Statistical Modelling of Resolved Debris Discs

Total Page:16

File Type:pdf, Size:1020Kb

Statistical Modelling of Resolved Debris Discs Statistical modelling of resolved debris discs DISSERTATION zur Erlangung des akademischen Grades Doctor Rerum Naturalium (Dr.rer.nat) vorgelegt dem Rat der Physikalisch-Astronomischen Fakult¨at der Friedrich-Schiller-Universit¨at Jena von M.Sc. Nicole Pawellek geboren am 06. Dezember 1988 in Meiningen Erster Gutachter: Prof. Dr. Alexander Krivov Astrophysikalisches Institut und Universit¨atssternwarte Friedrich-Schiller-Universit¨atJena Zweiter Gutachter: Prof. Dr. Sebastian Wolf Institut f¨ur theoretische Physik und Astrophysik Christian-Albrechts-Universit¨atKiel Dritter Gutachter: Prof. Dr. Jean-Charles Augereau Institut de Plan´etologie et d’Astrophysique de Grenoble (IPAG) Grenoble, France Tag der ¨offentlichen Verteidigung: 17. November 2016 Gewidmet dem Wissenschaftsoffizier der Enterprise. III Contents Danksagung VII Kurzfassung VIII 1 Introduction and motivation 1 1.1 Debrisdiscs...................................... 1 1.1.1 Solarsystem ...................................... 1 1.1.2 Investigation methods . 2 1.2 Aimsofthiswork...................................... 3 2 Theoretical foundations 5 2.1 Spectralenergydistributions . 5 2.1.1 Optical parameters of dust particles . 6 2.1.2 Blackbody radiation . 7 2.1.3 Mie radiation . 8 2.2 Discparameters..................................... 11 2.2.1 Basicdefinitions ................................... 11 2.2.2 Radiation pressure and blowout grain size sblow ................... 13 2.2.3 Collisional evolution . 14 2.2.4 Grainsizes ....................................... 15 2.2.5 Fluxdensityofacircumstellardebrisdisc . 16 2.2.6 Fractional luminosity fd ................................ 17 2.3 Statisticalbasics ................................... 20 2.3.1 Correlation coefficients . 20 2.3.2 k-sampletests.................................... 21 3 Technical aspects of fitting spectral energy distributions 22 3.1 Fittingalgorithm.................................... 22 3.1.1 Functionality ..................................... 22 3.1.2 Advantages and disadvantages . 24 3.2 Fittingprocedure................................. 24 3.2.1 Criteria for one- and two-component systems . 24 3.2.2 Fitting of one-component systems . 26 3.2.3 Fitting of two-component systems . 27 3.3 Degeneracy of fit parameters . 28 3.4 Determination of error bars . 28 4 Sample 31 4.1 Resolveddebrisdiscs............................... 31 4.1.1 Selectioncriteria ................................ 31 4.1.2 Resultingsample .................................. 32 IV CONTENTS 4.2 Stellarparameters ................................... 32 4.3 Photometry......................................... 34 4.3.1 Mid-infrared photometry . 34 4.3.2 Far-infrared and sub-mm photometry . 35 5 Resolved disc radii 37 5.1 PACSimages ......................................... 37 5.2 Methoddescription................................. 38 5.3 Results.......................................... 39 5.3.1 FWHM for major axes . 40 5.3.2 Discradii ........................................ 40 5.3.3 Estimation of errors . 44 6 Fitting results using the modified blackbody and size distribution method 45 6.1 Systems with one or two components . 