org/10.1080/14772019.2016.1259272 Published online: 20 Dec 2016. Submit your article to this journal Article views: 48 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Download by: [Harvard Library] Date: 31 January 2017, At: 11:48 Journal of Systematic Palaeontology, 2016 http://dx.doi.org/10.1080/14772019.2016.1259272 Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia Ross P. Anderson a*,SeanMcMahona,UyangaBoldb, Francis A. Macdonaldc and Derek E. G. Briggsa,d aDepartment of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, Connecticut, 06511, USA; bDepartment of Earth Science and Astronomy, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan; cDepartment of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts, 02138, USA; dPeabody Museum of Natural History, Yale University, 170 Whitney Avenue, New Haven, Connecticut, 06511, USA (Received 4 June 2016; accepted 27 September 2016) Early diagenetic chert nodules and small phosphatic clasts in carbonates from the early Ediacaran Shuurgat Formation on the Zavkhan Terrane of south-western Mongolia preserve diverse microfossil communities.
    [Show full text]
  • Persistent and Widespread Occurrence of Bioactive Quinone Pigments During Post-Paleozoic Crinoid Diversification
    Persistent and widespread occurrence of bioactive quinone pigments during post-Paleozoic crinoid diversification Klaus Wolkenstein1 Department of Geobiology, Geoscience Centre, University of Göttingen, 37077 Göttingen, Germany Edited by Tomasz K. Baumiller, University of Michigan, Ann Arbor, MI, and accepted by the Editorial Board January 20, 2015 (received for review September 9, 2014) Secondary metabolites often play an important role in the adapta- (14, 15), closely related to the gymnochromes, suggesting that the tion of organisms to their environment. However, little is known fossil pigments may be only slightly changed during diagenesis. about the secondary metabolites of ancient organisms and their Although violet coloration has been occasionally observed in fossil evolutionary history. Chemical analysis of exceptionally well-pre- crinoids (e.g., refs. 16 and 17), until now, only very few chemical served colored fossil crinoids and modern crinoids from the deep sea proofs of quinone pigments have been found for crinoids other than suggests that bioactive polycyclic quinones related to hypericin Liliocrinus (14, 15, 18, 19). Recent measurements suggested the were, and still are, globally widespread in post-Paleozoic crinoids. presence of quinone-like compounds in Paleozoic (Mississippian) The discovery of hypericinoid pigments both in fossil and in present- crinoids (20), but the identity of these compounds has been ques- day representatives of the order Isocrinida indicates that the pig- tioned on methodological grounds (21). ments remained almost unchanged since the Mesozoic, also suggest- To investigate the general occurrence of polycyclic quinone ing that the original color of hypericinoid-containing ancient crinoids pigments in the Crinoidea, the coloration of numerous fossil may have been analogous to that of their modern relatives.
    [Show full text]
  • The Lower Cretaceous Flora of the Gates Formation from Western Canada
    The Lower Cretaceous Flora of the Gates Formation from Western Canada A Shesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Geological Sciences Univ. of Saska., Saskatoon?SI(, Canada S7N 3E2 b~ Zhihui Wan @ Copyright Zhihui Mian, 1996. Al1 rights reserved. National Library Bibliothèque nationale 1*1 of Canada du Canada Acquisitions and Acquisitions et Bibliographic Services services bibliographiques 395 Wellington Street 395. rue Wellington Ottawa ON KlA ON4 Ottawa ON K1A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Libraxy of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microfom, vendre des copies de cette thèse sous paper or electronic formats. la fome de microfiche/nlm, de reproduction sur papier ou sur foxmat électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. College of Graduate Studies and Research SUMMARY OF DISSERTATION Submitted in partial fulfillment of the requirernents for the DEGREE OF DOCTOR OF PHILOSOPHY ZHIRUI WAN Depart ment of Geological Sciences University of Saskatchewan Examining Commit tee: Dr.
    [Show full text]
  • Squires Catalogue
    Type and Figured Palaeontological Specimens in the Tasmanian Museum and Art Gallery A CATALOGUE Compiled by Tasmanian Museum and Art Gallery Don Squires Hobart, Tasmania Honorary Curator of Palaeontology May, 2012 Type and Figured Palaeontological Specimens in the Tasmanian Museum and Art Gallery A CATALOGUE Compiled by Don Squires Honorary Curator of Palaeontology cover image: Trigonotreta stokesi Koenig 1825, the !rst described Australian fossil taxon occurs abundantly in its type locality in the Tamar Valley, Tasmania as external and internal moulds. The holotype, a wax cast, is housed at the British Museum (Natural History). (Clarke, 1979) Hobart, Tasmania May, 2012 Contents INTRODUCTION ..........................................1 VERTEBRATE PALAEONTOLOGY ...........122 PISCES .................................................. 122 INVERTEBRATE PALAEONTOLOGY ............9 AMPHIBIA .............................................. 123 NEOGENE ....................................................... 9 REPTILIA [SP?] ....................................... 126 MONOTREMATA .................................... 127 PLEISTOCENE ........................................... 9 MARSUPIALIA ........................................ 127 Gastropoda .......................................... 9 INCERTAE SEDIS ................................... 128 Ostracoda ........................................... 10 DESCRIBED AS A VERTEBRATE, MIOCENE ................................................. 14 PROBABLY A PLANT ............................. 129 bivalvia ...............................................
    [Show full text]
  • Monograph38.Pdf
    The Lower Triassic System in the Abrek Bay area, South Primorye, Russia Edited by Yasunari Shigeta Yuri D. Zakharov Haruyoshi Maeda Alexander M. Popov National Museum of Nature and Science Tokyo, March 2009 v Contents Contributors .................................................................vi Abstract ....................................................................vii Introduction (Y. Shigeta, Y. D. Zakharov, H. Maeda, A. M. Popov, K. Yokoyama and H. Igo) ...1 Paleogeographical and geological setting (Y. Shigeta, H. Maeda, K. Yokoyama and Y. D. Zakharov) ....................3 Stratigraphy (H. Maeda, Y. Shigeta, Y. Tsujino and T. Kumagae) .........................4 Biostratigraphy Ammonoid succession (Y. Shigeta, H. Maeda and Y. D. Zakharov) ..................24 Conodont succession (H. Igo) ...............................................27 Correlation (Y. Shigeta and H. Igo) ...........................................29 Age distribution of detrital monazites in the sandstone (K. Yokoyama, Y. Shigeta and Y. Tsutsumi) ..............................30 Discussion Age data of monazites (K. Yokoyama, Y. Shigeta and Y. Tsutsumi) ..................34 The position of the Abrek Bay section in the “Ussuri Basin” (Y. Shigeta and H. Maeda) ...36 Ammonoid mode of occurrence (H. Maeda and Y. Shigeta) ........................36 Aspects of ammonoid faunas (Y. Shigeta) ......................................38 Holocrinus species from the early Smithian (T. Oji) ..............................39 Recovery of nautiloids in the Early Triassic (Y. Shigeta)
    [Show full text]
  • On Some Occurrences of Diplognathodus in Carboniferous Strata of Western Europe and North Africa
    v.d. Boogaard, Diplognathodus from W. Europe & N. Africa, Scripta Geol., 69 (1983) On some occurrences of Diplognathodus in Carboniferous strata of Western Europe and North Africa M. van den Boogaard Boogaard, M. van den. On some occurrences of Diplognathodus in Carboniferous strata of Western Europe and North Africa. - Scripta Geol., 69: 19-29, 1 fig., 1 pl., October 1983. The occurrence is reported of Diplognathodus coloradoensis, D. orphanus and D. ellesmerensis in some localities in Western Europe and one locality in North Afri- ca. M. van den Boogaard, Rijksmuseum van Geologie en Mineralogie, Hooglandse Kerkgracht 17, 2312 HS Leiden, The Netherlands. Introduction 19 Localities 20 Palaeontology 23 Concluding remarks 25 References 27 Introduction Species of the genus Diplognathodus may be useful for stratigraphie correlation of Carboniferous strata because some of them are probably stratigraphically short-ranging (e.g. D. coloradoensis according to Landing & Wardlaw, 1981, pp. 1255-1256). Because still little is known about the distribution of représentants of the genus outside North America I thought it useful to relate the few occur• rences of D. coloradoensis, D. orphanus and D. ellesmerensis I encountered during my investigation of Carboniferous limestones from Western Europe and North Africa. 20 v.d. Boogaard, Diplognathodus from W. Europe & N. Africa, Scripta Geol., 69 (1983) Acknowledgements Thanks for placing the samples at my disposal are due to Drs C.F. Winkler Prins, H.A. van Adrichem Boogaert, M.J.M. Bless, and A.C. van Ginkel. The informa• tion concerning the Cinderhill sample given by Dr W.H.C. Ramsbottom is much appreciated. Thanks also go to Mr J.G.M.
    [Show full text]
  • Pander Society Newsletter
    Pander Society Newsletter Compiled and edited by R. J. Aldridge, M. A. Purnell, and A. Thomas DEPARTMENT OF GEOLOGY UNIVERSITY OF LEICESTER LEICESTER LE1 7RH, UK Number 36 May 2004 www.conodont.net INTRODUCTORY REMARKS fter six very rewarding years, this is the last NEW CHIEF PANDERER Pander Society Newsletter to be presented by the Acurrent team. This makes it, perhaps, fitting for Dick Aldridge writes: In January 2004, I recognised that, us to begin our annual introduction by looking back to having entered my sixth year as President of the Pander see how the Society has fared over this interval. The Society ('Chief Panderer'), it was really past my time to answer is, we have certainly all been very active. The hand over to a successor. There is no stipulated length of period started with a bang (pun too bad to be intended) service in this office, but we have tried to make five in 1998 with a Pander Society meeting in Columbus, years more-or-less the norm, in order to share the Ohio, with the themes ‘Conodont evidence for impacts honour and the chore. Following traditional procedure, I and extinctions’ and ‘Hot topics in conodont asked three active members of the Society, Phil biochronology’. The same year, ECOS VII was held in Donoghue, Catherine Girard and Jeff Over, to act as a Italy, continuing the very successful pattern of these nomination committee, and asked anyone who wished events. Annual Pander Society meetings have continued to make a nomination or to contribute thoughts or in North America in each succeeding year, comments about the succession to contact them.
    [Show full text]