Reference Lab Users Guide

Total Page:16

File Type:pdf, Size:1020Kb

Reference Lab Users Guide Reference Lab Users Guide North Memorial Health Laboratory Services Philosophy Our laboratory values mutual respect, teamwork, positive attitudes, accountability, and open effective communication encouraging compassionate, remarkable care. Laboratory Accreditation The North Memorial Laboratory Services User’s Guide is a resource for facilities that use the Laboratory Services of North Memorial. In this guide you will find information you need. The User’s Guide is updated on a continuous basis. Our laboratory is CLIA certified through the accreditation process of the College of American Pathologists (CAP) and the American Association of Blood Banks (AABB): College of American Pathologists AABB CAP #:18040-01 AABB #: 006331 CLIA ID #: 24D0402379 *CLIA certification obtained through CAP and AABB accreditation 1 Table of contents North Memorial Health Accreditation . 1 Lab location and phone numbers . 3 Critical Values. .8-9 Specimen Guide Order of Draw. 10 Lab Test Change (January, 2017) . 11 Laboratory Collection Procedures . 12 Microbiology Procedures . 13-37 Urinalysis Collection & Transport . 38-42 Cytology. 43-52 Histology General Information . 53 Allergen Form . 54 Allergy Profile Form . 55 Automated Hematology . 56 Panel Cascades & Reflex Tests . 57 Clinical Laboratory Abbreviations . 58-63 2 Laboratory Location & Strategic Phone Numbers North Memorial Laboratory Services 3300 Oakdale Avenue North, Robbinsdale MN, 55422 Customer Service direct line 763-581-2940 After hours number 763-581-4070 Customer Service fax 763-581-2951 Pathology 763-581-4150 Histology 763-581-4173 Cytology 763-581-4153 Pathology/Histology/Cytology fax 763-581-4151 Billing 763-581-2958 Customer Service email [email protected] Laboratory Guidelines Confidential Testing Procedure If a patient requests their identity not be used for laboratory testing the following procedure must be followed: The clinic (you) are responsible for a cross reference log which would be the only means by which to identify the individual associated with the assigned identification code. Following is a sample log for “Care Free Clinic”: Care Free Clinic Confidential Lab Log (CFC) Assigned Patient/Employee Date Identification Code Name CFC0001 Tom Pre-employment 1-10-05 CFC0002 Jim Sticker 1-23-05 CFC0003 Jill Ill 2-14-05 CFC0004 You must prefix your assigned identification code with your Laboratory Services facility code: e.g. Care Free Clinic’s code is “CFC”. This is required to insure each client has a unique assigned identification code. Fill out North Memorial Laboratory Services Outreach Requisition form. Use your assigned identification code as the patient name, and all required billing patient name. If anyone calls for results they information. To keep lab testing need to use this assigned identification code. confidential, send this second requisition Billing should be “Bill Doctor”. If “Bill form for billing only in a sealed envelope Patient” is required we will need a second marked “Confidential” to the Laboratory requisition form filled out, with the actual Billing Specialist. All associated specimen samples should be labeled with the assigned identification code, date, time collected, and source of sample if not blood. All testing will be performed using the assigned You are responsible to report any reportable identification code as the patient name. diseases to the Minnesota Dept. of Health. You will receive reports as usual but you need Help available by calling Laboratory Services to use your cross-reference log to determine Customer Service: 763-581-2940 who on your staff should review the results. 3 Billing Procedures Types of Billing Specimen collection date There are two distinct ways for which the Responsible party, if other than patient outreach tests are billed: Billing the ordering Insurance company client (Doctor Bill) or Billing the patient or their Guarantor’s (insured) group number and insurance (Direct Bill). Billing the ordering client policy number is just that you order the test and we bill you. Proper ICD-9 diagnosis codes Direct Billing is billing the patient or a third party payor, directly for testing services Please advise your patients that when we submit rendered. a claim to their insurance, they will receive a bill for Laboratory Services from North Memorial. Client Billing Each month you will receive an itemized Medicare/Medicaid invoice/statement that will indicate the date of In addition to the