45 6.2 Dusttemperaturesanddiscradii . 47 6.2.1 Dusttemperature .................................. 47 6.2.2 Dust-to-blackbody-temperature ratio . 49 6.2.3 Dust-to-blackbody-radius ratio . 50 6.2.4 Fractional luminosities and disc radii . 52 6.3 Grainsizes ........................................ 53 6.3.1 Blowout grain size . 53 6.3.2 Minimumgrainsize .................................. 55 6.3.3 Minimum-to-blowout grain size ratio . 55 6.4 Opacity index and grain size distribution index . 57 6.5 χ2-maps............................................. 58 6.6 The role of the stellar photosphere . 59 7 Analysis of the grain size – stellar luminosity trend 61 7.1 Dustcompositions .................................... 61 7.2 Outliers ......................................... 63 7.3 Subsamples ........................................ 64 7.3.1 Extracting and comparing subsamples . 64 7.3.2 Discs of low and high fractional luminosity . 65 7.3.3 Small vs. large discs and young vs. old discs . 67 7.3.4 Faintvs.brightdiscs............................... 67 7.3.5 Marginally-resolved vs well-resolved discs . 68 7.4 The role of the surface energy constraint . 69 7.5 Theroleofthestirringlevel. 72 7.5.1 Idea ........................................... 73 7.5.2 ACEruns........................................ 73 7.5.3 Results ......................................... 74 8 Application to radii of unresolved discs 78 8.1 Outliers ......................................... 78 8.1.1 Low-luminosity stars . 78 8.1.2 Otheroutliers.................................... 79 8.2 Influence of dust compositions . 80 V CONTENTS 8.3 Estimation of unresolved disc radii . 80 8.3.1 Calculation recipe . 80 8.3.2 Application to resolved discs . 81 9 Conclusions and summary 83 Appendices 86 A Photometry of the systems 87 B Fit results for different dust compositions 89 B.1 Astrosilicateandice ................................. 89 B.2 Astrosilicate and Vacuum . 90 B.2.1 50% Astrosilicate and 50% Vacuum . 90 B.2.2 10% Astrosilicate and 90% Vacuum . 91 B.3 Carbon(ACAR) ....................................... 92 B.4 Astrosilicate and Carbon (ACAR) . 93 C List of resolved debris discs 94 Ehrenw¨ortliche Erkl¨arung XXI Lebenslauf XXII VI Danksagung Auf dem Weg zu meiner Promotion haben mich zahlreiche Menschen begleitet und unterst¨utzt, ohne die die vorliegende Dissertation nicht m¨oglich gewesen w¨are. Allen voran m¨ochte ich mich bei meinem Doktorvater, Professor Alexander Sascha“ Krivov, bedanken, der mir zu jeder Zeit mit Rat und Tat ” zur Seite stand und immer einen rettenden Einfall hatte. Ohne seine mont¨aglichen Anrufe w¨are es kein Montag gewesen. Des Weiteren danke ich Dr. Katharina Schreyer, Dr. Torsten L¨ohne, Herrn Christian Sch¨uppler, Dr. Christian Vitense, Dr. Martin Reidemeister und Herrn Fabian Geiler f¨ur die vielen produktiven Diskussionen, wie auch Frau Monika M¨uller, Dr. Frank Gießler und Herrn J¨urgen Weiprecht f¨ur die technische und b¨urokratische Unterst¨utzung. Auch die Kollegen von anderen Insti- tuten, wie Dr. Attila Mo´or, Dr. Steve Ertel, Dr. Jonathan Marshall und Dr. Benjamin Montesinos, waren mir mit ihrem Wissen und ihren Ideen eine große Hilfe. Nicht zuletzt m¨ochte ich mich bei meinen Physik- und Mathematiklehrern, Herrn