Constellation / Galaxie Polaris Condensed Uppercase Romans

Total Page:16

File Type:pdf, Size:1020Kb

Constellation / Galaxie Polaris Condensed Uppercase Romans CONSTELLATION / GALAXIE POLARIS CONDENSED UPPERCASE ROMANS 170PT ZUNYI 150PT YUMEN 135PT VILLAGE XYLOMA 120PT WAXWING 105PT VESTMENTS WWW.VLLG.COM 1 CONSTELLATION / GALAXIE POLARIS CONDENSED UPPERCASE ITALICS 170PT ULTRA 150PT TRITON 135PT VILLAGE SIGLARE 120PT REEDBIRD 105PT QUANTITATE WWW.VLLG.COM 2 CONSTELLATION / GALAXIE POLARIS CONDENSED LOWERCASE ROMANS 170PT power 150PT oxnard 135PT VILLAGE numeric 120PT multipath 105PT lineamental WWW.VLLG.COM 3 CONSTELLATION / GALAXIE POLARIS CONDENSED LOWERCASE ITALICS 170PT kotow 150PT journal 135PT VILLAGE idoneity 120PT headlines 105PT grecianized WWW.VLLG.COM 4 CONSTELLATION / GALAXIE POLARIS CONDENSED ALL WEIGHTS & STYLES HEAVY & HEAVY ITALIC 30PT ADALINE BERMED catalyst debated BOLD & BOLD ITALIC 30PT EDIFIERS FIRMURA glabrous heliozoic MEDIUM & MEDIUM ITALIC 30PT IMMENSE JETSOMS VILLAGE klaxoned longueuil BOOK & BOOK ITALIC 30PT MATRICES NOSHERIE odalisque phonetist LIGHT & LIGHT ITALIC 30PT QUALTAGH RINGSIDER sentiment trekschuit WWW.VLLG.COM 5 CONSTELLATION / GALAXIE POLARIS CONDENSED SAMPLE TEXT SETTINGS BOLD & BOLD ITALIC 14PT Polaris, designated Ursae Minoris (Latinized to Alpha Ursae Minoris, abbreviated A lpha UMi), commonly the North Star or Pole Star, is the brightest star in the conste llation of Ursa Minor. It is very close to the north celestial pole, making it the curre nt northern pole star. The revised Hipparcos parallax gives a distance to Polaris of about 433 light-years, while calculations by other methods derive distances arou nd 30% closer. Polaris is a triple star system, composed of the primary star, Polar is Aa, in orbit with a smaller companion (Polaris Ab); the pair in orbit with Polaris B (discovered in August 1779 by William Herschel). There were once thought to be tw o more distant components—Polaris C and Polaris D—but these have been sho wn not to be physically associated with the Polaris system. Polaris AA is a 5.4 solar mass F7 yellow supergiant of spectral type Ib. It is the first classical Cepheid to ha ve a mass determined from its orbit. MEDIUM & MEDIUM ITALIC 14PT Polaris B can be seen even with a modest telescope. William Herschel discovered the star in August 1779 using a reflecting telescope of his own, one of the best telescope s of the time. By examining the spectrum of Polaris A, it was also discovered in 1929 t hat it was a very close binary, with the secondary being a dwarf, which had been theo rized in earlier observations. In January 2006, NASA released images, from the Hubbl e telescope, that showed the three members of the Polaris ternary system. Ab, the n VILLAGE earby dwarf star, is in an orbit of 18.5 AU from Polaris Aa, about the distance between the Sun and Uranus, which explains why its light is swamped by its close and much b righter companion. Because Polaris lies nearly in a direct line with the Earth’s rotatio nal axis above the North Pole—the north celestial pole—Polaris stands almost mot ionless in the sky, and all the stars of the northern sky appear to rotate around it. The refore, it makes an excellent fixed point to draw measurements. BOOK & BOOK ITALIC 14PT The moving of Polaris towards and, in the future, away from the celestial pole, is due to th e precession of the equinoxes. The celestial pole will move away from UMi after the 21st c entury, passing close by Gamma Cephei by about the 41st century, moving towards Dene b by about the 91st century. The celestial pole was close to Thuban around 2750 BC, and during classical antiquity it was closer to Kochab than to Polaris. It was about the same a ngular distance from UMi as to UMi by the end of late antiquity. The Greek navigator Pyth eas in ca. 320 BC described the celestial pole as devoid of stars. However, as one of the b righter stars close to the celestial pole, Polaris was used for navigation at least from late antiquity, and described as “always visible” by Stobaeus, and it could reasonably be desc ribed as stella polaris from about the High Middle Ages. In Shakespeare’s play Julius Caes ar, written around 1599, Caesar describes himself as being “as constant as the northern star,” though in Caesar’s time there was no constant northern star. WWW.VLLG.COM 6 CONSTELLATION / GALAXIE POLARIS CONDENSED SAMPLE TEXT SETTINGS BOLD & BOLD ITALIC 11PT The Hipparcos spacecraft used stellar paralla ere is still not widespread agreement about x to take measurements from 1989 & 1993 w the distance. The next major step in high prec ith the accuracy of 0.97 milliarcseconds, and ision parallax measurements comes from Ga it obtained accurate measurements for stella ia, a space astrometry mission launched in 2 r distances up to 