By James S. Mcdaniel, Austin J. Maclnnis, and Clark P. Read
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evidence for Host-Specific Clades of Tetraphyllidean
International Journal for Parasitology 29 (1999) 1465±1476 Evidence for host-speci®c clades of tetraphyllidean tapeworms (Platyhelminthes: Eucestoda) revealed by analysis of 18S ssrDNAp P.D. Olson a, b,*, T.R. Ruhnke c, J. Sanney c, T. Hudson c aThe Natural History Museum, Department of Zoology, Division of Parasitic Worms, Cromwell Road, London SW7 5BD, UK bUniversity of Connecticut, Ecology and Evolutionary Biology, U-43, 75 No. Eagleville Road, Storrs, CT 06269-3043, USA cWest Virginia State College, Department of Biology, Institute, WV 25112-1000, USA Received 12 April 1999; received in revised form 22 June 1999; accepted 22 June 1999 Abstract Sequence data from the V4 and V7±V9 variable regions of the 18S small subunit ribosomal DNA (ssrDNA) gene were used to examine relationships among 26 tetraphyllidean and two lecanicephalidean taxa. Newly collected specimens of 21 of the tetraphyllidean species were used to generate ssrDNA sequences that were combined with sequences previously available, including those of two diphyllidean taxa used for outgroup rooting. The sequences were aligned by eye according to secondary structural motifs of the conserved core of the molecule. Of the 1520 sites in the alignment, 874 (58%) were excluded from analysis due to alignment gaps and lack of positional homology as inferred by manual inspection. Genetic variability of the ssrDNA gene regions compared was greater than would be expected, based on the present taxonomy of the ingroup species, and the genetic divergences among tetraphyllidean `families' and genera were comparable to that among tapeworm orders. Phylogenetic hypotheses were generated by the methods of maximum parsimony and maximum likelihood (GTR + I + G nucleotide substitution model). -
Effect of Temperature on the Infectivity of Metacercariae of Zygocotyle Lunata (Digenea: Paramphistomidae)
J. Parasitol., 87(1), 2001, p. 10±13 q American Society of Parasitologists 2001 EFFECT OF TEMPERATURE ON THE INFECTIVITY OF METACERCARIAE OF ZYGOCOTYLE LUNATA (DIGENEA: PARAMPHISTOMIDAE) David L. Ferrell*, Nicholas J. Negovetich, and Eric J. Wetzel² Department of Biology, Wabash College, P.O. Box 352, Crawfordsville, Indiana 47933 ABSTRACT: As a test of the energy limitation hypothesis (ELH), we predicted that temperature would have a signi®cant in¯uence on the infectivity of metacercariae of the digenetic trematode Zygocotyle lunata. Snails infected with Z. lunata were collected from ponds near Crawfordsville, Indiana, isolated at room temperature, and examined for the release of cercariae. Newly encysted metacercariae were collected and incubated 1±30 days at 1 of 5 temperatures (0, 3, 25, 31, 37 C). Twenty-®ve cysts were fed to each of 5 or 10 mice per treatment group (temperature). At 17 days postinfection, mice were killed and worms were recovered; data were collected on levels of infection in each group and the total body area of each worm. No worms were found in mice fed cysts that had been held at0Cor37C(after 30 days). There were no differences in prevalence, infectivity, or mean intensity among the 3, 25, and 31 C treatments. Infectivity of metacercariae incubated at 37 C for 1 day was signi®cantly greater than in all other treatments, while infectivity of metacercariae in the 37 C/15-day treatment was signi®cantly lower than in all others. Mean body area of worms at 37 C/15 days was signi®cantly greater than at other temperatures, suggesting density-dependent increases in growth. -
Parasite Infection of the Non-Indigenous Round Goby (Neogobius Melanostomus) in the Baltic Sea
