I10-Ornithodira Cladoredo [Converted]

Total Page:16

File Type:pdf, Size:1020Kb

I10-Ornithodira Cladoredo [Converted] Prosaurolophus Saurolophini Saurolophus Anatotitan ? Tanius Edmontosaurus Phylogeny of Ornithodira Edmontosaurini Shantungosaurus Hadrosaurini Gryposaurus ? Thespesius ? Aralosaurus Microhadrosaurus ? Kritosaurus Hadrosaurinae Maiasaurini Maiasaura Hadrosaurus Euhadrosauria Lambeosaurinae Pteropelyx Brachylophosaurus Parasaurolophus Telmatosaurus ? Gadolosaurus Arambourgiania Azhdarcho Gilmoreosaurus ? Arstanosaurus Diopocephalus Claosaurus ? Bactrosaurus Charonosaurus ? Bennettazhia Protohadros Unofficially named clades RANK Secernosaurus LEGEND ? Doratorhynchus Orthomerus Daughter clade Montanazhdarcho Mandschurosaurus Parasaurolophini ? Tsintaosaurus Above genus Quetzalcoatlus Hypsibema "Daughter clade" Azhdarchidae Zhejiangopterus Hadrosauridae ? Hironosaurus Tree root Daughter clade Lambeosaurini Nipponosaurus Genus and below ? Amurosaurus "Daughter clade" Tupuxuara Nanyangosaurus Jaxartosaurus Parent clade Daughter clade Ouranosaurus Lambeosaurus Daughter clade Azhdarchoidea Tapejara Hadrosauroidea Altirhinus ? Gnathosaurus Iguanodon Unnamed daughter clade Barsboldia Craspedodon Certain Daughter clade Dsungaripteridae Dsungaripterus Iguanodontoidea "Camptosaurus" sp. Corythosaurus Puntanipterus "Gnathosaurinae" Plataleorhynchus ? Lurdusaurus PLACEMENT WITHIN Less certain Daughter clade Pterodaustro Anhanguera Fukuisaurus Hypacrosaurus ? Noripterus Planicoxa Uncertain Cycnorhamphus "Phobetor" Ctenochasma Styracosterna ? Eolambia Diceratops PARENT CLADE Eosipterus Ctenochasmatidae Huanhepterus Camptosauridae Draconyx Very uncertain Kepodactylus Anhanguerinae Arthurdactylus Mesadactylus Pterodactylidae ? Haopterus "Coloborhynchus" clavirostris Bihariosaurus ? Normannognathus ? Cearadactylus Ankylopollexia Pararhabdodon Probactrosaurus Triceratops Herbstosaurus ? Germanodactylus Camptosaurus Dermodactylus Tropeognathus ? Anabisetia Wyomingopteryx Pterodactylus Criorhynchus Pterodactyloidea Nyctosaurus Anhangueridae Siroccopteryx Dryomorpha Dryosauridae Dryosaurus Torosaurus Istiodactylus Parapsicephalus ? Bogolubovia Gasparinisaura ? Kangnasaurus Pteranodon Angustinaripterus Ornithocheiroidea Pteranodontoidea Ornithostoma Euiguanodontia ? Loncosaurus Valdosaurus Arrhinoceratops ? "Mandschurosaurus" laosensis ? Muttaburrasaurus Rhamphorhynchidae Rhamphocephalus Ornithocheiridae Ornithocheirus Jinzhousaurus Anchiceratops ? Araripesaurus Lophorhothon Chasmosaurini Pentaceratops Brasileodactylus Iguanodontia Tenontosaurus ? Araripedactylus Ugrosaurus Chasmosaurus Campylognathoididae Eudimorphodon Rhamphorhynchus Santanadactylus Hypsilophodontia Hypsilophodon Ceratopsinae Polyonax Claorhynchus ? Ceratops Euornithopoda Parksosaurus Rhabdodon Agathaumas Centrosaurus Dysganus Dimorphodontidae Dimorphodon Campylognathoides Othnieliidae "Yandusaurus" multidens Drinker Ceratopsidae Centrosaurinae Avaceratops ? Nesodactylus Zephyrosauridae Orodromeus Centrosaurini Styracosaurus "Anoplosaurus" tanyspondylus Dorygnathus Peteinosaurus Notohypsilophodon Othnieliinae Othnielia Turanoceratops Pachyrhinosaurini Brachyceratops Atlascopcosaurus Gravitholus ? "Odontorhynchus" Fulgurotherium Zephyrosaurus Archaeoceratops Monoclonius Leaellynasaura ? Kulceratops Prenocephale Scaphognathus ? Sanpasaurus ? Chaoyangsaurus Ceratopsomorpha Zuniceratops Einiosaurus Qantassaurus Microceratops Tylocephale ? Stygimoloch Yandusaurus Graciliceratops ? Tichosteus Microcephale Sordes Nanosaurus Leptoceratops Ceratopsoidea Montanoceratops Achelousaurus Siluosaurus "Echizensaurus" Udanoceratops Protoceratops Pachycephalosaurinae Pachycephalosaurini Pachycephalosaurus Thescelosaurus Trachodon Magulodon Stegosaurus Phyllodon Asiaceratops Breviceratops Anurognathidae Anurognathus Ornithopoda Bugenasaura Neoceratopsia Coronosauria Bagaceratops Pachyrhinosaurus Comodactylus Marginocephalia Ceratopsia Psittacosauria Psittacosaurus Pachycephalosauridae Stegoceras Laopteryx ? Dendrorhynchoides Stenopelix Stegosaurini Wuerhosaurus Euoplocephalus Rhamphinion Notoceratops Lexovisaurus Pterosauria Preondactylus Batrachognathus Cerapoda Heterodontosauridae Lanasaurus Xuanhuasaurus ? Thecospondylus Geranosaurus Pachycephalosauria Wannanosaurus Homalocephaloidea Homalocephale ? Paranthodon Jeholosaurus Stegosaurinae Tuojiangosaurus Pinacosaurus ? Dianchungosaurus Yaverlandia Micropachycephalosaurus Amtosaurus Pterosauromorpha ? Sharovipteryx Echinodon Heterodontosaurinae Abrictosaurus Chialingosaurus Shanxia ? Avipes Taveirosaurus Goyocephalia Goyocephale Genasauria Thyreophora Scutellosaurus Huayangosauridae Huayangosaurus Chungkingosaurus Maleevus Scleromochlus Fabrosaurus Gigantspinosaurus Talarurus Ornithodira Dinosauromorpha Lagerpeton Lesothosaurus Bienosaurus Heterodontosaurini Heterodontosaurus "Katsuyamakensaurus" Syrmosaurini Saichania ? Gongbusaurus Regnosaurus Agilisaurus Thyreophoroidea Tatisaurus Kentrosaurus ? Nodocephalosaurus Pisanosaurus Emausaurus Changtusaurus Monkonosaurus Dinosauriformes Lagosuchus Pekinosaurus Lycorhinus Craterosaurus ? Ankylosaurus Tarchia Galtonia Lusitanosaurus ? Hesperosaurus Yingshanosaurus Marasuchus Lucianosaurus Camelotia Eurypoda Stegosauria Stegosauridae Dacentrurus Sauroplites Revueltosaurus Brachypodosaurus Pseudolagosuchus Technosaurus Ankylosaurinae ? Tsagantegia Gobisaurus Tecovasaurus Scelidosaurus Trimucrodon Azendohsaurus Melanorosauridae Melanorosaurus Ankylosauria Cryptosaurus Xiaosaurus Massospondylidae Massospondylus Minmi Dinosauria Ornithischia Alocodon ? Thecodontosaurus Lufengosaurus Heishansaurus Shamosaurinae ? Shamosaurus Luanpingosaurus Blikanasaurus Peishansaurus Gargoyleosaurus Mymoorapelta Sauropoda Cardiodon ? Coloradisaurus Priconodon Teyuwasu Saturnalia Lessemsaurus Ultrasaurus Yunnanosaurinae Yunnanosaurus Priodontognathus Saurischia Eshanosaurus Thotobolosaurus Asiatosaurus Tianzhenosaurus Cedarpelta "Gyposaurus" sinensis Euskelosaurus Gongxianosaurus ? Tyreophorus Polacanthinae Hylaeosaurus Sauropodomorpha ? Nyasasaurus Microdontosaurus Kunmingosaurus ? Stegosaurides Chinshakiangosaurus Tendaguriidae Tendaguria Jingshanosaurus ? Rhadinosaurus Tianchisaurus ? Acanthopholis Theropoda ? Arctosaurus Isanosaurus Ankylosauroidea Ankylosauridae Aletopelta ? Carnosaurus Yimenosaurus Polacanthini Gastonia ? Coelurosaurus Riojasaurus ? Sellosaurus ? Kotasaurus Stegopeltini Stegopelta ? Spinosuchus Mussaurus ? Velocipes Ruehleia Vulcanodon Nodosauridae ? Struthiosaurus Sinosaurus Anchisaurus ? Anoplosaurus Hoplitosaurus Protoavis Plateosauridae Plateosaurus ? Dracopelta Glyptodontopelta Eoraptor ? Nodosaurus Herrerasauria Herrerasauridae Chindesaurus Eusauropoda ? Oshanosaurus ? Palaeoscincus Herrerasaurinae Herrerasaurus Shunosaurus "Pleurocoelus" altus ? Texasetes Polacanthus Barapasaurus Euhelopus ? Sarcolestes Staurikosauridae Staurikosaurus Dachongosaurus Pawpawsaurus ? Guaibasauridae Guaibasaurus Caseosaurus ? Ohmdenosaurus Protognathosaurus ? Liaoningosaurus ? Zizhongosaurus "Morosaurus" agilis Edmontoniinae ? Niobrarasaurus Animantarx Datousaurus Tienshanosaurus Panoplosaurinae Panoplosaurus Lancanjiangosaurus Neotheropoda Magnosaurus ? Aliwalia Lapparentosaurus Edmontonia ? Alwalkeria Tehuelchesaurus Mamenchisaurus Sauropelta Limaysaurus ? Liassaurus Chuanjiesaurus ? Hudiesaurus ? Merosaurus Klamelisaurus ? Sinocoelurus Rhoetosaurus ? Nurosaurus ? Teinurosaurus Mamenchisauridae Omeisaurus Silvisaurus Rebbachisaurinae Rebbachisaurus ? Calamospondylus Amygdalodon ? Histriasaurus Altispinax ? Volkheimeria ? Cetiosaurus Capitalsaurus Rayososaurus Amargasaurus Chuangdongocoelurus Rebbachisauridae Nigersaurus Coeluroides ? Megacervixosaurus "Elaphrosaurus" gautieri ? "Rebbachisaurus" tasmenensis ? Mongolosaurus Dystylosaurus "Elaphrosaurus" iguidensis Diplodocoidea Dicraeosauridae Dicraeosaurus Embasaurus Jobaria Amphicoelias Supersaurus Inosaurus Losillasaurus Kagasaurus ? Patagosaurus Neosauropoda Diplodocimorpha ? Hisanohamasaurus Seismosaurus Katsuyamasaurus Cetiosauriscus Diplodocidae Dinheirosaurus Kelmayisaurus Syntarsus Qinlingosaurus Dystrophaeus Diplodocus Podokesaurus Agustiniidae Agustinia Dyslocosaurus "Megalosaurus" andrewsi ? Pterospondylus Eucoelophysis "Titanosaurus" rahioliensis Diplodocinae Barosaurus "Megalosaurus" chubutensis ? Shuvosaurus Coelophysis Haplocanthosaurus Apatosaurinae Eobrontosaurus "Megalosaurus" insignis Halticosaurus Coelophysidae Camposaurus Macronaria Sugiyamasaurus ? Aragosaurus "Megalosaurus" pannoniensis Gojirasaurus Chondrosteosaurus "Megalosaurus" pombali Dolichosuchus Bashunosaurus Camarasaurus "Megalosaurus" terquemi Dilophosaurus ? Abrosaurus Apatosaurus Ceratosauria Coelophysoidea Coelophysidae Procompsognathinae Procompsognathus Camarasauromorpha Camarasauridae ? Lourinhasaurus Brachiosaurus Mifunesaurus ? Ligabueino Cedarosaurus Newtonsaurus Elaphrosaurus Noasaurus Ngexisaurus Giraffatitan "Poekilopleuron" schmidti Neoceratosauria Sarcosaurus Liliensternus Ilokelesia Segisaurus Velocisaurus Titanosauriformes Brachiosauridae Sauroposeidon Prodeinodon Genusaurus Compsosuchus Noasauridae Masiakasaurus ? Austrosaurus Quilmesaurus Dryptosauroides ? Bellusaurus "Sidormimus" ? Dandakosaurus Genyodectes ? Damalasaurus Sigilmassasaurus Ceratosaurus Bothriospondylus "Tsuchikurasaurus" Abelisauria Abelisauridae Abelisaurinae Abelisaurus "Ischyrosaurus" Wakinosaurus Ornithomimoides Carnotaurinae Majungasaurus Ornithopsis Walgettosuchus Jubbulpuria Betasuchus Aucasaurus Pelorosaurus Tetanurae "Allosaurus" sp. Abelisauroidea Laevisuchus Spinosaurus Carnotaurus Venenosaurus Becklespinax Xenotarsosaurus Indosaurus ? Astrodon Eustreptospondylus Tarascosaurus Majungatholus
Recommended publications
  • Theropod Composition of Early Late Cretaceous Faunas from Central
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Repository of the Academy's Library 1 Feeding related characters in basal pterosaurs: implications for jaw mechanism, dental function and diet RH: Feeding related characters in pterosaurs Attila Ősi A comparative study of various feeding related features in basal pterosaurs reveals a significant change in feeding strategies during the early evolutionary history of the group. These features are related to the skull architecture (e.g. quadrate morphology and orientation, jaw joint), dentition (e.g. crown morphology, wear patterns), reconstructed adductor musculature, and postcranium. The most basal pterosaurs (Preondactylus, dimorphodontids and anurognathids) were small bodied animals with a wing span no greater than 1.5 m, a relatively short, lightly constructed skull, straight mandibles with a large gape, sharply pointed teeth and well developed external adductors. The absence of extended tooth wear excludes complex oral food processing and indicates that jaw closure was simply orthal. Features of these basalmost forms indicate a predominantly insectivorous diet. Among stratigraphically older but more derived forms (Eudimorphodon, Carniadactylus, Caviramus) complex, multicusped teeth allowed the consumption of a wider variety of prey via a more effective form of food processing. This is supported by heavy dental wear in all forms with multicusped teeth. Typical piscivorous forms occurred no earlier than the Early Jurassic, and are characterized by widely spaced, enlarged procumbent teeth forming a fish grab and an anteriorly inclined quadrate that permitted only a relatively small gape. In addition, the skull became more elongate and body size 2 increased. Besides the dominance of piscivory, dental morphology and the scarcity of tooth wear reflect accidental dental occlusion that could have been caused by the capturing or seasonal consumption of harder food items.
    [Show full text]
  • The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J
    ISSN 00310301, Paleontological Journal, 2013, Vol. 47, No. 11, pp. 1270–1281. © Pleiades Publishing, Ltd., 2013. The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J. K. O’Connora and N. V. Zelenkovb aKey Laboratory of Evolution and Systematics, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai Dajie, Beijing China 10044 bBorissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia email: [email protected], [email protected] Received August 6, 2012 Abstract—Since the last description of the ornithurine bird Ambiortus dementjevi from Mongolia, a wealth of Early Cretaceous birds have been discovered in China. Here we provide a detailed comparison of the anatomy of Ambiortus relative to other known Early Cretaceous ornithuromorphs from the Chinese Jehol Group and Xiagou Formation. We include new information on Ambiortus from a previously undescribed slab preserving part of the sternum. Ambiortus is superficially similar to Gansus yumenensis from the Aptian Xiagou Forma tion but shares more morphological features with Yixianornis grabaui (Ornithuromorpha: Songlingorni thidae) from the Jiufotang Formation of the Jehol Group. In general, the mosaic pattern of character distri bution among early ornithuromorph taxa does not reveal obvious relationships between taxa. Ambiortus was placed in a large phylogenetic analysis of Mesozoic birds, which confirms morphological observations and places Ambiortus in a polytomy with Yixianornis and Gansus. Keywords: Ornithuromorpha, Ambiortus, osteology, phylogeny, Early Cretaceous, Mongolia DOI: 10.1134/S0031030113110063 1 INTRODUCTION and articulated partial skeleton, preserving several cervi cal and thoracic vertebrae, and parts of the left thoracic Ambiortus dementjevi Kurochkin, 1982 was one of girdle and wing (specimen PIN, nos.
    [Show full text]
  • Dino Hunt Checklist Card Name Type Rarity Acanthopholis
    Dino Hunt Checklist Card Name Type Rarity Acanthopholis Dinosaur Common Acrocanthosaurus Dinosaur Rare Albertosaurus Dinosaur Rare Albertosaurus Dinosaur Ultra Rare Alioramus Dinosaur Rare Allosaurus Dinosaur Rare* Altispinax Dinosaur Rare* Amargasaurus Dinosaur Uncommon* Ammosaurus Dinosaur Uncommon* Anatotitan Dinosaur Common Anchiceratops Dinosaur Common Anchisaurus Dinosaur Common* Ankylosaurus Dinosaur Uncommon* Antarctosaurus Dinosaur Common Apatosaurus Dinosaur Uncommon* Archaeopteryx Dinosaur Rare* Archelon Dinosaur Rare Arrhinoceratops Dinosaur Common Avimimus Dinosaur Common Baby Ankylosaur Dinosaur Common Baby Ceratopsian Dinosaur Common Baby Hadrosaur Dinosaur Common Baby Raptor Dinosaur Rare Baby Sauropod Dinosaur Common Baby Theropod Dinosaur Rare Barosaurus Dinosaur Uncommon Baryonyx Dinosaur Rare* Bellusaurus Dinosaur Common Brachiosaurus Dinosaur Rare* Brachyceratops Dinosaur Uncommon Camarasaurus Dinosaur Common Camarasaurus Dinosaur Ultra Rare Camptosaurus Dinosaur Common Carnotaurus Dinosaur Rare Centrosaurus Dinosaur Common Ceratosaurus Dinosaur Rare* Cetiosaurus Dinosaur Common* Changdusaurus Dinosaur Common Chasmosaurus Dinosaur Common Chilantaisaurus Dinosaur Rare Coelophysis Dinosaur Uncommon* Coloradisaurus Dinosaur Common* Compsognathus Dinosaur Rare* Corythosaurus Dinosaur Common* Cryolophosaurus Dinosaur Rare Cynognathus Dinosaur Rare Dacentrurus Dinosaur Common* Daspletosaurus Dinosaur Rare Datousaurus Dinosaur Common Deinocheirus Dinosaur Rare* Deinonychus Dinosaur Uncommon* Deinosuchus Dinosaur Rare* Diceratops
    [Show full text]
  • From the Early Cretaceous Wonthaggi Formation (Strzelecki Group)
    Journal of Paleontology, 93(3), 2019, p. 543–584 Copyright © 2019, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/19/1937-2337 doi: 10.1017/jpa.2018.95 New small-bodied ornithopods (Dinosauria, Neornithischia) from the Early Cretaceous Wonthaggi Formation (Strzelecki Group) of the Australian-Antarctic rift system, with revision of Qantassaurus intrepidus Rich and Vickers-Rich, 1999 Matthew C. Herne,1,2 Jay P. Nair,2 Alistair R. Evans,3 and Alan M. Tait4 1School of Environmental and Rural Science, University of New England, Armidale 2351, New South Wales, Australia <ornithomatt@ gmail.com> 2School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia <[email protected]> 3School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> 4School of Earth, Atmosphere & Environment, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> Abstract.—The Flat Rocks locality in the Wonthaggi Formation (Strzelecki Group) of the Gippsland Basin, southeastern Australia, hosts fossils of a late Barremian vertebrate fauna that inhabited the ancient rift between Australia and Antarc- tica. Known from its dentary, Qantassaurus intrepidus Rich and Vickers-Rich, 1999 has been the only dinosaur named from this locality. However, the plethora of vertebrate fossils collected from Flat Rocks suggests that further dinosaurs await discovery. From this locality, we name a new small-bodied ornithopod, Galleonosaurus dorisae n.
    [Show full text]
  • R / 2J�J Ij Rjsj L)J J �� __Rj Ljlj F LANDED! VOLUME 2 - RAPTORS to PRATINCOLES
    -_r_/ 2J�J iJ_rJsJ l)J_J �� __rJ lJlJ_f LANDED! VOLUME 2 - RAPTORS TO PRATINCOLES In 1990 Oxford Univer sity Press published Volume One Over 70 colourpl ates illustr ated of the Ha11dbook of Austra­ by JeffDavies feature nearly lia 11, New Zeala11d a11d every species. Antarctic Birds to widespread acclaim. Now Volume Two, VOLUME2 covering Raptors to Pratin­ Contains vultures, hawks and coles, has been completed. eagles, falcons, galliformes and quail, Malleefowl a11d megapodes, Four more volumes are to be cranes,crakes and rails, bustards, published making this the the Australian and New Zealand most detailed and up-to-date resident waders, a11d plovers, reference work of the birds of lapwi11gs a11d douerels. Australasia. COMPREHENSIVE Each volume exami11es all aspects of bird lifeinc luding: • field i£Jentiflca1ion • dis1ribu1io11 and popula1io11 • social orga11iza1io11 The Handbook is the most ex­ • social behaviour citing and significant project •movements in Australasian ornithology to­ •plumages day and will have an •breeding • habitat enormous impact on the direc­ • voice tion of future research and the •food conservation of Au stralasian and Antarctic birds. _ • AVAI�!�! BER t�n�r? Volume 2 $250 RAOU Volumes 1 & 2 $499 -- m! CJOlltlllllCOIIIIYIOOI ORDER FORM Place your order with Oxford University Press by: cgJ Reply Paid 1641, Oxford University Press, D Please send me __ copy/copies of the Handbook of GPO Box 2784Y, Melbourne3001 Aus1ralia11, New Zealondand A111arc1ic Birds Volume 2 at the 11 (03) 646 4200 FAX (03) 646 3251 special pre-publication price of $250 (nonnal retail price $295) plus $7.50 for po stage and handling OR D I enclose my cheque/money order for$ _______ D Please send me set/sets of Volumes I a11d 2 of the D Please charge my Visa/Mastercard/Bankcard no.
    [Show full text]
  • A Reassessment of the Phylogenetic Position of Cretaceous Sauropod Dinosaurs from Queensland, Australia
    Asociación Paleontológica Argentina. Publicación Especial 7 ISSN 0328-347X VII International Symposium on Mesozoic Terrestrial Ecosystems: 139-144.Buenos Aires, 30-6-2001 A ReasSessmenT of the phylogenetic position of CretaceoUS SaUROPOd dinosaURS from Queensland, Australia Ralph E. MOLNAR1 Abstract. The Cretaceous sauropod material from Queensland, Australia, has been regarded as pertaining to a persistently primitive sauropod lineage (e.g., Coombs and Molnar). The specimens derive from the Toolebuc and Allaru (Albian marine) and Winton (Cenomanian continental) Formations. Recent phyloge- netic analyses carried out by workers in Argentina, the USA and England permit a reassessment of this fragmentary material. As far as can be ascertained from the material, there is no indication from the char- acter states that more than a single taxon is represented. Character states diagnostic of the Titanosauriforrnes, the Titanosauria, the Somphospondyli and the Titanosauridae are present. Thus the Queensland material does not pertain to cetiosaurids but belongs to titanosaurs, extending their range in- to Australia Key words. Sauropods. Austrosaurus. Titanosaurs. Cretaceous. Paleozoogeography. IntroductioN (1998),has made it possible to reassess the phyloge- netic affinities of the Australian Cretaceous sauropod By the 1950's titanosaurs were widely recognized material and address the anomalous absence of ti- both as the latest sauropod group to diversify and as tanosaurs. This paper looks specifically at pre-eminently the sauropods of Gondwanaland.
    [Show full text]
  • Los Restos Directos De Dinosaurios Terópodos (Excluyendo Aves) En España
    Canudo, J. I. y Ruiz-Omeñaca, J. I. 2003. Ciencias de la Tierra. Dinosaurios y otros reptiles mesozoicos de España, 26, 347-373. LOS RESTOS DIRECTOS DE DINOSAURIOS TERÓPODOS (EXCLUYENDO AVES) EN ESPAÑA CANUDO1, J. I. y RUIZ-OMEÑACA1,2 J. I. 1 Departamento de Ciencias de la Tierra (Área de Paleontología) y Museo Paleontológico. Universidad de Zaragoza. 50009 Zaragoza. [email protected] 2 Paleoymás, S. L. L. Nuestra Señora del Salz, 4, local, 50017 Zaragoza. [email protected] RESUMEN La mayoría de los restos fósiles de dinosaurios terópodos de España son dientes aislados y escasos restos postcraneales. La única excepción es el ornitomimosaurio Pelecanimimus polyodon, del Barremiense de Las Hoyas (Cuenca). Hay registro de terópodos en el Jurásico superior (Oxfordiense superior-Tithónico inferior), en el tránsito Jurásico-Cretácico (Tithónico superior- Berriasiense inferior) y en todos los pisos del Cretácico inferior, con excepción del Valanginiense. En el Cretácico superior únicamente hay restos en el Campaniense y Maastrichtiense. La mayor parte de las determinaciones son demasiado generales, lo que impide conocer algunas de las familias que posiblemente estén representadas. Se han reconocido: Neoceratosauria, Baryonychidae, Ornithomimosauria, Dromaeosauridae, además de terópodos indeterminados, y celurosaurios indeterminados (dientes pequeños sin dentículos). La mayoría de los restos son de Maniraptoriformes, siendo especialmente abundantes los dromeosáuridos. Las únicas excepciones son por el momento, el posible Ceratosauria del Jurásico superior de Asturias, los barionícidos del Hauteriviense-Barremiense de Burgos, Teruel y La Rioja, el posible carcharodontosáurido del Aptiense inferior de Morella y el posible abelisáurido del Campaniense de Laño. Además hay algunos terópodos incertae sedis, como los "paronicodóntidos" (entre los que se incluye Euronychodon), y Richardoestesia.
    [Show full text]
  • Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry Erick Charles Anderson [email protected]
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2016 Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry Erick Charles Anderson [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Animal Sciences Commons, Ecology and Evolutionary Biology Commons, and the Paleontology Commons Recommended Citation Anderson, Erick Charles, "Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry" (2016). Theses, Dissertations and Capstones. 1031. http://mds.marshall.edu/etd/1031 This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. ANALYZING PTEROSAUR ONTOGENY AND SEXUAL DIMORPHISM WITH MULTIVARIATE ALLOMETRY A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences by Erick Charles Anderson Approved by Dr. Frank R. O’Keefe, Committee Chairperson Dr. Suzanne Strait Dr. Andy Grass Marshall University May 2016 i ii ii Erick Charles Anderson ALL RIGHTS RESERVED iii Acknowledgments I would like to thank Dr. F. Robin O’Keefe for his guidance and advice during my three years at Marshall University. His past research and experience with reptile evolution made this research possible. I would also like to thank Dr. Andy Grass for his advice during the course of the research. I would like to thank my fellow graduate students Donald Morgan and Tiffany Aeling for their support, encouragement, and advice in the lab and bar during our two years working together.
    [Show full text]
  • Dinosaurs Largest Ornithopod
    Leaellynasaura amicagraphica (1989) age: Early Cretaceous REGION: VIC SIZE: 1.5m A small ornithopod, this plant-eater lived in an Australia that was further south and partly within the Antarctic Circle. A well-preserved skull reveals it had a large brain and eyes, which helped it keep watch for predators as s it foraged for plants in the dark of the Antarctic winter. Muttaburrasaurus Dinosaur New research by Dr Matt Herne shows Leaellynasaura (‘lee-allin-ah-sore-ah’) had an extremely long tail. langdoni (1981) of Drs Tom Rich and Patricia Vickers-Rich named Australia the species after their daughter, Leaellyn. AGE: Early Cretaceous REGION: QLD/NSW SIZE: 8–9m Muttaburrasaurus (‘muta-burra-sore-rus’) is our A guide to the dinosaurs largest ornithopod. With one partial skeleton and a second skull from QLD and several teeth from Down Under, which ranged NSW, this powerful herbivore could rear-up on Austrosaurus its back legs to reach high foliage and intimidate predators, though it sometimes moved on four (1933) from ferocious carnivores to mckillopi legs too. It had an unusual bulge on its snout, which may have contained an inflatable air sac. herbivorous behemoths. age: Early Cretaceous REGION: QLD SIZE: 15–20m Discovered in north-central Queensland 80 ILLUSTRATIONS BY LIDA XING years ago, Austrosaurus (‘aus-tro-sore-us’) was our first known Cretaceous sauropod. This long-necked species was able to reach high foliage. Austrosaurus means ‘southern lizard’. Timimus hermani (1994) age: Early Cretaceous REGION: VIC SIZE: 3-5m The femur of Timimus (‘tim-my-mus’) is one of many specimens found at Dinosaur Cove by Drs Tom Rich and Patricia Vickers-Rich.
