Diptera: Simuliidae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Black Flies of Maine
THE BLACK FLIES OF MAINE L.S. Bauer and J. Granett Department of Entomology University of Maine at Orono, Orono, ME 04469 Maine Life Sciences and Agriculture Experiment Station Technical Bulletin 95 May 1979 LS-\ F.\PFRi\ii-Nr Si \IION TK HNK \I BUI I HIN 9? ACKNOWLEDGMENTS We wish to thank Dr. Ivan McDaniel for his involvement in the USDA-funding of this project. We thank him for his assistance at the beginning of this project in loaning us literature, equipment, and giving us pointers on taxonomy. He also aided the second author on a number of collection trips and identified a number of collection specimens. We thank Edward R. Bauer, Lt. Lewis R. Boobar, Mr. Thomas Haskins. Ms. Leslie Schimmel, Mr. James Eckler, and Mr. Jan Nyrop for assistance in field collections, sorting, and identifications. Mr. Ber- nie May made the electrophoretic identifications. This project was supported by grant funds from the United States Department of Agriculture under CSRS agreement No. 616-15-94 and Regional Project NE 118, Hatch funds, and the Maine Towns of Brad ford, Brownville. East Millinocket, Enfield, Lincoln, Millinocket. Milo, Old Town. Orono. and Maine counties of Penobscot and Piscataquis, and the State of Maine. The electrophoretic work was supported in part by a faculty research grant from the University of Maine at Orono. INTRODUCTION Black flies have been long-time residents of Maine and cause exten sive nuisance problems for people, domestic animals, and wildlife. The black fly problem has no simple solution because of the multitude of species present, the diverse and ecologically sensitive habitats in which they are found, and the problems inherent in measuring the extent of the damage they cause. -
Experimental Stream Application of Bti for Human Nuisance Black Fly
The University of Maine DigitalCommons@UMaine Technical Bulletins Maine Agricultural and Forest Experiment Station 10-1-1988 TB133: Experimental Stream Application of B.t.i. for Human Nuisance Black Fly Management in a Recreational Area K. Elizabeth Gibbs Rhonda J. Boyer Brian P. Molloy Dorothy A. Hutchins Follow this and additional works at: https://digitalcommons.library.umaine.edu/aes_techbulletin Part of the Entomology Commons Recommended Citation Gibbs, K.E., R.J. Boyer, B.P. Molloy, and D.A. Hutchins. 1988. Experimental stream applications of B.t.i. for human nuisance black fly management in a recreational area. Maine Agricultural Experiment Station Technical Bulletin 133. This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Technical Bulletins by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. ISSN 0734-9556 Experimental Stream Applications of B.t.i. for Human Nuisance Black Fly Management in a Recreational Area MAINE AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF MAINE Technical Bulletin 133 October 1988 Experimental Stream Applications of B.t.i. for Human Nuisance Black Fly Management in a Recreational Area by K. Elizabeth Gibbs Associate Professor: Department of Entomology Rhonda J. Boyer Graduate Student: Department of Entomology Brian P. Molloy Student Assistant: Department of Entomology Dorothy A. Hutchins Consulting Entomologist: P. O. Box 388, Fort Fairfield, ME 04742 MAINE AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF MAINE ii MAES TECHNICAL BULLETIN 133 ACKNOWLEDGEMENTS The authors acknowledge with thanks the contributions of the following: P. H. Adler, K. R. -
Common Loons Respond Adaptively to a Black Fly That Reduces Nesting Success Walter H