Downloaded from orbit.dtu.dk on: Oct 04, 2021 Parasite infection of the non-indigenous round goby (Neogobius melanostomus) in the Baltic Sea Ojaveer, Henn; Turovski, Aleksei; Nõomaa, Kristiina Published in: Aquatic Invasions Publication date: 2020 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Ojaveer, H., Turovski, A., & Nõomaa, K. (2020). Parasite infection of the non-indigenous round goby (Neogobius melanostomus) in the Baltic Sea. Aquatic Invasions, 15(1), 160-176. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Aquatic Invasions (2020) Volume 15 Article in press Special Issue: Proceedings of the 10th International Conference on Marine Bioinvasions Guest editors: Amy Fowler, April Blakeslee, Carolyn Tepolt, Alejandro Bortolus, Evangelina Schwindt and Joana Dias CORRECTED PROOF Research Article Parasite infection of the non-indigenous round goby (Neogobius melanostomus) in the Baltic Sea Henn Ojaveer1,2,*, Aleksei Turovski3 and Kristiina Nõomaa4 1University of Tartu, Ringi 35, 80012 Pärnu, Estonia 2National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet Building 201, 2800 Kgs. -
Periwinkles Littorina Littorea Sampled Close to Charr Farms in Northern Norway
DISEASES OF AQUATIC ORGANISMS Vol. 12: 59-65, 1991 Published December 5 Dis. aquat. Org. l Occurrence of the digenean Cryptocotyle lingua in farmed Arctic charr Salvelinus alpinus and periwinkles Littorina littorea sampled close to charr farms in northern Norway Roar Kristoffersen Department of Aquatic Biology, Norwegian College of Fishery Science, University of Trornso, Dramsveien 201B, N-9000 Tromso, Norway ABSTRACT: Occurrence of Cryptocotyle lingua rediae was recorded in periwinkle samples collected adjacent to 10 charr farms and at control sites 1 to 5 km from the farms. In 7 out of 10 localities the prevalence of infection was higher in the sample taken adjacent to the farm than in the control, and overall prevalence was 13.7 O/O in periwinkles near the farms and 6.1 % in snails from the control sites, a highly significant difference. Prevalences in periwinkles close to farms tended to increase with duration of farming at the site. The role of the final host, piscivorous birds, is considered Samples of charr from 11 farms were investigated for visible black spots caused by encysted C. llngua metacercariae. No infected charr were recorded in the 2 land-based farms where seawater exposed to UV-light (photozone) was pumped to the tanks, whilst 83.2 '10 of the fish exhibited black spots in the 9 farms where the charr were stocked in floating net cages in the sea. In most infected fish the C. ljngua cysts were located only on the fins in relatively small numbers. INTRODUCTION transmission from such focal points to wild host popula- tions and vice versa. -
AAVP 1995 Annual Meeting Proceedings
Joint Meeting of The American Society of Parasitologists & The American Association of Veterinary Parasitologists July 6 july 1 0, 1995 Pittsburgh, Pennsylvania 2 ! j THE AMERICAN SOCIETY - OF PARASITOLOGISTS - & THE AMERICAN ASSOCIATION OF VETERINARY PARASITOLOGISTS ACKNOWLEDGE THEFOLLO~GCO~ANlliS FOR THEIR FINANCIAL SUPPORT: CORPORATE EVENT SPONSOR: PFIZER ANIMAL HEALTH CORPORATE SPONSORS: BOEHRINGER INGELHEIM ANIMAL HEALTH, INC. MALUNCKRODT VETERINARY, INC. THE UPJOHN CO. MEETING SPONSORS: AMERICAN CYANAMID CO. CIBA ANIMAL HEALTH ELl LILLY & CO. FERMENT A ANIMAL HEALTH HILL'S PET NUTRITION, INC. HOECHST-ROUSSEL AGRI-VET CO. IDEXX LABORATORIES, INC. MIDWEST VETERINARY SERVICES, INC. PARA VAX, INC. PROFESSIONAL LABORATORIES & RESEARCH SERVICES RHONE MERIEUX, INC. SCHERING-PLOUGH ANIMAL HEALTH SOLVAY ANIMAL HEALTH, INC. SUMITOMO CHEMICAL, LTO. SYNBIOTICS CORP. TRS LABS, INC. - - I I '1---.. --J 3 Announcing a Joint Meeting of THE AMERICAN SOCIETY THE AMERICAN ASSOCIATION Of OF PARASITOLOGISTS VETERINARY PARASITOLOGISTS (70th Meeting) (40th Meeting) Pittsburgh, Pennsylvania july 6-1 0, 1995 INFORMATION & REGISTRATION Hyatt Regency Hotel, 112 Washington Place THURSDAY Regency foyer, 2nd Floor t July 6th Registration Begins, Noon-5:00 p.m. FRIDAY Regency foyer, 2nd Floor t July 7th 8:00 a.m.-5:00 p.m. SATURDAY Regency foyer, 2nd Floor july 8th 8:00 a.m.-5:00p.m. SUNDAY Regency foyer, 2nd Floor july 9th 8:00 a.m.-Noon t Items for the Auction may be delivered to this location before 3:00p.m. on Friday, july 7th. 4 WELCOME RECEPTION Thursday, july 6th 7:00-1 0:00 p.m. Grand Ballroom SOCIAl, MATCH THE FACES & AUCTION Friday, July 7th Preview: 6:30-7:30 p.m. -
