Chapter 1 Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1 Introduction Cover Page The handle http://hdl.handle.net/1887/20669 holds various files of this Leiden University dissertation. Author: Nefs, Bas Title: The hunt for red dwarf binaries and hot planets in the WFCAM transit survey Issue Date: 2013-03-27 Chapter 1 Introduction The advent of infra-red-sensitive astronomical detectors and arrays has, over the last few decades, led to a revived interest into the fundamental properties of M-dwarf stars. This thesis presents the first results from the Wide Field Camera Transit Survey (WTS), a dedicated and ongoing photometric infra-red survey, that hunts for low-mass binaries and planetary companions around M-dwarfs. The goal of this work is, by investigating M-dwarfs in eclipsing binary systems, to gain a better understanding of how low-mass stars are formed and how they evolve. In this in- troduction we first describe some of the general characteristics of M-dwarf stars (Section 1.1), followed by a discussion in Section 1.2 on the importance of M-dwarf studies. Section 1.3 in- troduces possible low-mass binary formation scenarios and potential observational constraints on these theories. In Section 1.4 the importance of close (eclipsing) M-dwarf systems is empha- sized in relation to existing theories and simulations of binary formation and evolution. Current discrepancies of fundamental observed M-dwarf properties with evolution models are reviewed in Section 1.5, which pose a challenge to M-dwarf planet characterisation efforts, which are dis- cussed in Section 1.6. The observational data for this thesis, high quality infra-red light curves from the WTS, are detailed in Section 1.7. We end the introduction with a short outline of the various thesis chapters (Section 1.8) and a last section (Section 1.9) on possible future work. 1.1 M-dwarfs - general characteristics M-dwarfs are the smallest hydrogen burning stars that live on the stellar main sequence. They bridge the mass gap between cool deuterium-burning brown dwarfs and solar-like stars, and range in mass from 0.07-0.08M to 0.60-0.65M (Baraffe & Chabrier 1996). M-dwarfs are highly abundant throughout our Milky Way, e.g. Henry et al. (2007) find that M-dwarfs rep- resent >70% of all stars in number. Of the 77 known stars in 5 parsec (pc) around our Sun1, 62.3% are M-dwarfs, 5.2% brown dwarfs and only 2.6% are solar type (spectral class G) stars. The closest M-dwarf is Proxima Centauri, at a distance of only 1.3 pc. Yet, ironically, of all the ∼6000 stars accessible to the naked eye, none are M-dwarfs. The brightest observed M-dwarf is Lacaille 8760 (AX Microscopii; distance 12.9 pc) at V band magnitude 6.69. This is because M-dwarfs are intrinsically faint, with luminosities ranging from ∼7% to only 0.015% that of the Sun (Baraffe & Chabrier 1996). M-dwarfs are brightest at (infra)red wavelengths explaining why, historically, they were also difficult to access with telescopes. The observed atmospheric temperatures of M-dwarfs range from ∼2000 to ∼3900 K, which is low enough for simple molecules (e.g. Titanium Oxide, TiO and water, H2O) to be stable 1RECONS (REsarch Consortium On Nearby Stars) census of all known objects within 10 pc, 01 January 2012,http://www.chara.gsu.edu/RECONS/ 2 Chapter 1. Introduction and provide significant absorption in the optical and infra-red parts of their spectra. The M- dwarf spectral class (which ranges from M0 to M9) is actually defined by the presence of TiO absorption bands in the spectrum. An important difference between M-dwarfs and solar-type stars is in the structure of their atmospheres. Models indicate that stars with mass less then 35% of the Sun are fully convective, and higher mass M-dwarfs have a radiative core. This core increases in size from ∼50% of R∗ for a 0.4 M M-dwarf to ∼65% for 0.6M , and to ∼70% for a solar type star (Chabrier & Baraffe 1997). Convection occurs because the M-dwarf interior has a high density compared to the temperature and is consequently opaque to radiation. M- dwarfs are very slow hydrogen burners because their core temperature is relatively low (< 107 K) and the resulting helium is constantly remixed by the convection. This means that M-dwarfs have a nearly constant luminosity and spectral type while on the main sequence and that no M-dwarf has yet evolved from the main sequence since the Big Bang. Many M-dwarfs are chromospherically and magnetically active, and this activity manifests itself by flares, ejections of mass and periodic brightness variations caused by rotational mod- ulation of cool surface star spots. In Sun-like stars, with masses between about 0.35 and 1.3 M , the dynamo that gives rise to this activity (the aW − dynamo) is believed