Chapman University Chapman University Digital Commons Biology, Chemistry, and Environmental Sciences Science and Technology Faculty Articles and Faculty Articles and Research Research 6-20-2018 Common Loons Respond Adaptively to a Black Fly that Reduces Nesting Success Walter H. Piper Chapman University, [email protected] Keren B. Tischler Northland College Andrew Reinke University of Wisconsin - Stevens Point Follow this and additional works at: https://digitalcommons.chapman.edu/sees_articles Part of the Entomology Commons, Ornithology Commons, Other Animal Sciences Commons, and the Zoology Commons Recommended Citation Piper, W. H., K. B. Tischler, and A. Reinke (2018). Common Loons respond adaptively to a black fly that reduces nesting success. The Auk: Ornithological Advances 135:788–797. DOI: 10.1642/AUK-17-239.1 This Article is brought to you for free and open access by the Science and Technology Faculty Articles and Research at Chapman University Digital Commons. It has been accepted for inclusion in Biology, Chemistry, and Environmental Sciences Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For more information, please contact [email protected]. Common Loons Respond Adaptively to a Black Fly that Reduces Nesting Success Comments This article was originally published in The Auk: Ornithological Advances, volume 135, in 2018. DOI: 10.1642/ AUK-17-239.1 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Copyright American Ornithological Society This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/sees_articles/202 Volume 135, 2018, pp. 788–797 DOI: 10.1642/AUK-17-239.1 RESEARCH ARTICLE Common Loons respond adaptively to a black fly that reduces nesting success Walter H. -
Aquatic Insects: Holometabola – Diptera, Suborder Nematocera
Glime, J. M. 2017. Aquatic Insects: Holometabola – Diptera, Suborder Nematocera. Chapt. 11-13b. In: Glime, J. M. Bryophyte 11-13b-1 Ecology. Volume 2. Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 15 April 2021 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 11-13b AQUATIC INSECTS: HOLOMETABOLA – DIPTERA, SUBORDER NEMATOCERA TABLE OF CONTENTS Suborder Nematocera, continued ........................................................................................................... 11-13b-2 Chironomidae – Midges .................................................................................................................. 11-13b-2 Emergence ............................................................................................................................... 11-13b-4 Seasons .................................................................................................................................... 11-13b-5 Cold-water Species .................................................................................................................. 11-13b-6 Overwintering .......................................................................................................................... 11-13b-7 Current Velocity ...................................................................................................................... 11-13b-7 Diversity ................................................................................................................................. -
Entomology I
MZO-08 Vardhman Mahaveer Open University, Kota Entomology I MZO-08 Vardhman Mahaveer Open University, Kota Entomology I Course Development Committee Chair Person Prof. Ashok Sharma Prof. L.R.Gurjar Vice-Chancellor Director (Academic) Vardhman Mahaveer Open University, Kota Vardhman Mahaveer Open University, Kota Coordinator and Members Convener SANDEEP HOODA Assistant Professor of Zoology School of Science & Technology Vardhman Mahaveer Open University, Kota Members Prof . (Rtd.) Dr. D.P. Jaroli Prof. (Rtd.) Dr. Reena Mathur Professor Emeritus Former Head Department of Zoology Department of Zoology University of Rajasthan, Jaipur University of Rajasthan, Jaipur Prof. (Rtd.) Dr. S.C. Joshi Prof. (Rtd.) Dr. Maheep Bhatnagar Department of Zoology Mohan Lal Sukhadiya University University of Rajasthan, Jaipur Udaipur Prof. (Rtd.) Dr. K.K. Sharma Prof. M.M. Ranga Mahrishi Dayanand Saraswati University, Ajmer Ajmer Dr. Anuradha Singh Dr. Prahlad Dubey Rtd. Lecturer Government College Head Department of Zoology Kota Government College , Kota Dr. Subrat Sharma Dr. Anuradha Dubey Lecturer Deputy Director Government College , Kota School of Science and Technology Vardhman Mahaveer Open University, Kota Dr. Subhash Chandra Director (Regional Center) VMOU, Kota