above information (3rd Party), service, patient name, CPT code, test name, and please include the Medicare or Medicaid test charge. Please include the following number. Federal regulations require that we bill necessary billing information: directly for Medicare & Medicaid and accept Patient’s full name (legal name, not assignment of benefits. nicknames) Patient’s address Medical Necessity Patient’s Phone Number The HHS Office of Inspector General (OIG) Patient’s Social Security number recognizes that physicians or other authorized Patient’s gender individuals must be able to order any test(s) they Patient’s date of birth believe are appropriate for the treatment of their Referring physician patients. However, Medicare will only pay for Specimen collection date tests that meet Medicare coverage criteria and are reasonable and necessary to treat or diagnose Patient or Third Party an individual patient. Coverage criteria are If you elect to have North Memorial Laboratory described in national and local coverage policies. Services bill your patients directly please include Quarterly updated Medicare national coverage the following required billing information: policies for laboratory tests may be found at Patient’s full name (legal name, no www.cms.hhs.gov/coverage/labindexlist.asp. nicknames) Patient’s full address When the laboratory receives a request on a Medicare patient for any test listed in the 23 Patient’s phone number National Coverage Decisions (NCD) or 2 Local Patient’s social Security number Coverage Determinations (LCD) that is not Patient’s gender accompanied by an appropriate ICD-9 code Patient’s date of birth documenting medical necessity, the cost of this Referring physician test will be billed back to the client. General Testing Test Turn Around Time Repeated Testing The Users Guide Test Menu lists the expected If there are questions about the validity of a turnaround times. Repeated tests take additional result with respect to clinical findings, the time. laboratory will repeat the assay at no additional charge. 4 “Add On” Testing Cascade (reflex) or Confirmatory Testing Provided there is sufficient specimen volume and The following test panels will automatically the specimen meets the additional test stability reflex to the next level of testing. If you do not requirements, additional testing can be ordered choose to have reflex or confirmatory tests on a previously submitted sample within 5 days. performed please order the tests separately: Fax a completed Add-On request form to 763- ANA Cascade (7052) 581-4101. Written verification from the clinic Hepatitis (5420) physician who originally referred the PSA Cascade (7662) specimen(s) is required to authorize add-on tests. Thyroid Cascade (7178) Changes in Methodologies Urinalysis Cascade (3295) As scientific advances occur, North Memorial Laboratory Services may deem it necessary to add or change test methodologies or components. Clients will be informed of any changes through the Lab LINK or special mailings. Specimen Collection and Preparation Laboratory test results are dependent on the Serum Specimens quality of the specimen submitted. It is Draw a sufficient amount of blood to yield the important that all specimens and request slips be necessary serum volume. (Caution: Avoid properly labeled. If there is any doubt or hemolysis.) Allow blood to clot at room question regarding the type of specimen that temperature. See specimen requirements in the should be collected, it is imperative to call for Test Menu. If separation from cells is required clarification. Please call: separate serum from cells by centrifugation (10 Laboratory Client Services: 763-581-2940 or minutes) within 20-30 minutes. Laboratory Pathology Services: 763-581-4150. Whole Blood Specimens Blood Collection Draw sufficient blood with the indicated Most tests are performed on anti-coagulated anticoagulant. Gently mix the blood collection whole blood, plasma, or serum. See the Test tube by inverting 6-10 times immediately after Menu for specific requirements and handling collection. See specimen requirements for whole instructions. blood samples that may need to be placed in ice. Fasting Specimens Specimen Labeling An overnight fast (water permitted) is required All specimen tubes must be labeled with for many chemistry tests. Lipid (Chol, Trig, patient’s first and last name, as well as a second HDL, LDL) studies require a 9-12 hour fast identifier, i.e. date of birth or social security (water permitted); no alcohol should be ingested number. Include collection date and time, for at least 24 hours prior to specimen collection. collector’s initials and the source of the specimen when applicable. Plasma Specimens Draw a sufficient amount of blood with the It is critical that all labels be placed lengthwise indicated anticoagulant to yield the necessary on the tube straight up and down. They must not plasma volume. Gently mix the blood collection extend over the end of the tube. tube by inverting 6-10 times immediately after collection. See specimen requirements