to be generated at the thin boundary between the convective envelope and radiative core, the tachocline (e.g. Parker 1993; Charbonneau & MacGregor 1997; Thompson et al. 2003). Here, magnetic fields are generated by the combined action of differential rotation (the W effect) and the twisting of field lines by cyclonic convection (the a effect) (e.g. Parker 1955; Steenbeck 1966; Leighton 1969). Both of these effects depend on the rotation - the W-effect because more rapidly ro- tating stars are expected to possess stronger internal angular velocity contrasts (Brown et al. 2008) and the a-effect because it depends on the helicity of the convection which itself senses the overall rotation rate. For stars with masses less than ∼0.35M (spectral types later than ∼M3.5), which are fully convective, the tachocline disappears. However, activity has been ob- served in such stars, suggesting a different dynamo mechanism (e.g. Rockenfeller, Bailer-Jones & Mundt 2006; Reiners & Basri 2008). Indeed, spectropolarimetric studies of fully convective M-dwarfs have shown that the magnetic field morphology appears to change with spectral type (e.g. Morin 2008; 2010). These findings have led to an alternative dynamo, the a2-dynamo, where turbulence and cyclonic convection play the main role (e.g. Chabrier & Küker 2006). West et al. (2008) find that magnetic activity is a function of subtype; earlier M-dwarf types are generally less active than late types (unless part of a close binary system). Also, they find that M-dwarf activity declines as a function of age, but extends with later subclass; activity life +0:5 +0:5 times in M0 dwarfs are 0.8−0:5Gyr, and increase to as much as 8.0−1:0Gyr for M7 type stars. 1.2 M-dwarfs - why study them? M-dwarfs are very interesting objects to study for several reasons: • M-dwarfs are an ideal stellar population for studying the structure and evolution of our Galaxy (e.g. Wielen 1977; Reid et al. 1995; Bochanski et al. 2007), and the star- formation history in the local Solar neighbourhood (e.g. Gizis et al. 2002), because of their ubiquity and very long main-sequence lifetimes. Chromospheric activity decays on time-scales of billions of years, which is a time-scale relevant for studies of Galactic Section 1.3. Low-mass binary formation 3 evolution. As emphasised by e.g. Reid et al. (1999), the local star formation history is one of the major requirements for modelling of the sub-stellar mass function. • M-dwarfs also encompass many important regions of parameter space of stellar structure, not only the onset of convection, but also of significant electron degeneracy in the core, and the formation of dust and subsequent depletion of metals onto dust grains in the stellar atmosphere. Note furthermore that the equation of state for M-dwarfs, which determines internal structure and forms an important ingredient for stellar atmosphere models (e.g. Chabrier & Baraffe 1996), may even need to be (slightly) revised (e.g. Torres & Ribas 2002; Lopez-Morales 2004). Such a revision may (partially) remedy the mismatch be- tween observed fundamental M-dwarf properties and models, but remains an interesting open question (e.g. Irwin et al. 2011). • M-dwarfs form important ingredients for dynamical stellar evolution simulations by con- necting solar-type stars and brown dwarfs, which are two mass regions that appear to have very different binary fractions. The change of these multiplicity characteristics through- out the M-dwarf regime is important to understand the evolution of both low-mass stars and brown dwarfs and their formation environment (e.g. Goodwin et al. 2007; Burgasser et al. 2007; Parker et al. 2009). Also, the observed distributions of orbital period and mass-ratios of M-dwarf binaries are constraints to models of star-formation and dynami- cal evolution (e.g. Bate et al. 2012). See also chapters 4 and 5. • Exoplanet detection techniques are significantly more sensitive to planets orbiting M- dwarfs than solar-type stars, making them sensitive to rocky planets in the habitable zone. In addition they occupy a different place in parameter space and are therefore important probes for planet formation theories (see also section 1.6). • There are still apparent discrepancies between theoretical stellar structure models for M- dwarfs and the observed fundamental M-dwarf properties (mass, luminosity, radius, ef- fective temperature), in addition to the lack of dynamical mass-radius measurements for mid-to-late type M-dwarfs (mass below 0.2 M ). See also chapters 3 and 5 and section 1.5. 1.3 Low-mass binary formation 1.3.1 Observational constraints Observations of both young clusters and the field show that a significant fraction of stars are formed as multiple systems (e.g.