Wolgang Fiedler, Frau Bianca Kr¨amer, Dr. Winfried Zappe und Dr. Eberhard Koch bedanken, die ihre Begeisterung f¨ur die Astronomie und Physik auf mich ¨ubertragen haben. Neben der fachlichen Unterst¨utzung d¨urfen nat¨urlich auch nicht die vielen anderen Menschen ver- gessen werden, die mir einen Ausgleich zum Arbeitsalltag geschaffen haben. Zun¨achst sei meiner Familie gedankt, besonders meinen Eltern Kerstin und Frank, die mich bereits in jungen Jahren zur As- trophysik gebracht und das gesamte Studium ¨uberhaupt erst erm¨oglicht haben. Mein Bruder Markus erkl¨arte mir die Grundlagen des Programmierens und meine Großeltern Ingrid und Alfred sorgten daf¨ur, dass ich immer mit ausreichend Essen versorgt war. Ohne meine Musiklehrer, Frau Ingeborg und Herr Christian Gl¨ockner, die mich von fr¨uhester Kindheit an unterrichtet haben, sowie Herr Mar- tin Meier und Frau Regine Seifert, die sp¨ater dazu kamen, w¨are ich vermutlich an mancher Stelle verzweifelt und so m¨ochte ich auch sie alle an dieser Stelle erw¨ahnen. Ebenso bin ich dankbar f¨ur die guten Freunde, die immer ein offenes Ohr f¨ur meine Probleme hatten: Anne und Oliver Schwartz und Katrin Richter sowie die Mitwirkenden bei den sonnt¨aglichen Andachten: Schwester Kati, Herr Klaus Genieser, Frau Maria Gl¨ockner-Latour und Frau Marita Kr¨uger. VII Kurzfassung In dieser Arbeit wurde eine Stichprobe von 39 r¨aumlich aufgel¨osten Tr¨ummerschreiben um AFGKM- Sterne mit der Absicht untersucht, Korrelationen zwischen den Zentralsternparametern der Tr¨ummer- scheibensysteme und den Scheibenparametern an sich zu finden. Eine H¨urde war dabei die Entartung zwischen den Staubteilchengr¨oßen und der Entfernung des Staubes vom Zentralstern. Kleine Partikel in einer großen Entfernung lieferten ¨ahnliche Ergebnisse wie große Teilchen n¨aher am Stern. Je- doch konnten durch die r¨aumliche Aufl¨osung der Scheiben deren Radien mittels einer neuen Methode bestimmt und so die Entartung gebrochen werden. Die gew¨ahlte Stichprobe stellt die bis dato gr¨oßte analysierte Sammlung von r¨aumlich aufgel¨osten Scheiben dar, wobei die Modellierung der spektralen Energieverteilung (SED) die Grundlage der Analyse bildete. Es wurden zwei verschiedene Modelle f¨ur die Anpassung der SEDs genutzt, zum einen der modi- fizierte Schwarzk¨orper (MBB) und zum anderen die Staubgr¨oßenverteilung (SD). Der Vergleich der beiden verdeutlichte, dass sie zu ¨ahnlichen Korrelationen der verschiedenen Parameter f¨uhren, jedoch auch Unterschiede bei individuellen Scheiben sichtbar sind. Da die Teilchengr¨oßeund die Staubsorte ebenfalls entartet sind, wurden f¨unf verschiedene Staubarten f¨ur die Modellierung verwendet: reines Astrosilikat und reiner Kohlenstoff sowie Mischungen von Astrosilikat mit Eis, Kohlenstoff und Vak- uum. Die Verwendung all dieser Sorten f¨uhrte gleichfalls zu ¨ahnlichen Korrelationen. Im Ergebnis zeigte sich, dass die neue Methode der Radienbestimmung auf einen Großteil der Tr¨ummerschreiben anwendbar ist, unabh¨angig von deren Entfernung oder dem Spektraltyp des Zen- tralsterns. Des Weiteren wurde eine große Streuung der Radien ¨uber den gesamten Bereich der stel- laren Leuchtkraft festgestellt. Daher
Recommended publications
  • Spiral Arms in Disks: Planets Or Gravitational Instability?