1,000 pc away. The Hipparco 013 and intended to measure stellar parallax s data was examined again with more advan to within 25 microarcseconds. Although it wa ced error correction and statistical technique s originally planned to limit Gaia’s observati s. Despite the advantages of Hipparcos astr ons to stars fainter than magnitude 5.7, tests ometry, the uncertainty in its Polaris data has carried out during the commissioning phase been pointed out and some researchers have indicated that Gaia could autonomously ident questioned the accuracy of Hipparcose when ify stars as bright as magnitude 3. When Gaia measuring binary Cepheids like Polaris. The entered regular scientific operations in July 2 Hipparcos reduction specifically for Polaris h 014, it was configured to routinely process s as been re-examined and reaffirmed but th tars in the magnitude range 3–20. BOOK & BOOK ITALIC 11PT Ursa Minor, also known as the Little Bear, is a c the night sky, ranging from an apparent magnit onstellation in the Northern Sky. Like the Great ude of 1.97 to 2.00. Beta Ursae Minoris, also kn Bear, the tail of the Little Bear may also be seen own as Kochab, is an aging star that has swollen as the handle of a ladle, hence the North Ameri and cooled to become an orange giant with an can name, Little Dipper—seven stars with four apparent magnitude of 2.08—only slightly fa in its bowl like its partner the Big Dipper. It was inter than Polaris. Kochab and magnitude 3 Ga one of the 48 constellations listed by the 2nd mma Ursae Minoris have been called the “gua century astronomer Ptolemy, and remains one rdians of the pole star.” Planets have been dete VILLAGE of the eighty-eight modern constellations. Ursa cted orbiting four of the stars, including Kocha Minor has traditionally been important for navig b. The constellation also contains an isolated n ation, particularly by mariners, because of Pola eutron star—Calvera—and H1504+65, the h ris being the North Star. Polaris, the brightest s ottest white dwarf yet discovered, with a surfac tar in the constellation, is a yellow-white super ace temperature of 200,000 K. In the Babyloni giant and the brightest Cepheid variable star in ian star catalogues, Ursa Minor was known. LIGHT & LIGHT ITALIC 11PT The tradition of naming the northern constellati e Minoris (or Polaris) as the north star, even thoug ons “bears” appears to be genuinely Greek, althou h it was still several degrees away from the celes ough Homer refers to just a single “bear.” The orig stial pole. Its New Latin name of stella polaris w inal “bear” is thus Ursa Major, and Ursa Minor was as coined only in the early modern period. The an admitted as second, or Phoenician Bear (Ursa Ph cient name of the constellation is Cynosura. The o oenicia, hence, Phoenice) only later, according to S rigin of this name is unclear (Ursa Minor being a d trabo (I.1.6, C3) due to a suggestion by Thales, who og’s tail would imply that another constellation ne suggested it as a navigation aid to the Greeks, w arby is the dog, but no such constellation is know ho had been navigating by Ursa Major. In classica n). Instead, the mythographic tradition of Cataste l antiquity, the celestial pole was somewhat closer ismi makes Cynosura the name of an Oread nymp to Beta Ursae Minoris than to Alpha Ursae Minor h described as a nurse of Zeus, honoured by the g is, and the entire constellation was taken to indic od with a place in the sky. There are various propo ate the northern direction. Since the medieval per sed explanations for the name Cynosura. One sugg iod, it has become convenient to use Alpha Ursa estion connects it to the myth of Callisto. WWW.VLLG.COM 7 CONSTELLATION / GALAXIE POLARIS CONDENSED HEAVY & HEAVY ITALIC 64PT ANDROMEDA 32PT One of the 48 constellations listed by the 2nd-century Greco-Roman astronomer Ptolemy, Andromeda still remains one of the 88 modern constellations. 24PT ANDROMEDA IS MOST PROMINENT DURING VILLAGE AUTUMN EVENINGS IN THE NORTHERN HEMISPHERE, ALONG WITH SEVERAL OTHER CONSTELLATIONS NAMED FOR CHARACTERS IN THE PERSEUS MYTH. 18PT Its brightest star, Alpha Andromedae, is a binary star that has also been counted as a part of Pegasus, while Gamma Andromedae is a colorful binary and a popular target for amateur astronomers. Only marginally dimmer than Alpha, Beta Andromedae is a red giant, its color visible to the naked eye. The constellation’s most obvious deep-sky object is the naked-eye Andromeda Galaxy, the closest spiral galaxy to the Milky Way and one of the brightest Messier objects. WWW.VLLG.COM 8 CONSTELLATION / GALAXIE POLARIS CONDENSED BOLD & BOLD ITALIC 64PT COMA BERENICES 32PT This constellation is an ancient asterism in the northern sky. It is located in the fourth galactic quadrant, between Leo and Boötes, and is visible in both hemispheres.