Recommended publications
  • Temperature-Spectral Class-Color Index Relationships for Main
    ASTRONOMY SURVIVAL NOTEBOOK Stellar Evolution SESSION FOURTEEN: THE EVOLUTION OF STARS Approximate Characteristics of Several Types of MAIN SEQUENCE STARS Mass in Contraction Surface Luminosity M Years on Radius Class Comparison to Zero Age Temp. compared Absolute Main in to Sun Main Sequence (K) to sun Magnitude Sequence suns Not well known O6 29.5 10 Th 45,000 140,000 -4.0 2 M 6.2 mid blue super g O9 22.6 100 Th 37,800 55,000 -3.6 4 M 4.7 late blue super g B2 10.0 400 Th 21,000 3,190 -1.9 30 M 4.3 early B5 5.46 1 M 15,200 380 -0.4 140 M 2.8 mid A0 2.48 4 M 9,600 24 +1.5 1B 1.8 early A7 1.86 10 M 7,920 8.8 +2.4 2 B 1.6 late F2 1.46 15 M 7,050 3.8 +3.8 4 B 1.3 early G2 1.00 20 M 5,800 1.0 +4.83 10 B 1.0 early sun K7 0.53 40 M 4,000 0.11 +8.1 50 B 0.7 late M8 0.17 100 M 2,700 0.0020 +14.4 840B 0.2 late minimum 2 Jupiters Temperature-Spectral Class-Color Index Relationships for Main-Sequence Stars Temp 54,000 K 29,200 K 9,600 K 7,350 K 6,050 K 5,240 K 3,750 K | | | | | | | Sp Class O5 B0 A0 F0 G0 K0 M0 Co Index (UBV) -0.33 -0.30 -0.02 +0.30 +0.58 +0.81 +1.40 1.
    [Show full text]
  • The Constellation Microscopium, the Microscope Microscopium Is A
    The Constellation Microscopium, the Microscope Microscopium is a small constellation in the southern sky, defined in the 18th century by Nicolas Louis de Lacaille in 1751–52 . Its name is Latin for microscope; it was invented by Lacaille to commemorate the compound microscope, i.e. one that uses more than one lens. The first microscope was invented by the two brothers, Hans and Zacharius Jensen, Dutch spectacle makers of Holland in 1590, who were also involved in the invention of the telescope (see below). Lacaille first showed it on his map of 1756 under the name le Microscope but Latinized this to Microscopium on the second edition published in 1763. He described it as consisting of "a tube above a square box". It contains sixty-nine stars, varying in magnitude from 4.8 to 7, the lucida being Gamma Microscopii of apparent magnitude 4.68. Two star systems have been found to have planets, while another has a debris disk. The stars that now comprise Microscopium may formerly have belonged to the hind feet of Sagittarius. However, this is uncertain as, while its stars seem to be referred to by Al-Sufi as having been seen by Ptolemy, Al-Sufi does not specify their exact positions. Microscopium is bordered Capricornus to the north, Piscis Austrinus and Grus to the west, Sagittarius to the east, Indus to the south, and touching on Telescopium to the southeast. The recommended three-letter abbreviation for the constellation, as adopted Seen in the 1824 star chart set Urania's Mirror (lower left) by the International Astronomical Union in 1922, is 'Mic'.