    Spiral Arms in Disks: Planets or Gravitational Instability? Item Type Article Authors Dong, Ruobing; Najita, Joan R.; Brittain, Sean Citation Ruobing Dong et al 2018 ApJ 862 103 DOI 10.3847/1538-4357/aaccfc Publisher IOP PUBLISHING LTD Journal ASTROPHYSICAL JOURNAL Rights © 2018. The American Astronomical Society. Download date 27/09/2021 14:50:30 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/631109 The Astrophysical Journal, 862:103 (19pp), 2018 August 1 https://doi.org/10.3847/1538-4357/aaccfc © 2018. The American Astronomical Society. Spiral Arms in Disks: Planets or Gravitational Instability? Ruobing Dong (董若冰)1,2 , Joan R. Najita3, and Sean Brittain3,4 1 Department of Physics & Astronomy, University of Victoria, Victoria BC V8P 1A1, Canada 2 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA; [email protected] 3 National Optical Astronomical Observatory, 950 North Cherry Avenue, Tucson, AZ 85719, USA; [email protected] 4 Department of Physics & Astronomy, 118 Kinard Laboratory, Clemson University, Clemson, SC 29634-0978, USA; [email protected] Received 2018 May 8; revised 2018 June 2; accepted 2018 June 13; published 2018 July 27 Abstract Spiral arm structures seen in scattered-light observations of protoplanetary disks can potentially serve as signposts of planetary companions. They can also lend unique insights into disk masses, which are critical in setting the mass budget for planet formation but are difficult to determine directly. A surprisingly high fraction of disks that have been well studied in scattered light have spiral arms of some kind (8/29), as do a high fraction (6/11) of well- studied Herbig intermediate-mass stars (i.e., Herbig stars >1.5 Me).
    [Show full text]
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • Curriculum Vitae - 24 March 2020
    Dr. Eric E. Mamajek Curriculum Vitae - 24 March 2020 Jet Propulsion Laboratory Phone: (818) 354-2153 4800 Oak Grove Drive FAX: (818) 393-4950 MS 321-162 [email protected] Pasadena, CA 91109-8099 https://science.jpl.nasa.gov/people/Mamajek/ Positions 2020- Discipline Program Manager - Exoplanets, Astro. & Physics Directorate, JPL/Caltech 2016- Deputy Program Chief Scientist, NASA Exoplanet Exploration Program, JPL/Caltech 2017- Professor of Physics & Astronomy (Research), University of Rochester 2016-2017 Visiting Professor, Physics & Astronomy, University of Rochester 2016 Professor, Physics & Astronomy, University of Rochester 2013-2016 Associate Professor, Physics & Astronomy, University of Rochester 2011-2012 Associate Astronomer, NOAO, Cerro Tololo Inter-American Observatory 2008-2013 Assistant Professor, Physics & Astronomy, University of Rochester (on leave 2011-2012) 2004-2008 Clay Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics 2000-2004 Graduate Research Assistant, University of Arizona, Astronomy 1999-2000 Graduate Teaching Assistant, University of Arizona, Astronomy 1998-1999 J. William Fulbright Fellow, Australia, ADFA/UNSW School of Physics Languages English (native), Spanish (advanced) Education 2004 Ph.D. The University of Arizona, Astronomy 2001 M.S. The University of Arizona, Astronomy 2000 M.Sc. The University of New South Wales, ADFA, Physics 1998 B.S. The Pennsylvania State University, Astronomy & Astrophysics, Physics 1993 H.S. Bethel Park High School Research Interests Formation and Evolution
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Astrophysics Division Astrophysics Douglas Hudgins Program Scientist, Exoplanet Exploration Program Key NASA/SMD Science Themes
    National Aeronautics and Space Administration NASA and the Search for Life on Planets around Other Stars A presentation to the National Academies Committee on Exoplanet Science Strategy 6 March 2018 Paul Hertz Director, Astrophysics Division Astrophysics Douglas Hudgins Program Scientist, Exoplanet Exploration Program Key NASA/SMD Science Themes Protect and Improve Life on Earth Search for Life Elsewhere Discover the Secrets of the Universe 2 Talk summary 3 NASA’s Exoplanet Exploration Program Space Missions and Mission Studies Public Communications Kepler, WFIRST Decadal Studies K2 Starshade Coronagraph Supporting Research & Technology Key Sustaining Research NASA Exoplanet Science Institute Technology Development Coronagraph Masks Large Binocular Keck Single Aperture Telescope Interferometer Imaging and RV High-Contrast Deployable Archives, Tools, Sagan Fellowships, Imaging Starshades Professional Engagement NN-EXPLORE https://exoplanets.nasa.gov 4 Foundational Documents for the NASA’s Astrophysics Division 5 NASA’s cross-divisional Search for Life Elsewhere ASTROPHYSICS • Exoplanet detection and Planetary SCIENCE/ characterization ASTROBIOLOGY • Stellar characterization • Comparative planetology • Mission data analysis • Planetary atmospheres Hubble, Spitzer, Kepler, • Assessment of observable TESS, JWST, WFIRST, biosignatures etc. • Habitability EARTH SCIENCES • GCM • Planets as systems PLANETARY SCIENCE RESEARCH HELIOPHYSICS • Exoplanet characterization • Stellar characterization • Protoplanetary disks • Stellar winds • Planet formation • Detection of planetary • Comparative planetology magnetospheres 6 Exoplanet Exploration at NASA 2007 - present 7 The Spitzer Space Telescope For the last decade, the Spitzer Space Telescope has used both spectroscopic and photometric measurements in the mid-IR to probe exoplanets and exoplanetary systems. • Spitzer follow up observations of known transiting systems have revealed additional, new planets and helped refine measurements of the size and orbital dynamics of known planets as small as the Earth.