Recommended publications
  • Food Allergy Outline
    Allergy Evaluation-What it all Means & Role of Allergist Sai R. Nimmagadda, M.D.. Associated Allergists and Asthma Specialists Ltd. Clinical Assistant Professor Of Pediatrics Northwestern University Chicago, Illinois Objectives of Presentation • Discuss the different options for allergy evaluation. – Skin tests – Immunocap Testing • Understand the results of Allergy testing in various allergic diseases. • Briefly Understand what an Allergist Does Common Allergic Diseases Seen in the Primary Care Office • Atopic Dermatitis/Eczema • Food Allergy • Allergic Rhinitis • Allergic Asthma • Allergic GI Diseases Factors that Influence Allergies Development and Expression Host Factors Environmental Factors . Genetic Indoor allergens - Atopy Outdoor allergens - Airway hyper Occupational sensitizers responsiveness Tobacco smoke . Gender Air Pollution . Obesity Respiratory Infections Diet © Global Initiative for Asthma Why Perform Allergy Testing? – Confirm Allergens and answer specific questions. • Am I allergic to my dog? • Do I have a milk allergy? • Have I outgrown my allergy? • Do I need medications? • Am I penicillin allergic? • Do I have a bee sting allergy Tests Performed in the Diagnostic Allergy Laboratory • Allergen-specific IgE (over 200 allergen extracts) – Pollen (weeds, grasses, trees), – Epidermal, dust mites, molds, – Foods, – Venoms, – Drugs, – Occupational allergens (e.g., natural rubber latex) • Total Serum IgE (anti-IgE; ABPA) • Multi-allergen screen for IgE antibody Diagnostic Allergy Testing Serological Confirmation of Sensitization History of RAST Testing • RAST (radioallergosorbent test) invented and marketed in 1974 • The suspected allergen is bound to an insoluble material and the patient's serum is added • If the serum contains antibodies to the allergen, those antibodies will bind to the allergen • Radiolabeled anti-human IgE antibody is added where it binds to those IgE antibodies already bound to the insoluble material • The unbound anti-human IgE antibodies are washed away.
    [Show full text]
  • RAST Type Tests CPT: 86003
    Medicare Local Coverage Determination Policy Allergy Testing RAST Type Tests CPT: 86003 Medically Supportive CMS Policy for Kentucky and Ohio ICD Codes are listed Local policies are determined by the performing test location. This is determined by the state on subsequent page(s) in which your performing laboratory resides and where your testing is commonly performed. of this document. Coverage Indications, Limitations, and/or Medical Necessity Radioallergosorbent test (RAST), fluoroallergosorbent test (FAST), and multiple antigen simultaneous tests are in vitro techniques for Add full policy information determining whether a patient's serum contains IgE antibodies against specific allergens of clinical importance. As with any allergy testing, the need for such tests is based on the findings during a complete history and physical examination of the patient. The multiple antigen simultaneous testing technique is similar to the RAST/FAST techniques in that it depends upon the existence of Template structure: allergic antibodies in the blood of the patient being tested. With the multiple antigen simultaneous test system, several antigens may be used to test for specific IgE simultaneously. First level is for headers such as limitations, ELISA (enzyme-linked immunosorbent assay) is another in vitro method of allergy testing for specific IgE antibodies against allergens. indications and usage guidelines This method is also a variation of RAST. Second level is for main body copy Limitations • Third level is for bullet (if needed) The following tests are considered to be not medically necessary and will be denied. • ELISA/Act qualitative antibody testing. This testing is used to determine in vitro reaction to various foods and relies on lymphocyte blastogenesis in response to certain food antigens.
    [Show full text]
  • Radioallergosorbent Test (RAST)—Reliable Tool Or Poor Substitute?