    [Show full text]
  • The Hertzsprung - Russell Diagram Today You Will Be Making the Hertzsprung - Russell Diagram
    Name: ___________________________________ The Hertzsprung - Russell diagram Today you will be making the Hertzsprung - Russell diagram. The H-R diagram allows astronomers to classify stars into groups. The two axes for this graph will be temperature and magnitude. When we refer to temperature, we are talking about the surface of the star. The surface temperature is much cooler. For example, our sun’s surface temperature is ~5,500K to 6,000 K. Kelvin is a temperature scale very similar to Celsius. Absolute magnitude is a measurement of how bright a star really is. This is determined by its size and by its temperature. Even though it might look bright in our sky, we try to compare all stars as if we were standing the exact same distance away from each one. This magnitude value is stated by calculating how bright the object would shine at a fixed distance away in space, ~32.6 light years (10 parsecs for those wanting another measurement to think about). Main sequence stars Temperature Magnitude Red Giant stars Temperature Magnitude Bellatrix 18000 -2.0 Capella 5000 -0.6 Regulus 12000 -0.6 Pollux 4650 0.8 Spica 19500 -2.0 Arcturus 4500 -0.3 Beta Centauri 21000 -3.0 Aldebaran 3900 -0.2 Achernar 16500 -3.0 Beta Tauri 12000.0 -2 Beta Crucis 21000.0 -3.9 Red Super Giant Alpha Crucis 19500.0 -4 Rigel 11000 -6.8 Vega 9750 0.5 Deneb 8500 -6.9 Castor 9250 0.9 Canopus 7400 -3.1 Beta Carinae 9750.0 -0.4 Antares 3500 -4.5 Sirius A 9250.0 1.5 Betelgeuse 3200 -5.5 Formalhaut 8500 2.0 Altair 7750 2.2 White Dwarfs Procyon A 6500 2.6 Sirius B 8100 11.4 Alpha Centauri A 5750 4.4 Procyon B 6500 13.1 Sun 5750 4.9 Tau Ceti 5344 5.7 Epsilon Eridani 4500 6.1 Epsilon Indi 4250 7 Cygni A 3800 7.5 Cygni B 3700 8 Alpha Centauri B 3900 5.8 Kapteyn's Star 3400 11.2 Lacaille 8760 3200 8.8 Lacaille 21185 3000 10.5 Bernard's Star 2600 13.2 Ross 614A 2500 13.3 Kruger 60B 2500 13.4 Ross 248 2800 14.7 Use the data on the previous page to plot an H-R diagram.
    [Show full text]
  • Faint Objects in Motion: the New Frontier of High Precision Astrometry
    White paper for the Voyage 2050 long-term plan in the ESA Science Programme Faint objects in motion: the new frontier of high precision astrometry Contact Scientist: Fabien Malbet Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) Université Grenoble Alpes, CS 40700, F-38058 Grenoble cedex 9, France Email: [email protected], Phone: +33 476 63 58 33 version 20190805 Faint objects in motion : the new frontier of high precision astrometry Faint objects in motion: the new on the most critical questions of cosmology, astron- frontier of high precision astrometry omy and particle physics. Sky survey telescopes and powerful targeted telesco- 1.1 Dark matter pes play complementary roles in astronomy. In order to The current hypothesis of cold dark matter (CDM) ur- investigate the nature and characteristics of the mo- gently needs verification. Dark matter (DM) is essential tions of very faint objects, a flexibly-pointed instrument to the L + CDM cosmological model (LCDM), which suc- capable of high astrometric accuracy is an ideal comple- cessfully describes the large-scale distribution of galax- ment to current astrometric surveys and a unique tool for ies and the angular fluctuations of the Cosmic Microwave precision astrophysics. Such a space-based mission Background, as confirmed by the ESA / Planck mission. will push the frontier of precision astrometry from ev- Dark matter is the dominant form of matter (∼ 85%) in idence of earth-massed habitable worlds around the the Universe, and ensures the formation and stability of nearest starts, and also into distant Milky way objects enmeshed galaxies and clusters of galaxies.
