LAB to MOON) Akshay Dinkar Mahale Faculty of Mechanical Engineering

Total Page:16

File Type:pdf, Size:1020Kb

LAB to MOON) Akshay Dinkar Mahale Faculty of Mechanical Engineering INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND Vol.5 Issue.9, MECHANICAL ENGINEERING September WWW.IJRAME.COM 2017 ISSN (ONLINE): 2321-3051 Pg: -6-30 PROJECT MOON –MULTIPLE ROVER WITH ROLLING CAMERA (LAB TO MOON) Akshay Dinkar Mahale Faculty of Mechanical Engineering. Smt. Kashibai Navale College of engineering Pune-41, India E-mail: [email protected] ABSTRACT: There is no doubt that curiosity of humankind related to Enigma of moon had been increased day by day Since year 17 August 1958 Pioneer 0 ,First attempted launch beyond Earth orbit .failed to orbit due to turbo pump gearbox malfunction resulting in first stage explosion. Reached apogee of 16 kilometers. Biggest hurdle between human and moon was failure approximately 128 lunar mission already done by different countries out of that 60 were successful because of only the quest for knowledge had always been the main driving force for any exploration in general and moon space exploration in particular. In the recent times, there had increased interest of not only governments of devolving countries but also privet companies also wants to be part of moo exploration due to the possibility of certain distinct advantages the moon could provide, as a platform for future Deep Space missions and also the emerging possibility of certain exploration for the benefit of mankind, in addition to scientific objectives. India, as one among the very few space faring nations, has chalked out its own roadmap through Chandrayaan-1. Chandrayaan-2 in year 2017. Forty eight years ago today, two Americans touched down on the moon and walked upon its surface. Now, Akshay Dinkar Mahale 6 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND Vol.5 Issue.9, MECHANICAL ENGINEERING September WWW.IJRAME.COM 2017 ISSN (ONLINE): 2321-3051 Pg: -6-30 Lab2Moon Challenge trying to do it again with Constellation, an ambitious project to return humans to the moon by 2017.Project moon is part of the this challenge to find out unexplored part of moon due to human limitations. Enhance the knowledge of complex lunar conditions Keywords: Main Shell Assembly, Two compressed Air Cylinder , Drill with Hole Collector Suction Assembly, Multiple Rovers (Named as LEHA)with Rolling Camera, Robotic Arm with Bush Assembly, INTRODUCTION: In the lab Lab2Moon competition, According to give dimensions we design the model which is cylindrical in shape called as Main shell Assembly, before landing on moon surface of main assembly velocity data given to ECU then all compressed air cylinder get actuated along with presser and level and thermal sensors so provide collusion free landing on moon surface. Main Shell Assembly containing parts Four Rovers named as LEHA, each rover having its own rolling camera to explore the complex atmosphere and region and ejected in four direction with help of various sensors, actuators and system support assembly Robotic arm with bush assembly land on exact location with help of level sensors , Drill with Hole Collector Suction Assembly with help so insert drill into moon surface to collect samples on moon, also seismometer to known knowledge of moon quakes in region to region Studies of space weathering ,Project Moon is consist of mainly Four Phases Akshay Dinkar Mahale 7 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND Vol.5 Issue.9, MECHANICAL ENGINEERING September WWW.IJRAME.COM 2017 ISSN (ONLINE): 2321-3051 Pg: -6-30 Phases of Assembly 1. Main Shell Assembly Fig .1- A-Main assembly, B- Main assembly without shell Shell Assembly is heart of ―Project Moon‖, main all parts are protected by shell to gives proper function of all components in moon complex and unknown atmospherically conditions. It is cylindrical in shape and contain following assembly displayed in fig.1, 1.Two compressed air cylinder actuated by presser and tempters actuator and sensors with six large air bags and four small air bags, 2. Drill with hole collector chambers suction assembly with pressure sensors, temperature sensors and the sensors which actuated according to composition and chemical property of moon rock samples which previously found and store data in sensors and collected according to store dated respective chambers Akshay Dinkar Mahale 8 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND Vol.5 Issue.9, MECHANICAL ENGINEERING September WWW.IJRAME.COM 2017 ISSN (ONLINE): 2321-3051 Pg: -6-30 according to property and compositions , 3. consist of 4 rover named as LEHA which ejected in 4 directions with Robotic arm with bush assembly help of level sensors and actuators and system supported assemblies to collecting samples from region to region and, seismometers to studies moon quakes varies accordingly in region to region all four rover connected with main shell with same frequency to collect and store data collated from unknown regions, there are four phase for‖ Project Moon ― 2. Two Compressed air Cylinder: Phase 1:Before entering near to the moon’s gravitational field and complex atmosphere, Main shell Assembly all sensor collected data send to ECU (Electrical Control Unit) by providing data and evaluation of data actuator and thermal sensors, level sensors, pressures sensors get actuated according to the pressure send to the air bags by the two compressed air cylinder, we can also use some liquid so during collusion or shock waves get absorb by the air bags some experiments are going on to avoid the damage of rovers during landing on Moon as well as Mars Surface so provides Communication link between ECU and the main orbiter, from separation to impact and provides useful for future soft-landing (Figure 2 . large Six Air bags are shown) Six air bags of larger sizes, four small air bags are provided on the surface of the shell to avoid the collusion free landing and avoid damages of parts in main shell assembly by Akshay Dinkar Mahale 9 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND Vol.5 Issue.9, MECHANICAL ENGINEERING September WWW.IJRAME.COM 2017 ISSN (ONLINE): 2321-3051 Pg: -6-30 providing appropriate pressure by pressure sensor in large air bag and small four air bags are actuated for accurate landing on surface of moon by presser and level sensors (shown in Figure 2), according to surface of moon level sensors collect data and safe and also proper landing of main assembly to be done , safe landing of main shell assembly on moon surface completes its phase 1 of Project Moon. 3. Drill with hole Collector Suction Assembly: Fig3. Drill tool with hole Phase 2: As soon as phase-1 completes by landing of Main shell Assembly on exact surface of moon, Phase -2 starts such that Drill with Hole Collector Suction Assembly get activated accordingly by landing of main shell on moon surface sensors collect the data on moon surface so to decide speed of drill per revolution and insert drill having hole into moon surface showed in fig.3, and collect the data of moon surface according to data which collect by sensors so sensors are get actuated so samples are get separated according to their chemical property and chemical composition and collected in three suction chambers with help of previously stored data in sensors ,newly found samples are collected in new chamber by collection data phase -2compltes by conduct chemical and mineralogical mapping of the entire lunar surface for distribution of mineral and chemical elements such as the rocks are rich in Calcium (Ca), Aluminium (Al) and Akshay Dinkar Mahale 10 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND Vol.5 Issue.9, MECHANICAL ENGINEERING September WWW.IJRAME.COM 2017 ISSN (ONLINE): 2321-3051 Pg: -6-30 Titanium (Ti).There is high abundance of Silicon (Si) and Oxygen (O) There is a relative abundance of He on the Moon, compared with Earth. This may be due to the fact that over the four billion year history of the Moon, several hundred million tons of solar 3He have impacted directly onto the surface of the Moon and got trapped in minerals such as Ilmenite (a compound of iron and titanium; FeTiO3). 3.1 Mineral abundances in highland rocks: Akshay Dinkar Mahale 11 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND Vol.5 Issue.9, MECHANICAL ENGINEERING September WWW.IJRAME.COM 2017 ISSN (ONLINE): 2321-3051 Pg: -6-30 Fig3.1: Mineral Elements Appearance in Moon Rocks MINERAL ELEMENTS APPEARANCE IN MOON ROCKS Plagioclase feldspar calcium (Ca), aluminum, Whitish to translucent grayish; Silicon (Si), Oxygen (O) usually occurs as grains longer than they are wide. Pyroxene (Mg), calcium (Ca), iron Brown to black; grains usually (Fe), magnesium, longer than wide, in mare silicon (Si), oxygen (O) basalts, somewhat squarish in highland rocks. Olivine iron (Fe), magnesium Greenish; usually occurs as (Mg), silicon (Si), roundish crystals. oxygen (O) Ilmenite iron (Fe), titanium (Ti) , Black, elongated to squarish oxygen (O) crystals. Table 3.1: Mineral Elements Appearance in Moon Rock Akshay Dinkar Mahale 12 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND Vol.5 Issue.9, MECHANICAL ENGINEERING September WWW.IJRAME.COM 2017 ISSN (ONLINE): 2321-3051 Pg: -6-30 3.2 Mineral abundances in mare basalts: Fig 3.2 Exploring the Moon -- A Teacher's Guide with Activities, NASA EG-1997-10- 116-HQ page-9 Magnesium, Aluminum, Silicon, Calcium, Iron and Titanium as well as high atomic number elements such as Radon, Uranium and Thorium Minerals: Minerals are naturally occurring solids that have definite chemical compositions and are crystalline. Crystals are individual pieces of minerals. The most important characteristic of crystals is the orderly internal arrangement of atoms Rocks: Rocks are naturally occurring solids composed of one or more minerals. At least Two abundant minerals usually occur in a rock, along with several others. The minerals are intergrown in intricate ways that depend on how the rock formed.
Recommended publications
  • Master Table of All Deep Space, Lunar, and Planetary Probes, 1958–2000 Official Name Spacecraft / 1958 “Pioneer” Mass[Luna] No
    Deep Space Chronicle: Master Table of All Deep Space, Lunar, and Planetary Probes, 1958–2000 Official Spacecraft / Mass Launch Date / Launch Place / Launch Vehicle / Nation / Design & Objective Outcome* Name No. Time Pad No. Organization Operation 1958 “Pioneer” Able 1 38 kg 08-17-58 / 12:18 ETR / 17A Thor-Able I / 127 U.S. AFBMD lunar orbit U [Luna] Ye-1 / 1 c. 360 kg 09-23-58 / 09:03:23 NIIP-5 / 1 Luna / B1-3 USSR OKB-1 lunar impact U Pioneer Able 2 38.3 kg 10-11-58 / 08:42:13 ETR / 17A Thor-Able I / 130 U.S. NASA / AFBMD lunar orbit U [Luna] Ye-1 / 2 c. 360 kg 10-11-58 / 23:41:58 NIIP-5 / 1 Luna / B1-4 USSR OKB-1 lunar impact U Pioneer 2 Able 3 39.6 kg 11-08-58 / 07:30 ETR / 17A Thor-Able I / 129 U.S. NASA / AFBMD lunar orbit U [Luna] Ye-1 / 3 c. 360 kg 12-04-58 / 18:18:44 NIIP-5 / 1 Luna / B1-5 USSR OKB-1 lunar impact U Pioneer 3 - 5.87 kg 12-06-58 / 05:44:52 ETR / 5 Juno II / AM-11 U.S. NASA / ABMA lunar flyby U 1959 Luna 1 Ye-1 / 4 361.3 kg 01-02-59 / 16:41:21 NIIP-5 / 1 Luna / B1-6 USSR OKB-1 lunar impact P Master Table of All Deep Space, Lunar, andPlanetary Probes1958–2000 ofAllDeepSpace,Lunar, Master Table Pioneer 4 - 6.1 kg 03-03-59 / 05:10:45 ETR / 5 Juno II / AM-14 U.S.
    [Show full text]
  • Low-Energy Lunar Trajectory Design
    LOW-ENERGY LUNAR TRAJECTORY DESIGN Jeffrey S. Parker and Rodney L. Anderson Jet Propulsion Laboratory Pasadena, California July 2013 ii DEEP SPACE COMMUNICATIONS AND NAVIGATION SERIES Issued by the Deep Space Communications and Navigation Systems Center of Excellence Jet Propulsion Laboratory California Institute of Technology Joseph H. Yuen, Editor-in-Chief Published Titles in this Series Radiometric Tracking Techniques for Deep-Space Navigation Catherine L. Thornton and James S. Border Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation Theodore D. Moyer Bandwidth-Efficient Digital Modulation with Application to Deep-Space Communication Marvin K. Simon Large Antennas of the Deep Space Network William A. Imbriale Antenna Arraying Techniques in the Deep Space Network David H. Rogstad, Alexander Mileant, and Timothy T. Pham Radio Occultations Using Earth Satellites: A Wave Theory Treatment William G. Melbourne Deep Space Optical Communications Hamid Hemmati, Editor Spaceborne Antennas for Planetary Exploration William A. Imbriale, Editor Autonomous Software-Defined Radio Receivers for Deep Space Applications Jon Hamkins and Marvin K. Simon, Editors Low-Noise Systems in the Deep Space Network Macgregor S. Reid, Editor Coupled-Oscillator Based Active-Array Antennas Ronald J. Pogorzelski and Apostolos Georgiadis Low-Energy Lunar Trajectory Design Jeffrey S. Parker and Rodney L. Anderson LOW-ENERGY LUNAR TRAJECTORY DESIGN Jeffrey S. Parker and Rodney L. Anderson Jet Propulsion Laboratory Pasadena, California July 2013 iv Low-Energy Lunar Trajectory Design July 2013 Jeffrey Parker: I dedicate the majority of this book to my wife Jen, my best friend and greatest support throughout the development of this book and always.
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Appendix 1: Venus Missions
    Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M.
    [Show full text]
  • Jjmonl 1603.Pmd
    alactic Observer GJohn J. McCarthy Observatory Volume 9, No. 3 March 2016 GRAIL - On the Trail of the Moon's Missing Mass GRAIL (Gravity Recovery and Interior Laboratory) was a NASA scientific mission in 2011/12 to map the surface of the moon and collect data on gravitational anomalies. The image here is an artist's impres- sion of the twin satellites (Ebb and Flow) orbiting in tandem above a gravitational image of the moon. See inside, page 4 for information on gravitational anomalies (mascons) or visit http://solarsystem. nasa.gov/grail. The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky It is through their efforts that the McCarthy Observatory Technical Support has established itself as a significant educational and Bob Lambert recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Mike Chiarella Roger Moore Route Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Cecilia Dietrich Marc Polansky Dirk Feather Joe Privitera Randy Fender Monty Robson Randy Finden Don Ross John Gebauer Gene Schilling Elaine Green Katie Shusdock Tina Hartzell Paul Woodell Tom Heydenburg Amy Ziffer In This Issue "OUT THE WINDOW ON YOUR LEFT" ............................... 4 SUNRISE AND SUNSET ...................................................... 13 MARE HUMBOLDTIANIUM AND THE NORTHEAST LIMB ......... 5 JUPITER AND ITS MOONS ................................................. 13 ONE YEAR IN SPACE ....................................................... 6 TRANSIT OF JUPITER'S RED SPOT ....................................
    [Show full text]
  • February 2022
    FORECAST OF UPCOMING ANNIVERSARIES -- FEBRUARY 2022 116 Years Ago – 1902 February 4: Charles Lindbergh’s birthday. 90 Years Ago – 1932 February 19: Joseph Kerwin's birthday. 60 Years Ago – 1962 February 8: Tiros 4 launched by Thor Delta, 7:43 a.m., EST, Cape Canaveral, Fla. February 20: Mercury Atlas 6 (MA-6), Friendship 7 launched, with astronaut John H. Glenn, 9:47:39 a.m., first American to orbit the earth, Cape Canaveral, Fla. February 27: Discoverer 38 (Corona Mission 9030) launched by Thor, Vandenberg AFB. The last Discoverer named Corona mission. 55 Years Ago – 1967 February 4: Lunar Orbiter 3 launched by Atlas Agena, 8:17 p.m., EST, Cape Canaveral, Fla. February 8: Diademe 1 launched by Diamant A, Hammaguir, Algeria, French satellite. February 15: Diademe 2 launched by Diamant A, Hammaguir, Algeria, French satellite. 50 Years Ago – 1972 February 14: USSR launches Luna 20 (Lunik 20) at 03:27:59 UTC by Proton K from Baikonur which soft lands on the Moon four days later. A rotary-percussion drill retrieved samples from the surface which were returned to Earth by capsule on February 25. 45 Years Ago -1977 February 7: USSR launches Soyuz-24 from Baikonur. Cosmonauts: Viktor V.Gorbatko and Yuri N.Glazkov. Ferry flight to Salyut-5 space station. February 18: Enterprise, the first space shuttle orbiter, was flight tested at Dryden Flight Research Center. 40 Years Ago – 1982 February 25: Westar IV launched by Delta, 7:04 p.m., EST, Cape Canaveral, Fla. 35 Years Ago – 1987 February 5: Soyuz TM-2 launched from Baikonur, 2138 Moscow time, Yuri V.
    [Show full text]
  • Defense Intelligence Digest (DID), Vol. VII, No. 7
    SECRET . DECLASSIFIED UNDER AUTHORITY OF THE INTERAGENCY SECURITY CLASSIFICATION APPEALS PANEL, E.0.13526, SECTION 5.3(b)(3) ISCAP APPEAL NO. 2009-068, document no. 279 DECLASSIFICATION DATE: May 14,2015 July 1969 • Volume '7 • Number 7 2 4 9 12 Portion identified as non- I 15 I responsive to the appeal 16 19 24 28 Ef'fed1 of Zond Vehicle Re-entry on Soviet Space Program . 30 34 Portion identified as non­ 37 responsive to the appeal 41 44 FOREWORD MISSION: The mLSSton of the terest on significant developments roonthly Defense lntelligmce Digest is and trends in the rr1ilitary capabili­ to provide all components of the ties and vulnerabilities of foreign Department of Defense and other nations. Emphasis is placed pri­ United States agencies with timely marily, on nations and forces within intelligence of wide professional in- the.Communist World. WARNING: This publication is clas­ marked "No Foreign Dissemination," sified secret beca.use it reflects intelli­ certain articles arc releasable tp gence collection efforts of the United fordgn governments; however, such States, and contains information af­ release is controlled by the Defense fecting the national defense of the Inte.Uigence Agency. United States within the meaning of the Espionage Laws, Title 18 U~S.C., Section 793 and S·ection 794. Its transmission or the revelation of its ~~~ contents in any manner to an un­ JOSEPH F. CA.RROLL authorized person is prohibited by Lt General, USAF Jaw. Althongh the publication is Director Overall classiAcation of this document is-sECREl Two Jmportcmt vehicles l•a<"f the Sovid$ cle>ser to.
    [Show full text]
  • Spacecraft Deliberately Crashed on the Lunar Surface
    A Summary of Human History on the Moon Only One of These Footprints is Protected The narrative of human history on the Moon represents the dawn of our evolution into a spacefaring species. The landing sites - hard, soft and crewed - are the ultimate example of universal human heritage; a true memorial to human ingenuity and accomplishment. They mark humankind’s greatest technological achievements, and they are the first archaeological sites with human activity that are not on Earth. We believe our cultural heritage in outer space, including our first Moonprints, deserves to be protected the same way we protect our first bipedal footsteps in Laetoli, Tanzania. Credit: John Reader/Science Photo Library Luna 2 is the first human-made object to impact our Moon. 2 September 1959: First Human Object Impacts the Moon On 12 September 1959, a rocket launched from Earth carrying a 390 kg spacecraft headed to the Moon. Luna 2 flew through space for more than 30 hours before releasing a bright orange cloud of sodium gas which both allowed scientists to track the spacecraft and provided data on the behavior of gas in space. On 14 September 1959, Luna 2 crash-landed on the Moon, as did part of the rocket that carried the spacecraft there. These were the first items humans placed on an extraterrestrial surface. Ever. Luna 2 carried a sphere, like the one pictured here, covered with medallions stamped with the emblem of the Soviet Union and the year. When Luna 2 impacted the Moon, the sphere was ejected and the medallions were scattered across the lunar Credit: Patrick Pelletier surface where they remain, undisturbed, to this day.
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • Forecast of Upcoming Anniversaries -- September 2018
    FORECAST OF UPCOMING ANNIVERSARIES -- SEPTEMBER 2018 60 Years Ago - 1958 September 17: NASA-ARPA Manned Satellite Panel established. The NASA/Advanced Research Projects Agency Manned Satellite Panel was formed to draft plans for future manned spaceflight. Langley Research Center and Glenn (then Lewis) Research Center were the primary NASA centers involved. September 30: Last day of NACA operations, Washington, D.C. 55 Years Ago - 1963 September 18: Asset 1 launched to an altitude of 39 miles aboard a Thor rocket from Cape Canaveral, Fla. The first successful suborbital lifting body flight, the Asset vehicle served as a proof-of-concept for the idea of a reusable winged spacecraft. September 28: Transit V-B launched by Thor Ablestar at 12:09 p.m. PDT, from Vandenberg AFB. This Transit satellite was the first US satellite to be powered entirely by nuclear electric power (RTGs). 50 Years Ago - 1968 September 5: Zond 5 launched from Baikonur by Proton K, at 21:36 UTC. An unmanned precursor for Soviet circumlunar cosmonaut program, it was the first Soviet circumlunar flight to successfully reenter Earth’s atmosphere. 45 Years Ago – 1973 September 25: Skylab 2, with astronauts Bean, Garriott, and Lousma, splashes down in Pacific Ocean. Crew was retrieved by recovery ship USS New Orleans, 6:20 p.m., EDT. September 26: Concorde 02 flew from Orly Field, Paris France, to Dulles International Airport, Washington, DC, in 3 hours and 33 minutes. The flight was a new speed record for the route. September 27: Soyuz 12 launched aboard a Soyuz rocket from Baikonur at 12:18 UTC.
    [Show full text]
  • Dsc Pub Edited
    1968 93) few craters, much like the mare sites, Surveyor 7 although the general area was rougher. About Nation: U.S. (43) 21 hours after landing, ground controllers Objective(s): lunar soft-landing fired a pyrotechnic charge to drop the alpha- Spacecraft: Surveyor-G scattering instrument on the lunar surface. Spacecraft Mass: 1,040.1 kg When the instrument failed to move, con- Mission Design and Management: NASA JPL trollers used the robot arm to force it down. Launch Vehicle: Atlas-Centaur (AC-15 / Atlas The scoop on the arm was used numerous 3C no. 5903C / Centaur D-1A) times for picking up soil, digging trenches, Launch Date and Time: 7 January 1968 / and conducting at least sixteen surface- 06:30:00 UT bearing tests. Apart from taking 21,274 pho- Launch Site: ETR / launch complex 36A tographs (many of them in stereo), Surveyor Scientific Instruments: 7 also served as a target for Earth-based 1) imaging system lasers (of 1-watt power) to accurately 2) alpha-scattering instrument measure the distance between Earth and the 3) surface sampler Moon. Although it was successfully reacti- 4) footpad magnet vated after the lunar night, Surveyor 7 Results: Since Surveyors 1, 3, 5, and 6 success- finally shut down on 21 February 1968. In fully fulfilled requirements in support of total, the five successful Surveyors returned Apollo, NASA opted to use the last remaining more than 87,000 photos of the lunar surface Surveyor for a purely scientific mission out- and demonstrated the feasibility of soft- side of exploring a potential landing site for landing a spacecraft on the lunar surface.
    [Show full text]
  • Water on the Moon, III. Volatiles & Activity
    Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere).
    [Show full text]