    [Show full text]
  • Brains and Intelligence
    BRAINS AND INTELLIGENCE The EQ or Encephalization Quotient is a simple way of measuring an animal's intelligence. EQ is the ratio of the brain weight of the animal to the brain weight of a "typical" animal of the same body weight. Assuming that smarter animals have larger brains to body ratios than less intelligent ones, this helps determine the relative intelligence of extinct animals. In general, warm-blooded animals (like mammals) have a higher EQ than cold-blooded ones (like reptiles and fish). Birds and mammals have brains that are about 10 times bigger than those of bony fish, amphibians, and reptiles of the same body size. The Least Intelligent Dinosaurs: The primitive dinosaurs belonging to the group sauropodomorpha (which included Massospondylus, Riojasaurus, and others) were among the least intelligent of the dinosaurs, with an EQ of about 0.05 (Hopson, 1980). Smartest Dinosaurs: The Troodontids (like Troödon) were probably the smartest dinosaurs, followed by the dromaeosaurid dinosaurs (the "raptors," which included Dromeosaurus, Velociraptor, Deinonychus, and others) had the highest EQ among the dinosaurs, about 5.8 (Hopson, 1980). The Encephalization Quotient was developed by the psychologist Harry J. Jerison in the 1970's. J. A. Hopson (a paleontologist from the University of Chicago) did further development of the EQ concept using brain casts of many dinosaurs. Hopson found that theropods (especially Troodontids) had higher EQ's than plant-eating dinosaurs. The lowest EQ's belonged to sauropods, ankylosaurs, and stegosaurids. A SECOND BRAIN? It used to be thought that the large sauropods (like Brachiosaurus and Apatosaurus) and the ornithischian Stegosaurus had a second brain.
    [Show full text]
  • Onetouch 4.0 Scanned Documents
    / Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.
    [Show full text]
  • Titanosauriform Teeth from the Cretaceous of Japan
    “main” — 2011/2/10 — 15:59 — page 247 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 247-265 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Titanosauriform teeth from the Cretaceous of Japan HARUO SAEGUSA1 and YUKIMITSU TOMIDA2 1Museum of Nature and Human Activities, Hyogo, Yayoigaoka 6, Sanda, 669-1546, Japan 2National Museum of Nature and Science, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan Manuscript received on October 25, 2010; accepted for publication on January 7, 2011 ABSTRACT Sauropod teeth from six localities in Japan were reexamined. Basal titanosauriforms were present in Japan during the Early Cretaceous before Aptian, and there is the possibility that the Brachiosauridae may have been included. Basal titanosauriforms with peg-like teeth were present during the “mid” Cretaceous, while the Titanosauria with peg-like teeth was present during the middle of Late Cretaceous. Recent excavations of Cretaceous sauropods in Asia showed that multiple lineages of sauropods lived throughout the Cretaceous in Asia. Japanese fossil records of sauropods are conformable with this hypothesis. Key words: Sauropod, Titanosauriforms, tooth, Cretaceous, Japan. INTRODUCTION humerus from the Upper Cretaceous Miyako Group at Moshi, Iwaizumi Town, Iwate Pref. (Hasegawa et al. Although more than twenty four dinosaur fossil local- 1991), all other localities provided fossil teeth (Tomida ities have been known in Japan (Azuma and Tomida et al. 2001, Tomida and Tsumura 2006, Saegusa et al. 1998, Kobayashi et al. 2006, Saegusa et al. 2008, Ohara 2008, Azuma and Shibata 2010).
    [Show full text]