    [Show full text]
  • The Detectability of Nightside City Lights on Exoplanets
    Draft version September 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The Detectability of Nightside City Lights on Exoplanets Thomas G. Beatty1 1Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721; [email protected] ABSTRACT Next-generation missions designed to detect biosignatures on exoplanets will also be capable of plac- ing constraints on the presence of technosignatures (evidence for technological life) on these same worlds. Here, I estimate the detectability of nightside city lights on habitable, Earth-like, exoplan- ets around nearby stars using direct-imaging observations from the proposed LUVOIR and HabEx observatories. I use data from the Soumi National Polar-orbiting Partnership satellite to determine the surface flux from city lights at the top of Earth's atmosphere, and the spectra of commercially available high-power lamps to model the spectral energy distribution of the city lights. I consider how the detectability scales with urbanization fraction: from Earth's value of 0.05%, up to the limiting case of an ecumenopolis { or planet-wide city. I then calculate the minimum detectable urbanization fraction using 300 hours of observing time for generic Earth-analogs around stars within 8 pc of the Sun, and for nearby known potentially habitable planets. Though Earth itself would not be detectable by LUVOIR or HabEx, planets around M-dwarfs close to the Sun would show detectable signals from city lights for urbanization levels of 0.4% to 3%, while city lights on planets around nearby Sun-like stars would be detectable at urbanization levels of & 10%. The known planet Proxima b is a particu- larly compelling target for LUVOIR A observations, which would be able to detect city lights twelve times that of Earth in 300 hours, an urbanization level that is expected to occur on Earth around the mid-22nd-century.
    [Show full text]
  • Basics of Astrophysics Revisited. I. Mass- Luminosity Relation for K, M and G Class Stars
    Basics of astrophysics revisited. I. Mass- luminosity relation for K, M and G class stars Edgars Alksnis [email protected] Small volume statistics show, that luminosity of slow rotating stars is proportional to their angular momentums of rotation. Cause should be outside of standard solar model. Slow rotating giants and dim dwarfs are not out of „main sequence” in this concept. Predictive power of stellar mass-radius- equatorial rotation speed-luminosity relation has been offered to test in numerous examples. Keywords: mass-luminosity relation, stellar rotation, stellar mass prediction, stellar rotation prediction ...Such vibrations would proceed from deep inside the sun. They are a fast way of transporting large amounts of energy from the interior to the surface that is not envisioned in present theory.... They could stir up the material inside the sun, which current theory tends to see as well layered, and that could affect the fusion dynamics. If they come to be generally accepted, they will require a reworking of solar theory, and that carries in its train a reworking of stellar theory generally. These vibrations could reverberate throughout astronomy. (Science News, Vol. 115, April 21, 1979, p. 270). Actual expression for stellar mass-luminosity relation (fig.1) Fig.1 Stellar mass- luminosity relation. Credit: Ay20. L- luminosity, relative to the Sun, M- mass, relative to the Sun. remain empiric and in fact contain unresolvable contradiction: stellar luminosity basically is connected with their surface area (radius squared) but mass (radius in cube) appears as a factor which generate luminosity. That purely geometric difference had pressed astrophysicists to place several classes of stars outside of „main sequence” in the frame of their strange theoretic constructions.