Ecology and Evolutionary Biology
Ecology and evolutionary biology SPRING/SUMMER NEWSLETTER 2019 NUMBER 34 CARL SCHLICHTING RETURNS TO FULL TIME TEACHING AND RESEARCH On June 30, 2019 Dr. Carl Schlichting returned to full time teaching and research responsibilities after serving as EEB’s Department Head for 5 1/2 years (2014-2019). Carl received his B.S. in Zoology from Ohio State University, M.A. in Ecology and Evolution from SUNY at Stony Brook, and a Ph.D. in Botany from the University of Texas (Austin). Carl joined the EEB Department in 1988 as Assistant Professor at the Hartford campus. In 2000 he was promoted to Professor and joined the faculty in Storrs in 2002. He is looking forward to finishing some manuscripts and analyzing some old (Phox and Lobelia) and new (Pelargonium) datasets that have been awaiting his attention! During Carl’s tenure as Head, EEB welcomed eight new faculty members, six at Storrs and one each at Hartford and Stamford. Although he takes little credit, he notes that Department grant expenditures have risen by 40% to $3.5M/ year, and the number of EEB majors has risen from 55 to 80. Carl performed day-to-day management of the multi- year planning process for EEB’s eventual move into a newly renovated Gant Building, as well as the negotiations for a new Greenhouse facility. He will continue to manage the planning and move into EEB’s new Gant space. The exact dates of the two-phase moves will be announced in an upcoming newsletter so stay tuned. Faculty, students and staff are grateful to Carl for his leadership and support during his tenure as Department Head. -
Use of Parasites As Biological Tags for Separating Stocks of the Starspotted Dogfish Mustelus Manazo in Japan and Taiwan
Blackwell Science, LtdOxford, UK FISFisheries Science0919-92682003 Blackwell Science Asia Pty Ltd 692April 2003 626 Parasites of Mustelus manazo A Yamaguchi et al. 10.1046/j.0919-9268.2002.00626.x Original Article337342BEES SGML FISHERIES SCIENCE 2003; 69: 337–342 Use of parasites as biological tags for separating stocks of the starspotted dogfish Mustelus manazo in Japan and Taiwan Atsuko YAMAGUCHI,1* Hiroshi YOKOYAMA,2 Kazuo OGAWA2 AND Toru TANIUCHI3 1Faculty of Fisheries, Nagasaki University, Nagasaki, Nagasaki 852-8521, 2Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657 and 3College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-8510, Japan ABSTRACT: The parasite fauna of Mustelus manazo from seven localities in Japan and Taiwan was assessed for the feasibility of using parasites as biological tags for the identification of different host stocks. Examination of 1038 host specimens resulted in 13 parasite species recorded: one nematode, two myxosporeans, two copepods and eight cestodes. Although relatively low overall prevalence of the first five species at different localities showed some significant differences, the samples collected in Tokyo Bay bore the lowest similarity (19.2%). These results support previous studies, which suggested the existence of a unique host stock in Tokyo Bay. Accordingly, combinations of prevalence data may provide useful information on stock identification. Cestodes probably have the greatest potential for use as biological tags. Detailed examination of 25 specimens of M. manazo from Aomori and Tokyo Bay disclosed eight species of intestinal cestodes. A canonical discriminant analysis based on these species separated the two localities clearly. -
Behavioral Analysis of a Digenetic Trematode Cercaria (Microphallus Turgidus) in Relation to the Microhabitat of Grass Shrimp (Palaemonetes Spp.)
Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Fall 2010 Behavioral Analysis of a Digenetic Trematode Cercaria (Microphallus Turgidus) in Relation to The Microhabitat of Grass Shrimp (Palaemonetes Spp.) Patricia O'Leary Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Recommended Citation O'Leary, Patricia, "Behavioral Analysis of a Digenetic Trematode Cercaria (Microphallus Turgidus) in Relation to The Microhabitat of Grass Shrimp (Palaemonetes Spp.)" (2010). Electronic Theses and Dissertations. 743. https://digitalcommons.georgiasouthern.edu/etd/743 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. Behavioral analysis of a digenetic trematode cercaria ( Microphallus turgidus ) in relation to the microhabitat of grass shrimp ( Palaemonetes spp.) by Patricia O’Leary (Under the Direction of Oscar J. Pung) Abstract The hydrobiid snail and grass shrimp hosts of the microphallid trematode Microphallus turgidus are found in specific microhabitats. The primary second intermediate host of this parasite is the grass shrimp Palaemonetes pugio. The behavior of trematode cercaria often reflects the habitat and behavior of the host species. The objective of my study was to examine the behavior of M. turgidus in relation to the microhabitat selection of the second intermediate host. To do so, I established a behavioral ethogram for the cercariae of M. turgidus and compared the behavior of these parasites to the known host behavior. -
Helminthes of Goby Fish of the Hryhoryivsky Estuary (Black Sea, Ukraine)
Vestnik zoologii, 36(3): 71—76, 2002 © Yu. Kvach, 2002 UDC 597.585.1 : 616.99(262.55) HELMINTHES OF GOBY FISH OF THE HRYHORYIVSKY ESTUARY (BLACK SEA, UKRAINE) Yu. Kvach Department of Zoology, Odessa University, Shampansky prov., 2, Odessa, 65058 Ukraine E-mail: [email protected] Accepted 4 September 2001 Helminthes of Goby Fish of the Hryhoryivsky Estuary (Black Sea, Ukraine). Kvach Yu. – In the paper the data about the helminthofauna of Neogobius melanostomus, N. ratan, N. fluviatilis, Mesogobius batrachocephalus, Zosterisessor ophiocephalus, and Proterorhynus marmoratus in the Hryhoryivsky Estu- ary are presented. The fauna of gobies’ helmint hes consist of 10 species: 5 trematods (Cryptocotyle concavum met., C. lingua met., Pygidiopsis genata met., Acanthostomum imbutiforme met.), Asymphylo- dora pontica, one cestoda (Proteocephalus gobiorum), 2 nematods (Streptocara crassicauda l., Dichelyne minutus), and 2 acanthocephalans (Acanthocephaloides propinquus, Telosentis exiguus). Only one of trematods species was presented by adult stage. The modern fauna of helminthes and published data are compared. The relative stability of the goby fish helminthofauna of the Estuary is mentioned. Key words: goby, helminth, infection, Hryhoryivsky Estuary. Ãåëüìèíòû áû÷êîâûõ ðûá Ãðèãîðüåâñêîãî ëèìàíà (×åðíîå ìîðå, Óêðàèíà). Êâà÷ Þ. – Èññëåäî- âàíà ãåëüìèíòîôàóíà Neogobius melanostomus, N. ratan, N. fluviatilis, Mesogobius batrachocephalus, Zosterisessor ophiocephalus è Proterorhynus marmoratus èç Ãðèãîðüåâñêîãî ëèìàíà. Ôàóíà ãåëüìèí- òîâ áû÷êîâ âêëþ÷àåò 10 âèäîâ. Èç íèõ 5 âèäîâ òðåìàòîä (Cryptocotyle lingua met., C. concavum met., Pygidiopsis genata met., Acanthostomum imbutiforme met., Asymphylodora pontica), îäèí âèä öåñ- òîä (Proteocephalus gobiorum), 2 âèäà íåìàòîä (Streptocara crassicauda l., Dichelyne minutus), 2 âèäà ñêðåáíåé (Acanthocephaloides propinquus, Telosentis exiguus). Èç ïÿòè âèäîâ òðåìàòîä òîëüêî îäèí ïðåäñòàâëåí âçðîñëîé ñòàäèåé. -
Impact of Trematode Parasitism on the Fauna of a North Sea Tidal Flat