    Radioallergosorbent test (RAST) VII Ö1 1 reliable tool or poor substitute? Edward W. Hein, M.D. An in vitro method, the radioallergosorbent test (RAST) has been developed for the detection of allergen-specific antibodies of the IgE class. Review of the literature shows that in comparison to skin testing, the RAST has a high degree of correlation (60% to 90% depending on the antigen); however, this method is not as sensitive as other tests (50% false-negative). The RAST is affected by blocking antibodies (IgG), resulting in false-negative values and high levels of IgE that bind on the allergen discs, giving false- positive findings. Because of these problems, RAST is somewhat limited for use in the clinical setting. Index terms: Allergy and immunology • Radioallergosor- bent test (RAST) Cleve Clin Q 50:361-366, Fall 1983 Skin testing has been the traditional method for diagnosis of IgE-mediated allergic disorders. This bioassay is highly sensitive, cost-effective, and safe when used by experienced personnel. In 1967, Wide et al,1 in Sweden, reported a new technique capable of detecting the minute quantities of allergen-specific IgE antibodies that circulate in the serum of allergic patients. This laboratory procedure, called RAST (radioallergosorbent test), utilized a solid- phase radioimmunoassay method. During the last decade this in vitro test has been refined and is now a commercially 1 Departments of Pediatric and Adolescent Medi- available laboratory test for clinical laboratories and, in kit cine, and Allergy and Immunology, The Cleveland form, for physicians' offices. Proponents of this new Clinic Foundation. (E.W.H., Head, Section Pediatric method claim that its results are more objective, safer for Allergy and Clinical Immunology.) Submitted for pub- lication May 1983; accepted June 1983.
    [Show full text]
  • Hypersensitivity Reactions (Types I, II, III, IV)
    Hypersensitivity Reactions (Types I, II, III, IV) April 15, 2009 Inflammatory response - local, eliminates antigen without extensively damaging the host’s tissue. Hypersensitivity - immune & inflammatory responses that are harmful to the host (von Pirquet, 1906) - Type I Produce effector molecules Capable of ingesting foreign Particles Association with parasite infection Modified from Abbas, Lichtman & Pillai, Table 19-1 Type I hypersensitivity response IgE VH V L Cε1 CL Binds to mast cell Normal serum level = 0.0003 mg/ml Binds Fc region of IgE Link Intracellular signal trans. Initiation of degranulation Larche et al. Nat. Rev. Immunol 6:761-771, 2006 Abbas, Lichtman & Pillai,19-8 Factors in the development of allergic diseases • Geographical distribution • Environmental factors - climate, air pollution, socioeconomic status • Genetic risk factors • “Hygiene hypothesis” – Older siblings, day care – Exposure to certain foods, farm animals – Exposure to antibiotics during infancy • Cytokine milieu Adapted from Bach, JF. N Engl J Med 347:911, 2002. Upham & Holt. Curr Opin Allergy Clin Immunol 5:167, 2005 Also: Papadopoulos and Kalobatsou. Curr Op Allergy Clin Immunol 7:91-95, 2007 IgE-mediated diseases in humans • Systemic (anaphylactic shock) •Asthma – Classification by immunopathological phenotype can be used to determine management strategies • Hay fever (allergic rhinitis) • Allergic conjunctivitis • Skin reactions • Food allergies Diseases in Humans (I) • Systemic anaphylaxis - potentially fatal - due to food ingestion (eggs, shellfish,
    [Show full text]
  • I M M U N O L O G Y Core Notes
    II MM MM UU NN OO LL OO GG YY CCOORREE NNOOTTEESS MEDICAL IMMUNOLOGY 544 FALL 2011 Dr. George A. Gutman SCHOOL OF MEDICINE UNIVERSITY OF CALIFORNIA, IRVINE (Copyright) 2011 Regents of the University of California TABLE OF CONTENTS CHAPTER 1 INTRODUCTION...................................................................................... 3 CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS ..............................................9 CHAPTER 3 ANTIBODY STRUCTURE I..................................................................17 CHAPTER 4 ANTIBODY STRUCTURE II.................................................................23 CHAPTER 5 COMPLEMENT...................................................................................... 