Colubrina Asiatica

Total Page:16

File Type:pdf, Size:1020Kb

Colubrina Asiatica Colubrina asiatica Colubrina asiatica Asiatic colubrine, latherleaf Introduction The genus Colubrina contains approximately 23 species, distributed in South Asia, islands of Oceania, Africa, and Latin America. Two species reportedly occur in Guangdong, Guangxi, Taiwan, and Yunnan provinces of China[11]. Species of Colubrina in China C. asiatica (L.) Brongn C. pubescens Kurz. Leaves of Colubrina asiatica. (Photo pro- glabrous or nearly so, ovate or broadly vided by TNC.) ovate in shape, 4-8 cm long and 2-5 cm Taxonomy wide, with two or three raised lateral rounded, hooded, and equal in length to Family: Rhamnaceae veins. The leaf margin is crenate, the stamen. Fruits appear from September Genus: Colubrina Rich. ex apex acuminate and slightly notched, to December as capsule-like drupes, Brongn. and base round or subcordate. Cyme globose, and 7-9 mm in diameter. A inflorescences of yellow flowers appear single grayish- brown seed is enclosed Description in the axils from June to September. in each of three pyrenes[11]. Colubrina asiatica is a vine-like The calyx is five-lobed; each sepal is glabrescent shrub. Alternate leaves are ovately-triangular. Petals are obovate- Habitat and Distribution nearly membranous or thinly papery, Colubrina asiatica occurs in forested areas and brush along the coast. Arthropods Economic Importance Order Family Species H. R. Ref. No information is available on the Artimpaza argenteonotata Pic m 16 economic importance of C. asiatica Coleoptera Cerambycidae in China. Niphona parallela White po 16 Paracopta Related Species Hemiptera Plataspidae p 192 duodecimpunctatum (Germar) Colubrina pubescens is distinguished from Asiatic colubrine in that the young shoots and veins on the underside of the leaves of C. pubescens are coated with hairs. The fruit pedicel (8-12 mm long) is longer than that of C. asiatica (4-6 mm long). Natural Enemies of Colubrina No microorganisms have been reported. Of the three arthropod species reported, a beetle, Artimpaza argenteonotata is probably host-specific to C. asiatica. Invasive Plants of Asian Origin Established in the US and Their Natural Enemies — 55.
Recommended publications
  • Urticalean Rosids: Circumscription, Rosid Ancestry, and Phylogenetics Based on Rbcl, Trnl-F, and Ndhf Sequences1
    American Journal of Botany 89(9): 1531±1546. 2002. URTICALEAN ROSIDS: CIRCUMSCRIPTION, ROSID ANCESTRY, AND PHYLOGENETICS BASED ON RBCL, TRNL-F, AND NDHF SEQUENCES1 KENNETH J. SYTSMA,2,9 JEFFERY MORAWETZ,2,4 J. CHRIS PIRES,2,5 MOLLY NEPOKROEFF,2,6 ELENA CONTI,2,7 MICHELLE ZJHRA,2,8 JOCELYN C. HALL,2 AND MARK W. C HASE3 2Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 USA, and 3Molecular Systematics Section, Royal Botanic Gardens, Kew, UK To address the composition of the urticalean rosids, the relationships of the component families (maximally Cannabaceae, Cecro- piaceae, Celtidaceae, Moraceae, Ulmaceae, and Urticaceae) and analyze evolution of morphological characters, we analyzed sequence variation for a large sampling of these families and various rosid outgroups using rbcL, trnL-F, and ndhF plastid regions. Urticalean rosids are derived out of a lineage including Barbeyaceae, Dirachmaceae, Elaeagnaceae, and Rhamnaceae, with Rosaceae less closely related; thus, they are imbedded within Rosales. Ulmaceae are the sister to all remaining families. Cannabaceae are derived out of a subclade of Celtidaceae; this expanded family should be called Cannabaceae. Cecropiaceae are derived within Urticaceae and are polyphyletic with Poikilospermum derived elsewhere within Urticaceae; this expanded family should be called Urticaceae. Monophy- letic Moraceae are sister to this expanded Urticaceae. Support for these relationships comes from a number of morphological characters (¯oral sexuality, presence or absence of hypanthium, stamen type and dehiscence, pollen pore number, ovule position, and embryo alignment) and chromosome numbers. Most fruit types, in terms of ecological dispersal, are derived independently multiple times and are strongly correlated with habitat.
    [Show full text]
  • Araracuara, Un Nuevo Género De Rhamnaceae De La Amazonía Colombiana