    [Show full text]
  • Inclination Evolution of Protoplanetary Disks Around Eccentric Binaries
    Mon. Not. R. Astron. Soc. 000, 000{000 (0000) Printed 11 October 2017 (MN LATEX style file v2.2) Inclination Evolution of Protoplanetary Disks Around Eccentric Binaries J. J. Zanazzi1?, and Dong Lai1 1Cornell Center for Astrophysics, Planetary Science, Department of Astronomy, Cornell University, Ithaca, NY 14853, USA 11 October 2017 ABSTRACT It is usually thought that viscous torque works to align a circumbinary disk with the binary's orbital plane. However, recent numerical simulations suggest that the disk may evolve to a configuration perpendicular to the binary orbit (\polar alignment") if the binary is eccentric and the initial disk-binary inclination is sufficiently large. We carry out a theoretical study on the long-term evolution of inclined disks around eccentric binaries, calculating the disk warp profile and dissipative torque acting on the disk. For disks with aspect ratio H=r larger than the viscosity parameter α, bend- ing wave propagation effectively makes the disk precess as a quasi-rigid body, while viscosity acts on the disk warp and twist to drive secular evolution of the disk-binary inclination. We derive a simple analytic criterion (in terms of the binary eccentricity and initial disk orientation) for the disk to evolve toward polar alignment with the eccentric binary. When the disk has a non-negligible angular momentum compared to the binary, the final \polar alignment" inclination angle is reduced from 90◦. For typical protoplanetary disk parameters, the timescale of the inclination evolution is shorter than the disk lifetime, suggesting that highly-inclined disks and planets may exist orbiting eccentric binaries. Key words: Physical data and processes: accretion, accretion discs; Physical data and processes: hydrodynamics; stars: binaries: general; protoplanetary discs.
    [Show full text]
  • The Gemini NICI Planet-Finding Campaign: the Frequency of Giant
    The Gemini NICI Planet-Finding Campaign: The Frequency of Giant Planets around Young B and A Stars Eric L. Nielsen,1 Michael C. Liu,1 Zahed Wahhaj,2 Beth A. Biller,3 Thomas L. Hayward,4 Laird M. Close,5 Jared R. Males,6 Andrew J. Skemer,7 Mark Chun,1 Christ Ftaclas,1 Silvia H. P. Alencar,6 Pawel Artymowicz,7 Alan Boss,8 Fraser Clarke,9 Elisabete de Gouveia Dal Pino,10 Jane Gregorio-Hetem,10 Markus Hartung,4 Shigeru Ida,11 Marc Kuchner,12 Douglas N. C. Lin,13 I. Neill Reid,14 Evgenya L. Shkolnik,15 Matthias Tecza,9 Niranjan Thatte,9 Douglas W. Toomey16 ABSTRACT We have carried out high contrast imaging of 70 young, nearby B and A stars to search for brown dwarf and planetary companions as part of the Gemini NICI Planet- Finding Campaign. Our survey represents the largest, deepest survey for planets around high-mass stars (≈1.5–2.5 M⊙) conducted to date and includes the planet hosts β Pic and Fomalhaut. We obtained follow-up astrometry of all candidate companions within 400 AU projected separation for stars in uncrowded fields and identified new low-mass 1Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu HI 96822, USA 2European Southern Observatory, Alonso de C´ordova 3107, Vitacura, Santiago, Chile 3Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, 69117 Heidelberg, Germany 4Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena, Chile 5Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 6Departamento de Fisica - ICEx - Universidade Federal de Minas Gerais, Av.