33 CHAPTER 6 ANTIBODY GENETICS, ISOTYPES, ALLOTYPES, IDIOTYPES.....45 CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION..................................................................53 CHAPTER 8 GENETIC BASIS OF ANTIBODY DIVERSITY...................................61 CHAPTER 9 IMMUNOGLOBULIN BIOSYNTHESIS ...............................................69 CHAPTER 10 BLOOD GROUPS: ABO AND Rh .........................................................77 CHAPTER 11 CELL-MEDIATED IMMUNITY AND MHC ........................................83 CHAPTER 12 CELL INTERACTIONS IN CELL MEDIATED IMMUNITY ..............91 CHAPTER 13 T-CELL/B-CELL COOPERATION IN HUMORAL IMMUNITY......105 CHAPTER 14 CELL SURFACE MARKERS OF T-CELLS, B-CELLS AND MACROPHAGES...............................................................111
    [Show full text]
  • Incidence of Allergen Specific Ige in Atopic Dermatitis Patients by Immunoblot Assay
    1 Bahrain Medical Bulletin, Vol. 30, No. 3, September 2008 Incidence of Allergen Specific IgE in Atopic Dermatitis Patients by Immunoblot Assay Abbas H Alsaeed M.Med, Sci, PhD, CLC* Objective: To determine the incidence of allergens specific IgE by immunoblot assay in atopic dermatitis patients. Design: Prospective study. Setting: South Riyadh, Dermatology clinic Alfalah International Hospital, Saudi Arabia. Method: Sixty-five adult patients and twenty volunteer controls sera were collected from atopic dermatitis patients. IgE antibodies specific to allergens of food, pollens, animal epithelia, house dust mites, and moulds were determined using an immunoblot assay. Result: The sensitization rate of all allergens was found to be 65% (42/65; 26 males, 39 females). The subjects were most commonly allergic to pollen (35.2%), food (31.5%) and animal epithelial dander (21.0%). House dust mite (11.4%) and mould (0.9%) were less frequent than the others were. Conclusion: The result indicates that pollen allergens, food allergens, animal epithelia and dander should be taken into account as possible exacerbating factors in adult patients with AD within the specific geographical area studied. Bahrain Med Bull 2008; 30(3): Atopic dermatitis (AD) is a rather common disorder as its name implies, it is often associated with the presence of IgE-mediated hypersensitivity and with other IgE–mediated disease states. Often diagnosed in infancy it can have its onset at any age in life. There is no definitive laboratory test which is able to define atopic dermatitis. Double-blind placebo controlled food challenges have documented that certain foods can exacerbate dermatitis in patients in whom there is immediate skin test reactivity to food extracts1.
    [Show full text]
  • Download The
    PROFILING THE EPIGENETIC LANDSCAPE OF THE AIRWAY EPITHELIUM IN ASTHMA by Dorota Stefanowicz B.Sc., Biology, The University of Victoria, 2003 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Experimental Medicine) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) June 2014 © Dorota Stefanowicz, 2014 Abstract The airway epithelium is the interface between the environment and the submucosa of the lung and thus is the first line of defense against inhaled exogenous agents. In addition to maintaining a structural barrier through homeostasis and repair, the airway epithelium is involved in co- ordination of the mucosal immune response to the inhaled environment. In asthma it is now understood that the airway epithelium is abnormal with dysregulation of genes integral to differentiation, proliferation, and inflammation. Alteration of the chromatin architecture through epigenetic modifications including DNA methylation and histone modifications is reactive to the environment and can establish chromatin states which are permissive or repressive to gene expression. Epigenetic regulation of gene expression is cell specific, as such, it is important to understand epigenetic regulation in cells that are thought to play a central role in asthma. As epigenetic processes are critical to cellular specificity and disease susceptibility the overarching hypothesis of this thesis is that alterations to the epigenome of asthmatic airway epithelial cells contribute to the dysregulation of genes involved in key epithelial functions. To investigate this hypothesis, we performed analysis of DNA methylation, expression of epigenetic modifying genes, and histone acetylation and methylation in airway epithelial cells, airway fibroblasts, and peripheral blood mononuclear cells from asthmatic and healthy subjects.