Editing and Course Writing Editors Dr. Subhash Chandra SANDEEP HOODA Director ,Regional Center Assistant Professor of Zoology Vardhman Mahaveer Open University ,Kota Vardhman Mahaveer Open University ,Kota Writers: Writer Name Unit No. Writer Name Unit No Ms. Asha Kumari Verma 3,5,8 Dr. Abhishek Rajpurohit 11,13 UGC-NET JRF Department of Assistant Professor Zoology, JNVU, Lachoo Memorial College Jodhpur of Science & Technology,Jodhpur Dr. Neetu Kachhawaha 1,2,4,6,7,12 Dr. Subhash Chandra 14,15 Assistant Professor, Director ,Regional Center Department of Zoology, Vardhman Mahaveer University of Rajasthan ,Jaipur. -
Diptera : Simuliidae) in a Western Montana Lake-Outlet
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1991 The phenology and distribution of preimaginal black flies (Diptera : Simuliidae) in a western Montana lake-outlet Donald P. Eaton The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Eaton, Donald P., "The phenology and distribution of preimaginal black flies (Diptera : Simuliidae) in a western Montana lake-outlet" (1991). Graduate Student Theses, Dissertations, & Professional Papers. 7049. https://scholarworks.umt.edu/etd/7049 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Maureen and Mike MANSFIELD LIBRARY Copying allowed as provided under provisions of the Fair Use Section of die U.S. COPYRIGHT LAW, 1976. Any copying for commercial purposes or financial gain may be under^en only with the author’s written consent. MontanaUniversity of Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. THE PHENOLOGY AND DISTRIBUTION OF PREIMAGINAL BLACK FLIES (DIPTERA:SIMULIIDAE) IN A WESTERN MONTANA LAKE-OUTLET By Donald P. Eaton B.A. Saint Olaf College, 1978 Presented in partial fulfillment of the requirements for the degree of Master of Arts University of Montana 1991 Approvgd by Chairman, Board of Examiners Dean, Graduate Schdo Date Reproduced with permission of the copyright owner. -
Diptera: Simuliidae) Larvae and Some of Their Potential Macroinvertebrate Predators
Revista Brasileira de Entomologia 64(3):e20200046, 2020 Preliminary observations on the patterns of co-occurrence of Black fly (Diptera: Simuliidae) larvae and some of their potential macroinvertebrate predators Ronaldo Figueiró1,2,3* , Suzana Silva dos Santos1, Tatiana Nascimento Docile1,4,5, Tayanna Rodrigues da Costa1, Christina de Albuquerque Ferreira, Leonardo Henrique Gil-Azevedo6 1Fundação Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, RJ, Brasil. 2Centro Universitário de Volta Redonda (UNIFOA), Volta Redonda, RJ, Brasil. 3Universidade Castelo Branco (UCB), Rio de Janeiro, RJ, Brasil. 4Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Aplicação Fernando Rodrigues da Silveira (Cap-UERJ), Rio de Janeiro, RJ, Brasil. 5Fundação Oswaldo Cruz (FIOCRUZ), Escola Politécnica de Saúde Joaquim Venâncio, Laboratório de Educação Profissional em Vigilância em Saúde (LAVSA), Rio de Janeiro, RJ, Brasil. 6Universidade Federal do Rio de Janeiro (UFRJ), Museu Nacional, Departamento de Entomologia, Rio de Janeiro, RJ, Brasil. ARTICLE INFO ABSTRACT Article history: Biotic factors such as predation, although important drivers of the black fly community, are rarely investigated Received 19 May 2020 in the literature. This study aimed to test the hypothesis that the patterns of co-occurrence of black fly larvae Accepted 4 August 2020 and its potential predators is not random and that there is a correlation between its frequencies and Simuliidae Available online 4 September 2020 larvae abundances. Larvae were sampled from two localities in the Pedra Branca State Park, Rio de Janeiro, Associate Editor: Gustavo Graciolli Brazil, during the dry season in june 2018. We collected Simulium pertinax Kollar, 1832, Simulium subpallidum Lutz, 1910, Simulium (Inaequalium) sp., Simulium (Psaroniocompsa) sp. -
Distribution Pattern of Black Fly (Diptera: Simuliidae)
Ya’cob et al. Parasites & Vectors (2016) 9:219 DOI 10.1186/s13071-016-1492-7 RESEARCH Open Access Distribution pattern of black fly (Diptera: Simuliidae) assemblages along an altitudinal gradient in Peninsular Malaysia Zubaidah Ya’cob1*, Hiroyuki Takaoka1, Pairot Pramual2, Van Lun Low1 and Mohd Sofian-Azirun1* Abstract Background: Preimaginal black flies (Diptera: Simuliidae) are important components of the stream ecosystem. However, there has been limited research undertaken on the vertical distribution of preimaginal black flies and their associated ecological factors. Stream conditions are generally variable along the altitudinal gradient. Therefore, we conducted an in-depth entomological survey to investigate the simuliid distribution pattern along an altitudinal gradient in Peninsular Malaysia. Methods: A total of 432 collections were performed in this study (24 samplings at each of 18 fixed-streams at monthly intervals) from February 2012 to January 2014. Larvae and pupae attached on aquatic substrates such as grasses, leaves and stems, twigs, plant roots and rocks were collected by hand using fine forceps. Stream depth (m), width (m), velocity (m/s), water temperature (°C), acidity (pH), conductivity (mS/cm) and dissolved oxygen (mg/L) were measured at the time of each collection. Results: A total of 35 black fly species were recorded in the present study. The most frequently collected species were Simulium tani (31.7 %) and S. whartoni (21.5 %), while the relatively common species were Simulium sp. (nr. feuerborni) (16.2 %), S. decuplum (15.5 %), S. angulistylum (14.8 %), S. bishopi (13.2 %) and S. izuae (11.8 %). Total estimated species richness ranged between 39.8 and 41.3, which yielded more than 80 % of sampling efficiency. -
Alfalfa Survey 2014 Summary
Alfalfa Survey 2014 Summary ACIDF Project 2014F062R Scott Meers & Heather Leibel Methods From 148 fields in Alberta, 30 alfalfa stems were pattern. Because of the overabundance of insects collected and mines from leaf miners were counted collected and time constraints, only one quarter of the and photographed. The stem length and number of total insects at each site were identified, vialed, and leaves of 10 of each 30 stems was also measured. The tabulated. Insects were identified to order, and in location and abundance of mines in alfalfa leaves some cases further (i.e. alfalfa weevils from other were mapped, and correlation was tested between weevils, leafhoppers from spittlebugs, lygus from abundance of mines and stem length, number of other plant bugs, grasshoppers from katydids, wasps leaves, field size, and percentage of alfalfa. from bees, etc.). The results were graphed by region and mapped by location and abundance. From 150 fields in Alberta, 100 sweeps were collected using a sweep net and 180° sweeping We also vialled and recorded blister beetles, damselflies, stink bugs, and other interesting insects. Table 1. A full list of the insects vialled and recorded: Diptera (flies) Hymenoptera Orthoptera Lepidoptera Neuroptera Thysanoptera Syrphid Bees Grasshoppers Adults Lacewing adults Thrips Leafminer Wasps Katydids Caterpillars Lacewing larvae Other Sawfly larvae Crickets Fly larvae Hemiptera suborders Coleoptera (beetles) Heteroptera (bugs) Auchenorrhyncha Sternorrhyncha Alfalfa weevil adults Lygus adults Leafhopper adults Pea aphid Sitona weevil adults Lygus nymphs Leafhopper nymphs Alfalfa aphid Weevil larvae Alfalfa plant bug adults Spittle bug adults Other aphids Ladybird Alfalfa plant bug nymphs Spittle bug nymphs Parasitized aphids Ladybird larvae Minute pirate bug adult Other Minute pirate bug nymph Black grass bug adult Nabids Twice-stabbed stink bug Other Non-insects Collembola Arachnida Springtails Spiders Opiliones (Harvestmen) Mites Table 2. -
Skin Lesions and Systemic Reactions in Humans Infested by Blackflies