Recommended publications
  • Binocular Universe: Northern Exposure
    Binocular Universe: Northern Exposure March 2013 Phil Harrington he northern circumpolar sky holds many binocular targets that we can enjoy throughout the year. This month, let's take aim at the constellation Ursa TMinor, the Little Bear. You may know it better as the Little Dipper, an asterism made up of the seven brightest stars in the Little Bear. Above: Winter star map from Star Watch by Phil Harrington. Above: Finder chart for this month's Binocular Universe. Chart adapted from Touring the Universe through Binoculars Atlas (TUBA), www.philharrington.net/tuba.htm Call it what you will, this star group is most famous as the home of the North Star, Polaris [Alpha (α) Ursae Minoris]. Earth's rotational axis is aimed just three- quarters of a degree away from Polaris, causing it to trace out a very tiny circle around that invisible point every 24 hours. The North Celestial Pole is slowly moving closer to Polaris. It will continue to close to within 14 minutes of arc around the year 2105, when it will slowly start to pull away. While Polaris is currently the pole star, the 26,000-year wobble of Earth's axis, called precession, causes the Celestial Pole's aim to trace a 47° circle in the sky. For instance, during the building of the pyramids nearly 4,600 years ago, the North Pole was aimed toward the star Thuban in Draco. Fast forward 5,200 years from now and the pole will be point near Alderamin in Cepheus. Most of us at one time or another have heard someone misspeak by referring to Polaris as the brightest star in the night sky.
    [Show full text]
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • The Planisphere of the Heavens
    The Planisphere of the Heavens by Steven E. Behrmann Book V Copyright© by Steven E. Behrmann All rights reserved 2010 First Draft (Sunnyside Edition) Dedication: This book is dedicated to my blessed little son, Jonathan William Edward, to whom I hope to teach the names of the stars. Table of Contents A Planisphere of the Heavens .......................................................... 12 The Signs of the Seasons ................................................................. 15 The Virgin (Virgo) ........................................................................... 24 Virgo ............................................................................................ 25 Coma ............................................................................................ 27 The Centaur .................................................................................. 29 Boötes ........................................................................................... 31 The Scales (Libra) ............................................................................ 34 Libra ............................................................................................. 35 The Cross (Crux) .......................................................................... 37 The Victim ................................................................................... 39 The Crown .................................................................................... 41 The Scorpion ...................................................................................
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Explore the Universe Observing Certificate Second Edition
    RASC Observing Committee Explore the Universe Observing Certificate Second Edition Explore the Universe Observing Certificate Welcome to the Explore the Universe Observing Certificate Program. This program is designed to provide the observer with a well-rounded introduction to the night sky visible from North America. Using this observing program is an excellent way to gain knowledge and experience in astronomy. Experienced observers find that a planned observing session results in a more satisfying and interesting experience. This program will help introduce you to amateur astronomy and prepare you for other more challenging certificate programs such as the Messier and Finest NGC. The program covers the full range of astronomical objects. Here is a summary: Observing Objective Requirement Available Constellations and Bright Stars 12 24 The Moon 16 32 Solar System 5 10 Deep Sky Objects 12 24 Double Stars 10 20 Total 55 110 In each category a choice of objects is provided so that you can begin the certificate at any time of the year. In order to receive your certificate you need to observe a total of 55 of the 110 objects available. Here is a summary of some of the abbreviations used in this program Instrument V – Visual (unaided eye) B – Binocular T – Telescope V/B - Visual/Binocular B/T - Binocular/Telescope Season Season when the object can be best seen in the evening sky between dusk. and midnight. Objects may also be seen in other seasons. Description Brief description of the target object, its common name and other details. Cons Constellation where object can be found (if applicable) BOG Ref Refers to corresponding references in the RASC’s The Beginner’s Observing Guide highlighting this object.
    [Show full text]
  • Macedonian Kings, Egyptian Pharaohs the Ptolemaic Family In
    Department of World Cultures University of Helsinki Helsinki Macedonian Kings, Egyptian Pharaohs The Ptolemaic Family in the Encomiastic Poems of Callimachus Iiro Laukola ACADEMIC DISSERTATION To be publicly discussed, by due permission of the Faculty of Arts at the University of Helsinki in auditorium XV, University Main Building, on the 23rd of September, 2016 at 12 o’clock. Helsinki 2016 © Iiro Laukola 2016 ISBN 978-951-51-2383-1 (paperback.) ISBN 978-951-51-2384-8 (PDF) Unigrafia Helsinki 2016 Abstract The interaction between Greek and Egyptian cultural concepts has been an intense yet controversial topic in studies about Ptolemaic Egypt. The present study partakes in this discussion with an analysis of the encomiastic poems of Callimachus of Cyrene (c. 305 – c. 240 BC). The success of the Ptolemaic Dynasty is crystallized in the juxtaposing of the different roles of a Greek ǴdzȅǻǽǷȏȄ and of an Egyptian Pharaoh, and this study gives a glimpse of this political and ideological endeavour through the poetry of Callimachus. The contribution of the present work is to situate Callimachus in the core of the Ptolemaic court. Callimachus was a proponent of the Ptolemaic rule. By reappraising the traditional Greek beliefs, he examined the bicultural rule of the Ptolemies in his encomiastic poems. This work critically examines six Callimachean hymns, namely to Zeus, to Apollo, to Artemis, to Delos, to Athena and to Demeter together with the Victory of Berenice, the Lock of Berenice and the Ektheosis of Arsinoe. Characterized by ambiguous imagery, the hymns inspect the ruptures in Greek thought during the Hellenistic age.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • The Imperial Cult and the Individual
    THE IMPERIAL CULT AND THE INDIVIDUAL: THE NEGOTIATION OF AUGUSTUS' PRIVATE WORSHIP DURING HIS LIFETIME AT ROME _______________________________________ A Dissertation presented to the Faculty of the Department of Ancient Mediterranean Studies at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ by CLAIRE McGRAW Dr. Dennis Trout, Dissertation Supervisor MAY 2019 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled THE IMPERIAL CULT AND THE INDIVIDUAL: THE NEGOTIATION OF AUGUSTUS' PRIVATE WORSHIP DURING HIS LIFETIME AT ROME presented by Claire McGraw, a candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. _______________________________________________ Professor Dennis Trout _______________________________________________ Professor Anatole Mori _______________________________________________ Professor Raymond Marks _______________________________________________ Professor Marcello Mogetta _______________________________________________ Professor Sean Gurd DEDICATION There are many people who deserve to be mentioned here, and I hope I have not forgotten anyone. I must begin with my family, Tom, Michael, Lisa, and Mom. Their love and support throughout this entire process have meant so much to me. I dedicate this project to my Mom especially; I must acknowledge that nearly every good thing I know and good decision I’ve made is because of her. She has (literally and figuratively) pushed me to achieve this dream. Mom has been my rock, my wall to lean upon, every single day. I love you, Mom. Tom, Michael, and Lisa have been the best siblings and sister-in-law. Tom thinks what I do is cool, and that means the world to a little sister.