    [Show full text]
  • In Vitro Diagnostic Testing for Antibiotic Allergy Inmaculada Doña,1 Maria J
    Review Allergy Asthma Immunol Res. 2017 July;9(4):288-298. https://doi.org/10.4168/aair.2017.9.4.288 pISSN 2092-7355 • eISSN 2092-7363 In Vitro Diagnostic Testing for Antibiotic Allergy Inmaculada Doña,1 Maria J. Torres,1,3 Maria I. Montañez,2,3* Tahía D. Fernández2* 1Allergy Unit, IBIMA-Regional University Hospital of Malaga-UMA, Málaga, Spain 2Research Laboratory, IBIMA-Regional University Hospital of Malaga-UMA, Málaga, Spain 3Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain This is an Open Access article distributed under the terms of the Creative Commons Attribution NonCommercial License (http://creativecommons.org/licenses/bync/4.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Allergy to antibiotics is an important worldwide problem, with an estimated prevalence of up to 10% of the population. Reaction patterns for differ- ent antibiotics have changed in accordance with consumption trends. Most of the allergic reactions to antibiotics have been reported for betalac- tams, followed by quinolones and macrolides and, to a lesser extent, to others, such as metronidazole clindamycin and sulfonamides. The diagnos- tic procedure includes a detailed clinical history, which is not always possible and can be unreliable. This is usually followed by in vivo, skin, and drug provocation tests. These are not recommended for severe, potentially lifethreaten reactions or for drugs that are known to produce a high rate of false positive results. Given the limitations of in vivo tests, in vitro test can be helpful for diagnosis, despite having suboptimal sensitivity. The most highly employed techniques for diagnosing immediate reactions to antibiotics are immunoassays and basophil activation tests, while lympho- cyte transformation tests are more commonly used to diagnose non-immediate reactions.
    [Show full text]
  • Guide to Pathology Tests
    GUIDE TO PATHOLOGY TESTS This quick reference guide may be useful in some clinical situations. The suggested investigations are neither comprehensive nor applicable in all circumstances. Tests should be selected after consideration of the patient’s clinical history, signs, symptoms and previous test results. For further information, please contact our pathologists, senior scientists or refer to The Royal College of Pathologists of Australia manual at www.rcpamanual.edu.au A ABDOMINAL PAIN ANAEMIA Baseline: ECU, LFT, CRP, cTn, Lipase, Amylase, HCG, FBE, urine MCS Macrocytic Additional: Calcium, Phosphate, Lactate, Blood Gas, faeces Baseline: FBE, blood film, ECU, LFT, LDH, B12, Folate, TSH (MCS, OCP, PCR), Urine Porphobilinogen Additional: AIF, PCA, EPG, FLC, Haptoglobin Supplementary: Blood Culture, H. Pylori Faecal Antigen Test, Supplementary: Bone marrow biopsy Urea Breath Test Microcytic: Baseline: FBE, IS, ECU, LFT ADRENOCORTICAL FUNCTION Additional: FOB, EPG, Hb-electrophoresis Supplementary: Blood Lead Addison’s disease Baseline: S-Cortisol, ACTH, ECU Normocytic: Additional: Synacthen stimulation test. Baseline: FBE, Reticulocyte count, ESR, ECU, CRP Supplementary: Adrenal-Ab, thyroid-Ab, ovarian-Ab, Tuberculosis, Additional: IS, B12, folate, LFT septicaemia, HIV, 17-OHP, VLCFA, Fine Needle Biopsy Supplementary: EPG, Bone marrow biopsy Cushing syndrome Baseline: 3 x 24 hour urinary free cortisol, or 1 mg overnight ANTENATAL TESTING Dexamethasone Suppression Test, am serum Cortisol. Note: "Antenatal Screen" is no longer a valid test
    [Show full text]
  • Mycology Assist Lect. Mays Jassim[
    Lab. 4/ class 3 ]MYCOLOGY ASSIST LECT. MAYS JASSIM[ Serological tests for diagnosis of fungi Fungi culture is often problematic method because its time consuming and insensitive due to low concentration of fungi in specimens. While Ags and/ or Abs are produced in large quantities and can be found in various body fluid (blood, CSF and urine) also Ags and Abs are easier to detect than finding the organism directly and the results may also be obtained within a few hours without the need of culture before clinical symptoms develop. So the serology is a useful tool for rapid diagnosis of fungal disease. Principle: Serological testing is used to diagnosis of some common fungal infections agents including Blastomyces dermatitis (infect lungs- cause blastomycosis), Histoplasma capsulatum (cause histoplasmosis- acute or chronic lung disease and progressive disseminated histoplasmosis affecting a number of organs.), Coccidioides (infect lungs- Coccidioidomycosis), Aspergillus (infect lungs), and Candida sp. (skin, genital tract and urinary tract infection ) That based on: 1. the patients clinical presentation. 2. their exposure history. 3. risk factor for infection. 4. and target type (Ag/ Ab). Types of serological targets: A) For detection of Antigen: 1- Galactomannan (GM-test): it’s highly antigenic a polysaccharide molecule as a components of fungal cell wall found in most of Aspergillus sp., Creptococcus and Candida. 1 Lab. 4/ class 3 ]MYCOLOGY ASSIST LECT. MAYS JASSIM[ Figure- 1: Cell wall structure of aspergillus fumigatus Sample: it can be collected from: 1. Blood: if the aspergillus invades blood it secrets its galactomannan antigen into the blood stream. 2. Bronchoalveolar lavage (BAL): if the fungus found in the airways, asmaal tissue of the infected area is collected by the bronchoscope.