Journal of Clinical Medicine Article Skin Lesions and Systemic Reactions in Humans Infested by Blackflies (Diptera: Simullidae) in Recreational Areas in Southeastern Poland Monika Sitarz 1, Alicja Buczek 2,* and Weronika Buczek 2 1 Chair and Department of Conservative Dentistry with Endodontics, Faculty of Medical Dentistry, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] 2 Chair and Department of Biology and Parasitology, Faculty of Health Sciences, Medical University of Lublin, 20-080 Lublin, Poland; [email protected] * Correspondence: [email protected] Abstract: Due to their mass occurrence in some environments and high aggressiveness, blackflies (Simulium spp.) represent the most bothersome arthropods attacking humans. In this study, we describe the medical effects of blackfly infestations in humans in southeastern Poland. Local and systemic reactions to blackfly bites were monitored in 418 patients (61.24% of females and 38.76% of males) of medical centers. Only skin lesions at the site of the bites were found in 88.52% of the patients, whereas accompanying systemic reactions were diagnosed in 11.48%. The most common signs observed in the area of the bites were pruritus (94.74%), burning (55.02%), edema (44.02%), and erythema (40.91%). The skin lesions, which were most often grouped small papules and papular and purpuric lesions with a varied range, typically persisted for several days, or for several weeks in some patients. Statistical analyses confirmed that the persistence of the skin lesions did not depend on the sex of the patients and the number of blackfly infestations. The systemic reactions to the components of the blackfly saliva were manifested by headache, increased body temperature, Citation: Sitarz, M.; Buczek, A.; arthralgia, lymphadenopathy, and menstrual disorders in the females. -
Could the Blood Parasite Leucocytozoon Deter Mallard Range Expansion? Author(S): Dave Shutler, C
Could the Blood Parasite Leucocytozoon Deter Mallard Range Expansion? Author(s): Dave Shutler, C. Davison Ankney, Darrell G. Dennis Source: The Journal of Wildlife Management, Vol. 60, No. 3 (Jul., 1996), pp. 569-580 Published by: Allen Press Stable URL: http://www.jstor.org/stable/3802074 Accessed: 04/12/2008 06:50 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=acg. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. Allen Press is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Wildlife Management. http://www.jstor.org COULDTHE BLOODPARASITE LEUCOCYTOZOON DETER MALLARD RANGEEXPANSION? DAVESHUTLER,1 Department of Zoology, Universityof WesternOntario, London, Ontario, N6A 5B7, Canada C. -
Arthropod Pests of Equines
MP484 Arthropod Pests of Equines University of Arkansas, United States Department of Agriculture and County Governments Cooperating Table of Contents Flies (Order Diptera) . .1 Horse and Deer Flies (Family Tabanidae) . 1 Mosquito (Family Culicidae) . 3 Black Fly (Family Simuliidae) . 4 Biting Midge (Family Ceratopogonidae) . 5 Stable Fly (Family Muscidae) . 5 Horn Fly (Family Muscidae) . 6 Face Fly (Family Muscidae) . 7 House Fly (Family Muscidae) . 7 Horse Bot Fly (Family Gasterophilidae) . 8 Lice (Order Phthiraptera) . 9 Ticks and Mites (Subclass Acari) . .10 Blister Beetles (Order Coleoptera, Family Meloidae) . .12 Authors DR. KELLY M. LOFTIN Associate Professor and Entomologist RICKY F. CORDER Program Associate – Entomology with the University of Arkansas Division of Agriculture located at Cralley-Warren Research Center Fayetteville, Arkansas Arthropod Pests of Equines The list of arthropod pests that irritate, damage Wounds caused by horse fly bites continue to bleed or transmit disease to horses, donkeys and mules is after the fly leaves its host. Horse flies are stout 1 1 substantial. Insect pests in the Order Diptera (true bodied and range from ⁄2 to 1 ⁄4 inches in size. Several flies) include several biting flies (horse and deer flies, species occur in Arkansas. However, the black stable flies, horn flies, biting midges and black flies), (Tabanus atratus Fabricius), black-striped (Hybomitra as well as mosquitoes and horse bots. Lice (Order lasiophthalma Macquart), lined (Tabanus lineola Phthiraptera) are wingless insects that feed on Fabricius) and autumn (Tabanus sulcifrons Macquart) equines during cooler months. Although ticks and are among the most important (Figures 1a-d). Deer mites (Order Acari) are not insects, they are impor flies are easily distinguished from horse flies by their 1 3 tant pests in some regions.