    [Show full text]
  • Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1
    Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1 1Independent Researcher, Zadar, Croatia *Project: https://www.svemir-ipaksevrti.com/Universe-and-rotation.html; (https://www.svemir-ipaksevrti.com/) Abstract: The article analyzes the blueshift of the objects, through realized measurements of galaxies, mergers and collisions of galaxies and clusters of galaxies and measurements of different galactic speeds, where the closer galaxies move faster than the significantly more distant ones. The clusters of galaxies are analyzed through their non-zero value rotations and gravitational connection of objects inside a cluster, supercluster or a group of galaxies. The constant growth of objects and systems is visible through the constant influx of space material to Earth and other objects inside our system, through percussive craters, scattered around the system, collisions and mergers of objects, galaxies and clusters of galaxies. Atom and its formation, joining into pairs, growth and disintegration are analyzed through atoms of the same values of structure, different aggregate states and contiguous atoms of different aggregate states. The disintegration of complex atoms is followed with the temperature increase above the boiling point of atoms and compounds. The effects of rotation around an axis are analyzed from the small objects through stars, galaxies, superclusters and to the rotation of Universe. The objects' speeds of rotation and their effects are analyzed through the formation and appearance of a system (the formation of orbits, the asteroid belt, gas disk, the appearance of galaxies), its influence on temperature, surface gravity, the force of a magnetic field, the size of a radius.
    [Show full text]
  • 44 Closest Stars and How They Compare to Our Sun
    44 CLOSEST STARS AND HOW THEY COMPARE TO OUR SUN R = Solar radius (a unit of distance to express the size of stars relative to the sun) L = Solar luminosity (a unit of radiant flux used SUN System/constellation to compare the luminosity of stars, galaxies, Solar System Potential planets and other celestial objects in terms of the sunʼs output) 8 Distance From Earth 8.317 light-minutes EARTH 1R (432,288 miles) s) -year (light Proxima Centauri TH EAR Alpha Centauri OM E FR 1 ANC DIST 4.244 light-years 0.001 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 25 0.1542R 0.00005L L <=0.0001 α Centauri A (Rigil Kentaurus) 1 Alpha Centauri L 4.365 light-years 1.223R 1.519 L α Centauri B (Toliman) 5 Alpha Centauri light-years 4.37 light-years 0.863R 0.5002L Bernard’s Star Ophiuchus 1 5.957 light-years 0.196R 0.0035L Wolf 359 (CN Leonis) Leo 2 7.856 light-years 0.16R 0.0014L Lalande 21185 Ursa Major 1 8.307 light-years 0.393R 0.026L Sirius A Canis Major Luyten 726-8A 8.659 light-years Cetus 1.711 R 25.4L 8.791 light-years 0.14R 0.00004L Sirius B Canis Major 8.659 light-years Luyten 726-8B 0.0084R 0.056L Cetus 8.791 light-years 0.14R 0.00004L Ross 154 Sagittarius 9.7035 light-years 0.24R 0.0038L 10 light-years Epsilon Eridani Eridanus Ross 248 2 Andromeda 10.446 light-years 10.2903 light-years 0.735R 0.34L 0.16R 0.0018L Lacaille 9352 Piscis Austrinus 3 10.7211 light-years Ross 128 0.47R 0.0367L Virgo 1 EZ Aquarii A 11 light-years Aquarius 61 Cygni A 0.1967R 0.00362L 11.1 light-years Cygnus 0.175R 0.000087L 3 (part of triple star system) 11.4 light-years
    [Show full text]
  • Wyatt, Stanley P., Jr. TITLE the Life Story of a Star, Book 5. Guidebook
    DOCUHEET RESUME ED 196 671 SE 033 213 AUTHOR Atkin, J. Myron; Wyatt, Stanley P., Jr. TITLE The Life Story of a Star, Book 5. Guidebook. The University of Illinois Astronomy Project. INSTITUTION Illinois Univ., Urbana. SPONS AGENCY National Science Foundation, Washington, D.C. PUB DATE 69 NOTE 65p.: For related documents,see SE 033 210-212. EDFS PRICE MF01/PC03 Plus Postage. DESCRIPTORS *Astronomy; Elementary Education; Elementary School Science; Junior High Schools; *Physical Sciences; Science Activities; *Science Curriculum; Science Education; Science History: *Science Programs IDENTIFIERS *Stars: *University of Illinois Astronomy Program ABSTRACT Presented is book five in a series of six books in the University of Illinois Astronomy Program whichintroduces astronomy to upper elementary and junior high schoolstudents. This guidebcok discusses the interior of stars, theirsource of energy, and their evolution. Topics presented include: the physical properties of the sun: model of the solar interior;using known physical laws as guides; the source of solarenergy; properties of stars - their luminosities: temperatures;masses; stellar models; the evolution of stars: mid birth and death of stars.(Author/DS) *********************************************************************** Reproductions supplied by EDRS are the best thatcan be made from the original document. *********************************************************************** THE UNIVERSITY OF ILLINOIS ASTRONOMYPROGRAM THE LIFE STORY OFA STAR CODIRECTORS: J. MYRON ATKIN STANLEYP. WYATT,
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]
  • The Hertzsprung-Russell Diagram
    The Hertzsprung-Russell Diagram A. Luminosity, Temperature, and Size Introduction In the early part of this century, two astronomers, one Danish and one American, invented a diagram showing the basic characteristics of stars. The color-magnitude diagram, often called the Hertzsprung-Russell (HR) diagram in their honor, has proved to be the Rosetta stone of stellar astronomy. The purpose of this exercise is to give you some familiarity with the diagram. In addition, you will be asked to investigate the types of biases in measurement used to construct this diagram. Biases are especially important in understanding astronomical data. Unlike laboratory sciences, astronomical experiments must be conducted under the conditions the Universe gives us. Another way to think about this is that astronomy has no test tube! Since the astronomer has no direct control over the experiment, it is imperative that he or she understands the prejudices introduced into the data by the human perspective. However, biases of measurement are found in many other fields of science. An example of a biased study would be to find the weight vs. age relation for all Americans by weighing only members of health clubs. Most active health club members tend to be more fit than the average, and so the average derived would be lower than the true average weight of Americans. This exercise asks you to make comparisons between two different samples of stars. The bright star table was selected on the basis of apparent brightness, NOT the luminosity of the stars. The near star table is all stars within 5 parsecs (about 15-16 light years) from the Sun.
    [Show full text]
  • Stellar and Substellar Companions of Nearby Stars from Gaia DR2 Binarity from Proper Motion Anomaly?
    A&A 623, A72 (2019) Astronomy https://doi.org/10.1051/0004-6361/201834371 & c P. Kervella et al. 2019 Astrophysics Stellar and substellar companions of nearby stars from Gaia DR2 Binarity from proper motion anomaly? Pierre Kervella1, Frédéric Arenou2, François Mignard3, and Frédéric Thévenin3 1 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, 92195 Meudon, France e-mail: [email protected] 2 GEPI, Observatoire de Paris, Université PSL, CNRS, 5 Place Jules Janssen, 92190 Meudon, France 3 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Lagrange UMR 7293, CS 34229, 06304 Nice Cedex 4, France Received 3 October 2018 / Accepted 26 January 2019 ABSTRACT Context. The census of stellar and substellar companions of nearby stars is largely incomplete, in particular toward the low-mass brown dwarf and long-period exoplanets. It is, however, fundamentally important in the understanding of the stellar and planetary formation and evolution mechanisms. Nearby stars are particularly favorable targets for high precision astrometry. Aims. We aim to characterize the presence of physical companions of stellar and substellar mass in orbit around nearby stars. Methods. Orbiting secondary bodies influence the proper motion of their parent star through their gravitational reflex motion. Using the Hipparcos and Gaia’s second data release (GDR2) catalogs, we determined the long-term proper motion of the stars common to these two catalogs. We then searched for a proper motion anomaly (PMa) between the long-term proper motion vector and the GDR2 (or Hipparcos) measurements, indicative of the presence of a perturbing secondary object.
    [Show full text]