    [Show full text]
  • Antibody Reactions Precipitation Reactions
    Immunological testing Perspective 17.1 Monoclonal Antibodies • Monoclonal antibodies • Serology • Quantifying antigen – antibody reactions 17-1 17-2 Serology Quantifying antigen – antibody reactions • Antibodies • Seroconversion or rise in titer • Antibodies detect and identify antigens • Serial dilutions 17-3 17-4 Precipitation reactions • Immunodiffusion • Immunoelectrophoresis Figure 17.2 - Quantitation of immunologic tests 17-5 17-6 1 Figure 17.4 Immunodiffusion Figure 17.3 Precipitation reaction 17-7 17-8 Agglutination reactions • Direct agglutination • Indirect agglutination • Hemagglutination Figure 17.6 Immunoelectrophoresis 17-9 17-10 Direct agglutination Indirect agglutination • Cross – linking and lattice formation • Soluble antigen is coated onto particles (red bood cells, • Antibodies react with particulate antigens (red blood latex beads) cells, bacteria, fungi) • Allow for visible clumps (agglutination) • Visible clumps • Estimate amount of antibody 17-11 17-12 2 Immunofluorescence tests • Direct fluorescent antibody test • Indirect fluorescent antibody test Figure 17.7 - Agglutination reaction 17-13 17-14 Figure 17.8 - Direct and indirect fluorescent antibody test Antigen – antibody assays • Radioimmunoassay (RIA) • Enzyme – linked immunosorbant assay (ELISA) • Western blot 17-15 17-16 Enzyme – linked immunosorbant assay Radioimmunoassay (RIA) (ELISA) • Competitive inhibition assay • Color reaction assay • Measure antigen or antibody • Indirect ELISA • Ex. Measure small amounts of hormones or drugs in a • Direct ELISA
    [Show full text]
  • Hypersensitivity
    HYPERSENSITIVITY HYPERSENSITIVITY undesirable (damaging, discomfort producing and sometimes fatal) reaction produced by the normal immune system • hypersensitivity reactions require a pre-sensitized (immune) state of the host HYPERSENSITIVITY Hypersensitivity reactions can be divided into four types according to Gell and Coombs: • type I, • type II, • type III • type IV, based on: • time taken for the reaction • type of antygen • the mechanisms involved • clinical symptoms Frequently, a particular clinical condition (disease) may involve more than one type of reaction. TYPE I HYPERSENSITIVITY TYPE I HYPERSENSITIVITY known also as immediate or anaphylactic hypersensitivity 15-30 minutes from the time of exposure, although sometimes may have a delayed onset (10 - 12 h) symptoms depends on the place of antigen entrance and reaction appearance - weal & flare histology - basophils and eosinophils TYPE I HYPERSENSITIVITY ANTIGEN: is soluble exogenous e.g: Drugs (antibiotics) Foods (nuts, shellfish) Insect venoms pollens Antigens enter body by: Injection Ingestion Inhalation Absorption Induces antibody formation Anaphylaxis Pathophysiology IMMUNOGLOBULIN – IgE very high affinity for its receptor on mast cells and basophils = is homocytotropic IMMUNE CELLs Mast cells In all subcutaneous/submucosal tissues, Including conjunctiva, upper/lower respiratory tracts, and gut Basophils Circulate in blood mechanisms: Subsequent exposure to the same allergen cross links the cell-bound IgE and triggers the release of various pharmacologically
    [Show full text]