    [Show full text]
  • Research at the Belgrade Astronomical Observatory
    ASTRONOMY AND SPACE SCIENCE eds. M.K. Tsvetkov, L.G. Filipov, M.S. Dimitrijevic,´ L.C.ˇ Popovic,´ Heron Press Ltd, Sofia 2007 Influence of Collisional Processes on the Astrophysical Plasma Spectra – Research at the Belgrade Astronomical Observatory M.S. Dimitrijevic´ Astronomical Observatory, Volgina 7, 11160 Belgrade, Serbia Abstract. Activities on the project “Influence of collisional processes on the astrophysical plasma spectra”, supported by the Ministry of Science and Envi- ronment protection from 1st January 2002 up to 31st December 2005 are re- viewed, including other scientific results of the project participants. 1 Research on the Influence of Collisional Processes on the Astro- physical Plasma Spectra on Belgrade Astronomical Observatory From 1. January 2002, activities on investigation of the influence of collisional processes on the astrophysical plasma spectra are organized at Belgrade astronomical observatory within the frame of the project with the same name, supported by the Ministry of Science and Environment protection of Serbia. Investigations made within the frame of the Project concern plasma in astrophysics, lab- oratory and technology and the corresponding modelling, determination and research of atomic and molecular processes, optical properties and spectra, with a particular accent on the role of collisional processes. The particular attention has been paid to the inves- tigation of spectral line profiles, broadened by collisions with charged particles (Stark effect). Such investigations are of interest for the diagnostics and modelling of stellar plasma, plasma in laboratory and technological plasma. Semiclasical perturbation and Modified semiempirical methods were used, tested and investigated. Stark broadening parameters, line width and shift, were determined for a large number of spectral lines of Ag I, Ar I, Cd I, Ga I, Ge I, Kr I, Ne I, F II, In II, Ne II, Ti II, Be III, Cd III, Co III, Cu III, F III, S III, Si III, Zn III, and Si IV.
    [Show full text]
  • Flares on Active M-Type Stars Observed with XMM-Newton and Chandra
    Flares on active M-type stars observed with XMM-Newton and Chandra Urmila Mitra Kraev Mullard Space Science Laboratory Department of Space and Climate Physics University College London A thesis submitted to the University of London for the degree of Doctor of Philosophy I, Urmila Mitra Kraev, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Abstract M-type red dwarfs are among the most active stars. Their light curves display random variability of rapid increase and gradual decrease in emission. It is believed that these large energy events, or flares, are the manifestation of the permanently reforming magnetic field of the stellar atmosphere. Stellar coronal flares are observed in the radio, optical, ultraviolet and X-rays. With the new generation of X-ray telescopes, XMM-Newton and Chandra , it has become possible to study these flares in much greater detail than ever before. This thesis focuses on three core issues about flares: (i) how their X-ray emission is correlated with the ultraviolet, (ii) using an oscillation to determine the loop length and the magnetic field strength of a particular flare, and (iii) investigating the change of density sensitive lines during flares using high-resolution X-ray spectra. (i) It is known that flare emission in different wavebands often correlate in time. However, here is the first time where data is presented which shows a correlation between emission from two different wavebands (soft X-rays and ultraviolet) over various sized flares and from five stars, which supports that the flare process is governed by common physical parameters scaling over a large range.
    [Show full text]
  • Planetary Companions Around the K Giant Stars 11 Ursae Minoris and HD 32518
    A&A 505, 1311–1317 (2009) Astronomy DOI: 10.1051/0004-6361/200911702 & c ESO 2009 Astrophysics Planetary companions around the K giant stars 11 Ursae Minoris and HD 32518 M. P. Döllinger1, A. P. Hatzes2, L. Pasquini1, E. W. Guenther2, and M. Hartmann2 1 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany e-mail: [email protected] 2 Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany Received 22 January 2009 / Accepted 10 August 2009 ABSTRACT Context. 11 UMi and HD 32518 belong to a sample of 62 K giant stars that has been observed since February 2004 using the 2m Alfred Jensch telescope of the Thüringer Landessternwarte (TLS) to measure precise radial velocities (RVs). Aims. The aim of this survey is to investigate the dependence of planet formation on the mass of the host star by searching for plane- tary companions around intermediate-mass giants. Methods. An iodine absorption cell was used to obtain accurate RVs for this study. Results. Our measurements reveal that the RVs of 11 UMi show a periodic variation of 516.22 days with a semiamplitude of −1 −7 K = 189.70 m s . An orbital solution yields a mass function of f (m) = (3.608 ± 0.441) × 10 solar masses (M) and an eccentricity of e = 0.083 ± 0.03. The RV curve of HD 32518 shows sinusoidal variations with a period of 157.54 days and a semiamplitude of −1 −8 K = 115.83 m s . An orbital solution yields an eccentricity, e = 0.008 ± 0.03 and a mass function, f (m) = (2.199 ± 0.235) × 10 M.
    [Show full text]