HELGOI~NDER MEERESUNTERSUCHUNGEN Helgol~nder Meeresunters. 37, 185-199 (1984) Impact of trematode parasitism on the fauna of a North Sea tidal flat G. Lauckner Biologische Anstalt Helgoland (Litoralstation]; D-2282 List/Sylt, Federal Republic of Germany ABSTRACT: The impact of larval trematodes on the fauna of a North Sea tidal flat is considered at the individual and at the population level, depicting the digenean parasites of the common periwinkle, Littorina littorea, and their life cycles, as an example. On the German North Sea coast, L. fittorea is first intermediate host for 6 larval trematodes representing 6 digenean families - Cryptocotyle lingua (Heterophyidae), Himasthla elongata (Echinostomatidae), Renicola roscovita (Renicolidae), Microphallus pygmaeus (Microphallidae), Podocotyle atomon (Opecoelidae} and Cercaria lebouri (Notocotylidae). All except P. atomon utilize shore birds as final hosts; adult P. atomon parasitize in the intestine of teleosts, mainly pleuronectid flatfish. Second intermediate hosts of C. lingua are various species of fish; the cercariae of H. elongata encyst in molluscs and polychaetes, those of R. roscovita in molluscs; Iv[. pygmaeus has an abbreviated life cycle; C. lebouri encysts free on solid surfaces; and the fish trematode P. atomon utilizes benthic crustaceans, mainly amphipods, as second intermediate hosts. On the tidal flats of the K6nigshafen (Sylt), up to 77 % of the periwinkles have been found to be infested by larval trematodes. Maximum infestations in individual samples were 23 % for C. lingua, 47 % for H. etongata and 44 To for R. roscovita. The digeneans cause complete 'parasitic castration' of their carriers and hence exclude a considerable proportion of the snails from the breeding population. -
Parasites of Cartilaginous Fishes (Chondrichthyes) in South Africa – a Neglected Field of Marine Science
Institute of Parasitology, Biology Centre CAS Folia Parasitologica 2019, 66: 002 doi: 10.14411/fp.2019.002 http://folia.paru.cas.cz Research article Parasites of cartilaginous fishes (Chondrichthyes) in South Africa – a neglected field of marine science Bjoern C. Schaeffner and Nico J. Smit Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Potchefstroom, South Africa Abstract: Southern Africa is considered one of the world’s ‘hotspots’ for the diversity of cartilaginous fishes (Chondrichthyes), with currently 204 reported species. Although numerous literature records and treatises on chondrichthyan fishes are available, a paucity of information exists on the biodiversity of their parasites. Chondrichthyan fishes are parasitised by several groups of protozoan and metazoan organisms that live either permanently or temporarily on and within their hosts. Reports of parasites infecting elasmobranchs and holocephalans in South Africa are sparse and information on most parasitic groups is fragmentary or entirely lacking. Parasitic copepods constitute the best-studied group with currently 70 described species (excluding undescribed species or nomina nuda) from chondrichthyans. Given the large number of chondrichthyan species present in southern Africa, it is expected that only a mere fraction of the parasite diversity has been discovered to date and numerous species await discovery and description. This review summarises information on all groups of parasites of chondrichthyan hosts and demonstrates the current knowledge of chondrichthyan parasites in South Africa. Checklists are provided displaying the host-parasite and parasite-host data known to date. Keywords: Elasmobranchii, Holocephali, diversity, host-parasite list, parasite-host list The biogeographical realm of Temperate Southern Af- pagno et al. -
Global Change, Parasite Transmission and Disease Control: Lessons from Ecology
Global change, parasite transmission and disease control: lessons from ecology Cable, J., Baber, I., Boag, B., Ellison, AR., Morgan, E., Murray, K., Pascoe, EL., Sait, SM., Wilson, AJ., & Booth, M. (2017). Global change, parasite transmission and disease control: lessons from ecology. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 372, [20160088]. https://doi.org/10.1098/rstb.2016.0088 Published in: Philosophical Transactions of the Royal Society of London B: Biological Sciences Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2017 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected].