Palaeozoic Vertebrate Biochronology and Global Marine/Non-Marine Correlation Final Report of I GCP 3 28 ( 1991-1996)

Total Page:16

File Type:pdf, Size:1020Kb

Palaeozoic Vertebrate Biochronology and Global Marine/Non-Marine Correlation Final Report of I GCP 3 28 ( 1991-1996) 223 Courier Forschungsinstitut Senckenberg Alain Blieck & Susan Turner (eds.) Palaeozoic Vertebrate Biochronology and Global Marine/Non-Marine Correlation Final Report of I GCP 3 28 ( 1991-1996) 3'28 I CENTRE NATIONAL DE LA RECHERCHE UN~,t I SCIENTIFIQUE 'I UPRESA8014 Herausgegeben von der Senckenbergischen Naturforschenden Gesellschaft Frankfurt a.M. 2000 Cour. Forsch.-Inst. Senckenberg I 223 I 309-324 I 4 Figs., 3 Tabs. Frankfurt a.M .. 02. 09. 2000 The Middle Devonian fishes of the Baltic States (Estonia, Latvia) and Belarus With 4 figures and 3 tables Elga MARK-KURIK This is a contribution to IGCP 328: Palaeozoic Microvertebrates Abstract An overview of the range of the Middle Devonian fishes from the Baltic states, Estonia and Latvia, and Belarus is given. The Baltic outcrops, in particular, have yielded a rich and diverse fish fauna containing agnathans (heterostracans, osteostracans), chondrichthyans, placo­ derms, acanthodians, crossopterygians, dipnoans, and actinopterygians. The representatives of some groups (osteostracans, chondrichthyans, palaeoniscoids) which possess an exoskel­ eton consisting of small elements, are comparatively poorly known and need description. However. acanthodians present an exception here: the scales of these fishes have been thor­ oughly studied by V ALIUKEVICIUS. The acanthodians are out of the scope of this paper, except some species of special interest. Several fish groups, psammosteid heterostracans. placo­ dcrms. crossopterygians. and probably dipnoans were represented during the ArukUla and Burtnieki Ages by very large forms . The fish fauna became somewhat less diverse beginning with the Gauja Age and later. Placoderms and some other fishes are close to those known in the Middle Devonian of Scotland, being favourable to the correlation of the sections in these regions. The data on the Middle Devonian fishes in Belarus are less abundant. Still. they show some differences with the Baltic faunas of the same age. The Eifel ian of Belarus has yielded phlyctaeniid arthrodires, in the late Eifelian (Gorodok Regional Stage) occur various chon­ drichthyans: both in the Eifelian and Givetian the occurrences of ptyctodonts and palaeo­ niscoids are common. Keywords: Middle Devonian, fishes, stratigraphical range, Estonia. Latvia, Belarus. correlation Introduction have been studied since the first half of the 19th century. Detailed stratigraphical subdivision has been elaborated The information on the Middle Devonian fishes pre­ based on palaeontological, lithological and mineralogi­ sented in this paper comes from two Baltic States, Esto­ cal data. These have been published in many papers and nia and Latvia. and from Belarus. Estonia and Latvia several monographs: of the more recent ones can be listed have been known for a long time as the classical outcrop SOROKIN ( 1981 ), V ALIUKEVICIUS et al. ( 1986). KLRS S areas of the Middle Devonian terrigenous and carbonate ( 1992), LYARSKAYA & LUKSEVICS ( 1992), YALI L'KE VI CIL'S rocks (Fig. I). The rocks are exposed on riv~r banks or (1994), KLEESMENT ( 1994. 1995) and KLEES MEW & lake shores. on the shore of the Baltic Sea, also in the MARK-KURIK ( 1997). In comparison with Estonia ami quarries for mineral resources: clay in Estonia and Latvia, in Lithuania the Middle Devonian ouH.: rops anti Latvia. and in these for oil shale in NE Estonia. Natural the fish specimens collected from them are more limited. exposures in particular as well as numerous boring cores, and the data from this territory are based mainly on the have yielded rich fossil tish material. The fossil tishes material from boring cores. Also, there is one stratigra- Author's address: Institute of Geology at Tallinn Technical University, Estonia Ave. 7, 10143 Tallinn. Estonia. MARK-KURIK: The Middle Devonian fishes of the Baltic States (Estonia, Latvia) and Belarus Middle Devonian regional stages of Belarus and their correlation with those in the Baltic, as well as the approximate correlation of the regional units with the standard conodont zones and the Eastern European miospore zones. The palynological data are given after A VKHIMOVITCH et al. (1993), G. V AITIEKUNIENE (in the stratigraphical scheme by NARBUTAS et al. 1993), BLIECK et al. (1996) and KORTS & MARK-KURIK (1997). The acanthodian zones are presented after V ALIUKEVICIUS ( 1994, 1995) and V ALIUKEVICIUS et al. ( 1995). Two more fish zonations of the Middle Devonian are kno~n the Baltic, established on the basis of other biOstratigra­ phically important groups: psammosteid heterostracans and placoderms (Fig. 3). The zones of the acanthodians and the psammosteid genus Schizosteus are particularly characteristic of the Eifelian. The psammosteids Pycno­ steus and Psammolepis, and the placoderms Asterolepis, Fig. 1: Middle Devonian outcrop area (spotted) in Estonia and Bothriolepis and Watsonosteus have enabled a detailed Latvia. Simplified after GR!GELIS (1982). zonal subdivision of the Givetian. Both the lower and the upper boundaries of the Mid­ dle Devonian, i.e the Emsian-Eifelian and the Givetian­ Frasnian boundary have been under discussion for a con­ phical unit, the Sventoji Formation (NARBUTAS 1994) that siderable time. In the north-western and western regions is distinguished, instead of two formations - the Gauja of the Russian (East European) Platform, which include Formation (with two members) and the Amata Forma­ the Baltic states and Belarus, the Emsian- Eifelian bound­ tion known in Latvia and Estonia. For above reasons, the ary coincides, according to RZHONSNITSKAYA & KULJ· data from Lithuania are, with a few exceptions, not in­ KOVA (1990), with the boundary of the Rezekne and cluded into the present overview. The information on the Piirnu Formations, and the Vitebsk and Adrov Regional Middle Devonian fishes from Belarus comes exclusively Stages, respectively. As to the age dating of the Rezekne from boring cores, and is not very rich either. Some local Formation by MARK-KURIK (1991a), a fossil fish assem­ units are rather poorly characterized by fishes. But the blage, consisting mainly of placoderms (Wijdeaspis, in information including both the published data by particular) and wide interregional correlation, were used. V ALIUKEVICIUS et al. ( 1995) and the unpublished ones by It was concluded that the Rezekne Formation was rather A. IVANOV (pers. comm., 1997), and by the author of the of Emsian than Eifelian age. The conclusion was based present paper, is worth to be presented. on the occurrences of the thelodont Skamolepis and the All Middle Devonian fish taxa are considered here, phlyctaeniid arthrodires. The Skamolepis fragilis Zone except most of the acanthodians as their range and zona­ terminates the thelodont and heterostracan zones of the tion have already been given in quite a number of papers Lower Devonian in Europe and corresponds probably to (V ALIUKEVICIUS 1988, 1994, 1995, V ALIUKEVICIUS et al. the patulus and serotinus ·conodont zones (BLIECK et al. 1986, 1995, V ALIUKEVICIUS & KRUCHEK, this volume) in press). V ALIUKEVICIUS (1988, 1994, 1995) has several and a monograph (V ALIUKEVICIUS 1985). Yet, the index times emphasized the appearance in the Rezekne Forma­ species and some other, rare acanthodians are listed all tion of typical Middle Devonian acanthodian genera and right, and the acanthodian zonation is shown. The range the correlation of this formation as well as the overlying of the Middle Devonian fishes from Estonia and Latvia Middle Devonian Parnu Formation to the common (Tables 1-3) is based on the published data (GRoss 1942, Laliacanthus singularis Zone. This view is also ex­ SOROKIN 1981, MARK-KURIK 1997, LYARSKAYA & pressed in the paper by V ALIUKEVICIUS et al. ( 1995). The LUKSEVICS 1992), and on the unpublished information Vitebsk Regional Stage which is correlated with the (P.E. AHLBERG and E. LUKSEVICS, pers. comm., 1997). Rezekne Formation is supposed to belong partly to the Eifelian. The miospore data show that the lower parts of the Stratigraphical framework Vitebsk Regional Stage or Horizon (from Russian The Middle Devonian in Estonia and Latvia includes 'gorizont') belong to the Retusotriletes clandestinus (RC) presently six local stratigraphical units: the Piirnu, Narva, Zone; in the Urals its upper subzone has yielded cono­ Aruktila, Burtnieki, Gauja, andAmata Formations, which donts of the serotinus Zone (A VKHIMOVITCH et al. 1993). are considered as regional stages (Fig. 2). The Parnu and According to the same authors, the upper part of the Narva Formations are of Eifelian age, the overlying for­ Vitebsk Stage and the Rezekne Formation correspond to mations belonging to the Givetian. Fig. 2 also shows the the Diaphanospora inassueta (DI) Zone. The latter in the 310 Cour. Forsch.-lnst. Senckenberg, 223: 2000 Conodont Acanthodian Mio- Estonia Latvia Belarus zones zones spore zones Formation Beds, Member Formation Subr .• Beds Reg. Stage Beds Fr11nlln falsiovalis• 81 Pjavir;~as Pjavioas Sargaevo ~----- Am ata Amata Upper Zhelon' disporilis Dnononch111 Lower Lan' conclnnus IM Gauja Lode Gauja Lode Ubort' hermanni· Sietiol Sietioi Givetian · cristatus Abava Abava Moroch' mr,.2 Burtnieki KoorkOia Burtnieki Upper B. Stolin Sl2 Vaf'CIIS Diplt~et~ntltus Hlrma LowerS. Polotsk - ·/... ....................sl, ......... KJ'tll'U EX Tarvastu ArukOia KurekOia ArukOia Upper ~oryn' gn,.2 hemiansatus Viljandl Lower kockelianus• N. urnt~vensis RL Kemav6 Kemav& Kastyukovichi ks,.3 australis Pt. rimosum Narva Lelvu, L 1 -o~ Narva Lelvu Gorodok gr,.J Eifelian costatus Ch.
Recommended publications
  • Tartu, 26.-27. September 2003 Elga Mark-Kurik Ja Jйri Nemliher Tallinna
    Eesti geoloogia uue sajandi kiinnisel 38 Tartu, 26.-27. september 2003 VEEL KORD КESK-DEVONI АВА V А КIНТIDEST Elga Mark-Kurik ja Jйri Nemliher Tallinna Tehnikatilikooli Geoloogia Instituut, Estonia pst. 7, 10143 Tallinn ([email protected]; [email protected]) Abava kihid on kauaaegse asendi tottu Kesk- ja Ulem-Devoni piiril pohjustanud rohkem vaidlusi kui mбni teine stratigraafiline tiksus Baltikumi Нibiloigetes. Selle asendiga seoses on neid kihte kasitletud kord iseseisva tiksusena (Liepins 1960, Mark-Kurik 1991), marksa sagedamini aga lasuva, Gauja lademe osana (Kurss et al. 1981, Mark-Kurik 1981) vбi lamava, Burtnieki lademe osana (Kleesment 1995, Kleesment & Mark-Kurik 1997, Vingisaar 1997). Abava kihtide kui Uksuse liitmist selle vбi teise kбrgemat jarku Uksusega on pбhjustanud antud Uksuse piiride, eriti Ulemise piiri ebamaarasus ning halb jalgitavus geoloogilisel kaш·distamisel (Kurik et al. 1989). Viimatimainitud asjaolu tottu loobus Kurss hiljem ( 1992) Abava kui iseseisva stratigraafilise tiksuse kasutamisest. Siiski ei saa mainimata jatta Abava kihtidele spetsiifilist kalafaunat, samuti selle tiksikelementide.laia levikut Ida­ Euroopa platvormil ning naaberaladel ja kaugemalgi ning nimetatud kihtide tllhtsust regioonidevahelise korrelatsiooni aspektist (Mark-Kurik 1991, Ahlberg et al. 1999, Mark-Kurik et al. 1999). Eestis kuuluvad Abava kihid Givet' ladejargu Burtnieki lademesse, moodustades selle kolmanda ehk Ulemise kihikompleksi. Кihtide paksus on 15,1-32 m. Need koosnevad heledavarvilisest peeneteralisest pбimjaskihilisest liivakivist, ka peeneteralisest hallist, rohekas- voi lillakashallist aleuroliidist. Aleuroliiti on antud Uksuses enam kui 25 %. Samuti esineb selles halli voi punakaspruuni savi. Kagu-Eesti puurstidamikes on Abava tasemelt leitud dolokivi ning domeriiti. Mineraloogiliselt on meie Vбhandu jбе aarsed paljandid ning Latis paiknev Lejeji paljand sarnased (Kleesment 1995). Eelpool mainitud paljand (stratottiiip) asub Kuramaal Venta jбgikonnas Abava jбе vasakul kaldal (suudmest 4 km Ulesvoolu) Lejeji talu vastas.
    [Show full text]
  • 'Placoderm' (Arthrodira)
    Jobbins et al. Swiss J Palaeontol (2021) 140:2 https://doi.org/10.1186/s13358-020-00212-w Swiss Journal of Palaeontology RESEARCH ARTICLE Open Access A large Middle Devonian eubrachythoracid ‘placoderm’ (Arthrodira) jaw from northern Gondwana Melina Jobbins1* , Martin Rücklin2, Thodoris Argyriou3 and Christian Klug1 Abstract For the understanding of the evolution of jawed vertebrates and jaws and teeth, ‘placoderms’ are crucial as they exhibit an impressive morphological disparity associated with the early stages of this process. The Devonian of Morocco is famous for its rich occurrences of arthrodire ‘placoderms’. While Late Devonian strata are rich in arthrodire remains, they are less common in older strata. Here, we describe a large tooth-bearing jaw element of Leptodontich- thys ziregensis gen. et sp. nov., an eubrachythoracid arthrodire from the Middle Devonian of Morocco. This species is based on a large posterior superognathal with a strong dentition. The jawbone displays features considered syna- pomorphies of Late Devonian eubrachythoracid arthrodires, with one posterior and one lateral row of conical teeth oriented postero-lingually. μCT-images reveal internal structures including pulp cavities and dentinous tissues. The posterior orientation of the teeth and the traces of a putative occlusal contact on the lingual side of the bone imply that these teeth were hardly used for feeding. Similar to Compagopiscis and Plourdosteus, functional teeth were pos- sibly present during an earlier developmental stage and have been worn entirely. The morphological features of the jaw element suggest a close relationship with plourdosteids. Its size implies that the animal was rather large. Keywords: Arthrodira, Dentition, Food web, Givetian, Maïder basin, Palaeoecology Introduction important to reconstruct character evolution in early ‘Placoderms’ are considered as a paraphyletic grade vertebrates.
    [Show full text]
  • EGT Aastaraamat 2020 ENG.Indd
    YEARBOOK GEOLOGICAL SURVEY OF ESTONIA F. R. Kreutzwaldi 5 44314 Rakvere Telephone: (+372) 630 2333 E-mail: [email protected] ISSN 2733-3337 © Eesti Geoloogiateenistus 2021 2 Foreword . 3 About GSE . 5 Cooperation . 6 Human resource development . 9 Fieldwork areas 2020 . 12 GEOLOGICAL MAPPING AND GEOLOGICAL DATA Coring – a major milestone in subsurface investigations in Estonia . 13 Coring projects for geological investigations at the GSE in 2020 . 15 Distribution, extraction, and exploitation of construction minerals in Pärnu county . 17 Mineral resources, geophysical anomalies, and Kärdla Crater in Hiiumaa . .22 Geological mapping in Pärnu County . .26 Opening year of the digital Geological Archive . .29 HYDROGEOLOGY AND ENVIRONMENTAL GEOLOGY Status of Estonian groundwater bodies in 2014–2019 . 31 Salinisation of groundwater in Ida-Viru County . .35 Groundwater survey of Kukruse waste rock heap . .37 The quality of groundwater and surface water in areas with a high proportion of agricultural land . .39 Transient 3D modelling of 18O concentrations with the MODFLOW-2005 and MT3DMS codes in a regional-scale aquifer system: an example from the Estonian Artesian Basin . .42 Radon research in insuffi ciently studied municipalities: Keila and Võru towns, Rõuge, Setomaa, Võru, and Ruhnu rural municipalities . .46 GroundEco – joint management of groundwater dependent ecosystems in transboundary Gauja–Koiva river basin . .50 MARINE GEOLOGY Coastal monitoring in 2019-2020 . .53 Geophysical surveys of fairways . .56 Environmental status of seabed sediments in the Baltic Sea . .58 The strait of Suur väin between the Estonian mainland and the Muhu Island overlies a complex bedrock valley . 60 Foreword 2020 has been an unusual year that none of us is likely to soon forget.
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • Redescription of Yinostius Major (Arthrodira: Heterostiidae) from the Lower Devonian of China, and the Interrelationships of Brachythoraci
    bs_bs_banner Zoological Journal of the Linnean Society, 2015. With 10 figures Redescription of Yinostius major (Arthrodira: Heterostiidae) from the Lower Devonian of China, and the interrelationships of Brachythoraci YOU-AN ZHU1,2, MIN ZHU1* and JUN-QING WANG1 1Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 2University of Chinese Academy of Sciences, Beijing 100049, China Received 29 December 2014; revised 21 August 2015; accepted for publication 23 August 2015 Yinosteus major is a heterostiid arthrodire (Placodermi) from the Lower Devonian Jiucheng Formation of Yunnan Province, south-western China. A detailed redescription of this taxon reveals the morphology of neurocranium and visceral side of skull roof. Yinosteus major shows typical heterostiid characters such as anterodorsally positioned small orbits and rod-like anterior lateral plates. Its neurocranium resembles those of advanced eubrachythoracids rather than basal brachythoracids, and provides new morphological aspects in heterostiids. Phylogenetic analysis based on parsimony was conducted using a revised and expanded data matrix. The analysis yields a novel sce- nario on the brachythoracid interrelationships, which assigns Heterostiidae (including Heterostius ingens and Yinosteus major) as the sister group of Dunkleosteus amblyodoratus. The resulting phylogenetic scenario suggests that eubrachythoracids underwent a rapid diversification during the Emsian, representing the placoderm response to the Devonian Nekton Revolution. The instability of the relationships between major eubrachythoracid clades might have a connection to their longer ghost lineages than previous scenarios have implied. © 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015 doi: 10.1111/zoj.12356 ADDITIONAL KEYWORDS: Brachythoraci – Heterostiidae – morphology – phylogeny – Placodermi.
    [Show full text]
  • A Large Late Devonian Arthrodire (Vertebrata, Placodermi) from Poland
    Estonian Journal of Earth Sciences, 2018, 67, 1, 33–42 https://doi.org/10.3176/earth.2018.02 A large Late Devonian arthrodire (Vertebrata, Placodermi) from Poland Piotr Szreka and Olga Wilkb a Polish Geological Institute–National Research Institute, 4 Rakowiecka Street, 00-975 Warszawa, Poland; [email protected] b Faculty of Geology, University of Warsaw, 93 Żwirki i Wigury Street, 02-089 Warszawa, Poland; [email protected] Received 1 August 2017, accepted 31 October 2017, available online 19 January 2018 Abstract. The arthrodire placoderm, Dunkleosteus sp., is reported from the Upper Devonian (Frasnian) of the Holy Cross Mountains, Poland. The material comprises partially preserved remains of two individuals found in the Kellwasser-like horizon of the Płucki locality. The remains are preserved as broken bone fragments redeposited from shallower environment into deep-shelf conditions. They are labelled as Dunkleosteus sp. and seem similar to Dunkleosteus marsaisi from the Famennian of Morocco. It is likely that the form from Poland represents a new species that requires further collecting and study of new specimens. The described specimens are the oldest occurrence of the genus Dunkleosteus in Europe, the most complete one from Poland and one of the biggest placoderms with a head about 60 cm long. Key words: Dunkleosteus, Upper Devonian, Frasnian, Holy Cross Mountains, Poland. INTRODUCTION D. marsaisi Lehman, 1954 from the early Famennian of Morocco (Lehman 1956). The genus Dunkleosteus (formerly Dinichthys in part) Although tens of placoderm fossil remains were includes about eight species (if including D. belgicus collected in Płucki during long-term excavation works (Leriche), 1931) which are found in Laurussia (USA, between 1996 and 2006 (see Szrek 2008, 2009; Szrek & Canada, Belgium, Poland) and Gondwana (Morocco).
    [Show full text]
  • Dynamical, Biological, and Anthropic Consequences of Equal Lunar and Solar Angular Radii Rspa.Royalsocietypublishing.Org Steven A
    Dynamical, biological, and anthropic consequences of equal lunar and solar angular radii rspa.royalsocietypublishing.org Steven A. Balbus 1Astrophysics, Keble Road, Denys Wilkinson Building, Research University of Oxford, Oxford OX1 3RH The nearly equal lunar and solar angular sizes Article submitted to journal as subtended at the Earth is generally regarded as a coincidence. This is, however, an incidental consequence of the tidal forces from these bodies Subject Areas: being comparable. Comparable magnitudes implies Astronomy, Astrobiology strong temporal modulation, as the forcing frequencies are nearly but not precisely equal. We suggest that on Keywords: the basis of paleogeographic reconstructions, in the Devonian period, when the first tetrapods appeared Tides, evolution, Moon on land, a large tidal range would accompany these modulated tides. This would have been conducive to Author for correspondence: the formation of a network of isolated tidal pools, Steven Balbus lending support to A.S. Romer’s classic idea that the e-mail: [email protected] evaporation of shallow pools was an evolutionary impetus for the development of chiridian limbs in aquatic tetrapodomorphs. Romer saw this as the reason for the existence of limbs, but strong selection pressure for terrestrial navigation would have been present even if the limbs were aquatic in origin. Since even a modest difference in the Moon’s angular size relative to the Sun’s would lead to a qualitatively different tidal modulation, the fact that we live on a planet with a Sun and Moon of close apparent size is not entirely coincidental: it may have an anthropic basis. arXiv:1406.0323v1 [astro-ph.EP] 2 Jun 2014 c The Author(s) Published by the Royal Society.
    [Show full text]
  • Devonian Daniel Childress Parkland College
    Parkland College A with Honors Projects Honors Program 2019 Did You Know: Devonian Daniel Childress Parkland College Recommended Citation Childress, Daniel, "Did You Know: Devonian" (2019). A with Honors Projects. 252. https://spark.parkland.edu/ah/252 Open access to this Poster is brought to you by Parkland College's institutional repository, SPARK: Scholarship at Parkland. For more information, please contact [email protected]. GENUS PHYLUM CLASS ORDER SIZE ENVIROMENT DIET: DIET: DIET: OTHER D&D 5E “PERSONAL NOTES” # CARNIVORE HERBIVORE SIZE ACANTHOSTEGA Chordata Amphibia Ichthyostegalia 58‐62 cm Marine (Neritic) Y ‐ ‐ small 24in amphibian 1 ACICULOPODA Arthropoda Malacostraca Decopoda 6‐8 cm Marine (Neritic) Y ‐ ‐ tiny Giant Prawn 2 ADELOPHTHALMUS Arthropoda Arachnida Eurypterida 4‐32 cm Marine (Neritic) Y ‐ ‐ small “Swimmer” Scorpion 3 AKMONISTION Chordata Chondrichthyes Symmoriida 47‐50 cm Marine (Neritic) Y ‐ ‐ small ratfish 4 ALKENOPTERUS Arthropoda Arachnida Eurypterida 2‐4 cm Marine (Transitional) Y ‐ ‐ small Sea scorpion 5 ANGUSTIDONTUS Arthropoda Malacostraca Angustidontida 6‐9 cm Marine (Pelagic) Y ‐ ‐ small Primitive shrimp 6 ASTEROLEPIS Chordata Placodermi Antiarchi 32‐35 cm Marine (Transitional) Y ‐ Y small Placo bottom feeder 7 ATTERCOPUS Arthropoda Arachnida Uraraneida 1‐2 cm Marine (Transitional) Y ‐ ‐ tiny Proto‐Spider 8 AUSTROPTYCTODUS Chordata Placodermi Ptyctodontida 10‐12 cm Marine (Neritic) Y ‐ ‐ tiny Half‐Plate 9 BOTHRIOLEPIS Chordata Placodermi Antiarchia 28‐32 cm Marine (Neritic) ‐ ‐ Y tiny Jawed Placoderm 10
    [Show full text]
  • Revised Sequence Stratigraphy of the Ordovician of Baltoscandia …………………………………………… 20 Druzhinina, O
    Baltic Stratigraphical Association Department of Geology, Faculty of Geography and Earth Sciences, University of Latvia Natural History Museum of Latvia THE EIGHTH BALTIC STRATIGRAPHICAL CONFERENCE ABSTRACTS Edited by E. Lukševičs, Ģ. Stinkulis and J. Vasiļkova Rīga, 2011 The Eigth Baltic Stratigraphical Conference 28 August – 1 September 2011, Latvia Abstracts Edited by E. Lukševičs, Ģ. Stinkulis and J. Vasiļkova Scientific Committee: Organisers: Prof. Algimantas Grigelis (Vilnius) Baltic Stratigraphical Association Dr. Olle Hints (Tallinn) Department of Geology, University of Latvia Dr. Alexander Ivanov (St. Petersburg) Natural History Museum of Latvia Prof. Leszek Marks (Warsaw) Northern Vidzeme Geopark Prof. Tõnu Meidla (Tartu) Dr. Jonas Satkūnas (Vilnius) Prof. Valdis Segliņš (Riga) Prof. Vitālijs Zelčs (Chairman, Riga) Recommended reference to this publication Ceriņa, A. 2011. Plant macrofossil assemblages from the Eemian-Weichselian deposits of Latvia and problems of their interpretation. In: Lukševičs, E., Stinkulis, Ģ. and Vasiļkova, J. (eds). The Eighth Baltic Stratigraphical Conference. Abstracts. University of Latvia, Riga. P. 18. The Conference has special sessions of IGCP Project No 591 “The Early to Middle Palaeozoic Revolution” and IGCP Project No 596 “Climate change and biodiversity patterns in the Mid-Palaeozoic (Early Devonian to Late Carboniferous)”. See more information at http://igcl591.org. Electronic version can be downloaded at www.geo.lu.lv/8bsc Hard copies can be obtained from: Department of Geology, Faculty of Geography and Earth Sciences, University of Latvia Raiņa Boulevard 19, Riga LV-1586, Latvia E-mail: [email protected] ISBN 978-9984-45-383-5 Riga, 2011 2 Preface Baltic co-operation in regional stratigraphy is active since the foundation of the Baltic Regional Stratigraphical Commission (BRSC) in 1969 (Grigelis, this volume).
    [Show full text]
  • 1651 Chevrinais.Vp
    Early establishment of vertebrate trophic interactions: Food web structure in Middle to Late Devonian fish assemblages with exceptional fossilization MARION CHEVRINAIS,CLAIRE JACQUET & RICHARD CLOUTIER In past and present ecosystems, trophic interactions determine material and energy transfers among species, regulating population dynamics and community stability. Food web studies in past ecosystems are helpful to assess the persistence of ecosystem structure throughout geological times and to explore the existence of general principles of food web assem- bly. We determined and compared the trophic structure of two Devonian fish assemblages [(1) the Escuminac assem- blage (ca. 380 Ma), Miguasha, eastern Canada and (2) the Lode assemblage (ca. 390 Ma), Straupe, Latvia] with a closer look at the Escuminac assemblage. Both localities are representative of Middle to Late Devonian aquatic vertebrate as- semblages in terms of taxonomic richness (ca. 20 species), phylogenetic diversity (all major groups of lower vertebrates) and palaeoenvironment (palaeoestuaries). Fossil food web structures were assessed using different kinds of direct (i.e. digestive contents and bite marks in fossils) and indirect (e.g. ecomorphological measurements, stratigraphic species co-occurrences) indicators. First, the relationships between predator and prey body size established for the Escuminac fishes are comparable to those of recent aquatic ecosystems, highlighting a consistency of aquatic food web structure across geological time. Second, non-metric dimensional scaling on ecomorphological variables and cluster analysis showed a common pattern of functional groups for both fish assemblages; top predators, predators, primary and second- ary consumers were identified. We conclude that Devonian communities were organized in multiple trophic levels and that size-based feeding interactions were established early in vertebrate history.
    [Show full text]
  • Facies Differentiation and Late Devonian Placoderms Fossils in the Holy Cross Mountains
    Przegl¹d Geologiczny, vol. 54, nr 6, 2006 Zró¿nicowanie facjalne a skamienia³oœci póŸnodewoñskich plakodermów w Górach Œwiêtokrzyskich Piotr Szrek* Facies differentiation and Late Devonian placoderms fossils in the Holy Cross Mountains. Prz. Geol., 54: 521–524. S u m m a r y. Main Late Devonian placoderm taxa known from the Holy Cross Mountains are characterised. The distribution of the Late Devonian placoderm fossils is described. Variation in their occurrences depend on the sedimentation environment of the rocks which contain fossils of this group. Connections between the Holy Cross Mountains placoderms development and the synsedimentary tectonic processes active in this area during the Late Devonian is discussed, and the local faunas compared to classic assemblages of the same age from Latvia. Key words: Placodermi, synsedimentation tectonic, Late Devonian, facies, Holy Cross Mountains Placodermi (ryby pancerne) to gromada krêgowców Plakodermy œwiêtokrzyskie wodnych, która pojawi³a siê w sylurze, a wymar³a z koñcem dewonu. Ich maksymalny stopieñ zró¿nicowania Znalezione i opisane dotychczas póŸnodewoñskie pla- przypada na póŸny dewon — wtedy to plakodermy zdomi- kodermy z Gór Œwiêtokrzyskich mo¿na podzieliæ na dwie nowa³y niemal wszystkie morskie nisze ekologiczne, zasadnicze grupy. Kryterium zastosowanego podzia³u jest wytwarzaj¹c ró¿norodne typy specjalizacyjne, umo¿li- sposób zdobywania po¿ywienia oraz stopieñ przywi¹zania wiaj¹ce ¿ycie zarówno w otwartym basenie morskim, œro- do okreœlonych œrodowisk, a tak¿e stopieñ opancerzenia dowisku przyrafowym, jak te¿ w œrodowiskach cia³a. brakicznych. W Górach Œwiêtokrzyskich grupa ta jest Do pierwszej grupy mo¿na zaliczyæ wszystkie pla- bogato reprezentowana w materiale kopalnym i by³a oma- kodermy, bêd¹ce aktywnymi myœliwymi, u których pancerz wiana w licznych pracach od ponad stu lat (m.in.
    [Show full text]
  • New Data on the Devonian Plant and Miospores from the Lode Formation, Latvia
    SCIENTIFIC PAPERS UNIVERSITY OF LATVIA 2012, Vol. 783, EARTH AND ENVIRONMENTAL SCIENCES pp. 46–56 New Data on the Devonian Plant and Miospores from the Lode Formation, Latvia Aleftina Jurina*, Marina Raskatova** *Department of Palaeontology, Faculty of Geology, Moscow State University Moscow, 119991 Vorobjevy Gory, GSP 1, Russia E-mail: [email protected] **Geological Department, Voronezh State University Voronezh, University Square 1, Russia E-mail: [email protected] The higher plant of Progymnospermopsida Svalbardia bankssi Matten is described from taphocoenosis A of the Devonian Lode Formation in Lode clay pit. This locality is the second in the world besides the type locality from North America where this plant has been found. Miospores taken from the same deposits containing impressions of S. banksii demonstrate the Givetian age of the taphocoenosis A. Key words: Frasnian • Givetian • Lode clay pit • miospores • progymnosperm. Manuscript submitted 5 October 2011; accepted 12 December 2011. Introduction Devonian period is characterized by rapid development of higher plants from the first primitive land plants to the first representatives of gymnosperms. Flora is represented by hundreds of plant genera and species in many parts of the world. Information about the Devonian plants from Latvia is scarce. In the early 80-ies of the last century mass graves of fishes, as well as plant remains were discovered at the base of the supposedly Upper Devonian deposits cropping out in the Liepa (Lode) clay pit in the north-eastern part of Latvia (Kuršs and Lyarskaya 1973). In 1971-1972 one of us (A.L. Jurina) had opportunity to collect fossil plants in the Lode quarry by the invitation of L.A.
    [Show full text]