    [Show full text]
  • Planets Transiting Non-Eclipsing Binaries
    A&A 570, A91 (2014) Astronomy DOI: 10.1051/0004-6361/201323112 & c ESO 2014 Astrophysics Planets transiting non-eclipsing binaries David V. Martin1 and Amaury H. M. J. Triaud2;? 1 Observatoire Astronomique de l’Université de Genève, Chemin des Maillettes 51, CH-1290 Sauverny, Switzerland e-mail: [email protected] 2 Kavli Institute for Astrophysics & Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Received 22 November 2013 / Accepted 28 August 2014 ABSTRACT The majority of binary stars do not eclipse. Current searches for transiting circumbinary planets concentrate on eclipsing binaries, and are therefore restricted to a small fraction of potential hosts. We investigate the concept of finding planets transiting non-eclipsing binaries, whose geometry would require mutually inclined planes. Using an N-body code we explore how the number and sequence of transits vary as functions of observing time and orbital parameters. The concept is then generalised thanks to a suite of simulated circumbinary systems. Binaries are constructed from radial-velocity surveys of the solar neighbourhood. They are then populated with orbiting gas giants, drawn from a range of distributions. The binary population is shown to be compatible with the Kepler eclipsing binary catalogue, indicating that the properties of binaries may be as universal as the initial mass function. These synthetic systems produce transiting circumbinary planets occurring on both eclipsing and non-eclipsing binaries. Simulated planets transiting eclipsing binaries are compared with published Kepler detections. We find 1) that planets transiting non-eclipsing binaries are probably present in the Kepler data; 2) that observational biases alone cannot account for the observed over-density of circumbinary planets near the stability limit, which implies a physical pile-up; and 3) that the distributions of gas giants orbiting single and binary stars are likely different.
    [Show full text]
  • Arxiv:0809.1275V2
    How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits Guillem Anglada-Escud´e1, Mercedes L´opez-Morales1,2, John E. Chambers1 [email protected], [email protected], [email protected] ABSTRACT The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect ex- oplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a sin- gle planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35% percent of the published eccentric one-planet solutions are statistically indistinguishible from planetary systems in 2:1 orbital resonance, 2) another 40% cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets. Subject headings: Exoplanets – Orbital dynamics – Planet detection – Doppler method arXiv:0809.1275v2 [astro-ph] 25 Nov 2009 Introduction Most of the +300 exoplanets found to date have been discovered using the Doppler tech- nique, which measures the reflex motion of the host star induced by the planets (Mayor & Queloz 1995; Marcy & Butler 1996). The diverse characteristics of these exoplanets are somewhat surprising. Many of them are similar in mass to Jupiter, but orbit much closer to their 1Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd.
    [Show full text]
  • Correlations Between the Stellar, Planetary, and Debris Components of Exoplanet Systems Observed by Herschel⋆
    A&A 565, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323058 & c ESO 2014 Astrophysics Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel J. P. Marshall1,2, A. Moro-Martín3,4, C. Eiroa1, G. Kennedy5,A.Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10,M.C.Wyatt5,B.Matthews11,12,J.Horner2,13,14, B. Montesinos10,G.Bryden15, C. del Burgo16,J.S.Greaves17,R.J.Ivison18,19, G. Meeus1, G. Olofsson20, G. L. Pilbratt21, and G. J. White22,23 (Affiliations can be found after the references) Received 15 November 2013 / Accepted 6 March 2014 ABSTRACT Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]