    Volumen 65 N.º 2 julio-diciembre 2008 Madrid (España) ISSN: 0211-1322 CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS Anales del Jardín Botánico de Madrid Vol. 65(2): 343-352 julio-diciembre 2008 ISSN: 0211-1322 Araracuara, un nuevo género de Rhamnaceae de la Amazonía colombiana por José Luis Fernández-Alonso1 & María Victoria Arbeláez2 1 Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Apartado Aéreo 7495, Bogotá D.C., Colombia. [email protected] 2 Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam, Kruislaan 318, 1098 SM, Amsterdam, The Netherlands. [email protected] Resumen Abstract Fernández-Alonso, J.L., & Arbeláez, M.V. 2008. Araracuara, un Fernández-Alonso, J.L., & Arbeláez, M.V. 2008. Araracuara, the nuevo género de Rhamnaceae de la Amazonía colombiana. Ana- new genera of the Rhamnaceae from Colombian Amazon. Ana- les Jard. Bot. Madrid 65(2): 343-352. les Jard. Bot. Madrid 65(2): 343-352 (in Spanish). Se describe e ilustra Araracuara Fern. Alonso, un nuevo género de Araracuara Fern. Alonso, a new genus of Rhamnaceae only la familia Rhamnaceae conocido tan sólo de las mesetas de arenisca known from the sandstone plateaus of the Colombian Amazon, de la Amazonía colombiana. Se discuten sus posibles afinidades en is described and illustrated. Its possible affinities are discussed la familia y se sugiere que estaríamos ante un género relíctico, rela- and it is proposed that this is a relictual genus related to the pan- cionado con el pantropical Colubrina y en menor medida con el tropical Colubrina and to a lesser degree with the Amazonian amazónico Ampelozizyphus.
    [Show full text]
  • Rhamnaceae) Jürgen Kellermanna,B
    Swainsona 33: 43–50 (2020) © 2020 Board of the Botanic Gardens & State Herbarium (Adelaide, South Australia) Nomenclatural notes and typifications in Australian species of Paliureae (Rhamnaceae) Jürgen Kellermanna,b a State Herbarium of South Australia, GPO Box 1047, Adelaide, South Australia 5001 Email: [email protected] b The University of Adelaide, School of Biological Sciences, Adelaide, South Australia 5005 Abstract: The nomenclature of the four species of Ziziphus Mill. and the one species of Hovenia Thunb. occurring in Australia is reviewed, including the role of the Hermann Herbarium for the typification of Z. oenopolia (L.) Mill. and Z. mauritiana Lam. Lectotypes are chosen for Z. quadrilocularis F.Muell. and Z. timoriensis DC. A key to species is provided, as well as illustrations for Z. oenopolia, Z. quadrilocularis and H. dulcis Thunb. Keywords: Nomenclature, typification, Hovenia, Ziziphus, Rhamnaceae, Paliureae, Paul Hermann, Carolus Linnaeus, Henry Trimen, Australia Introduction last worldwide overview of the genus was published by Suessenguth (1953). Since then, only regional Rhamnaceae tribe Paliureae Reissek ex Endl. was treatments and revisions have been published, most reinstated by Richardson et al. (2000b), after the first notably by Johnston (1963, 1964, 1972), Bhandari & molecular analysis of the family (Richardson et al. Bhansali (2000), Chen & Schirarend (2007) and Cahen 2000a). It consists of three genera, Hovenia Thunb., et al. (in press). For Australia, the genus as a whole was Paliurus Tourn. ex Mill. and Ziziphus Mill., which last reviewed by Bentham (1863), with subsequent until then were assigned to the tribes Rhamneae regional treatments by Wheeler (1992) and Rye (1997) Horan.
    [Show full text]
  • Phylogenetic Analysis of Vitaceae Based on Plastid Sequence Data
    PHYLOGENETIC ANALYSIS OF VITACEAE BASED ON PLASTID SEQUENCE DATA by PAUL NAUDE Dissertation submitted in fulfilment of the requirements for the degree MAGISTER SCIENTAE in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: DR. M. VAN DER BANK December 2005 I declare that this dissertation has been composed by myself and the work contained within, unless otherwise stated, is my own Paul Naude (December 2005) TABLE OF CONTENTS Table of Contents Abstract iii Index of Figures iv Index of Tables vii Author Abbreviations viii Acknowledgements ix CHAPTER 1 GENERAL INTRODUCTION 1 1.1 Vitaceae 1 1.2 Genera of Vitaceae 6 1.2.1 Vitis 6 1.2.2 Cayratia 7 1.2.3 Cissus 8 1.2.4 Cyphostemma 9 1.2.5 Clematocissus 9 1.2.6 Ampelopsis 10 1.2.7 Ampelocissus 11 1.2.8 Parthenocissus 11 1.2.9 Rhoicissus 12 1.2.10 Tetrastigma 13 1.3 The genus Leea 13 1.4 Previous taxonomic studies on Vitaceae 14 1.5 Main objectives 18 CHAPTER 2 MATERIALS AND METHODS 21 2.1 DNA extraction and purification 21 2.2 Primer trail 21 2.3 PCR amplification 21 2.4 Cycle sequencing 22 2.5 Sequence alignment 22 2.6 Sequencing analysis 23 TABLE OF CONTENTS CHAPTER 3 RESULTS 32 3.1 Results from primer trail 32 3.2 Statistical results 32 3.3 Plastid region results 34 3.3.1 rpL 16 34 3.3.2 accD-psa1 34 3.3.3 rbcL 34 3.3.4 trnL-F 34 3.3.5 Combined data 34 CHAPTER 4 DISCUSSION AND CONCLUSIONS 42 4.1 Molecular evolution 42 4.2 Morphological characters 42 4.3 Previous taxonomic studies 45 4.4 Conclusions 46 CHAPTER 5 REFERENCES 48 APPENDIX STATISTICAL ANALYSIS OF DATA 59 ii ABSTRACT Five plastid regions as source for phylogenetic information were used to investigate the relationships among ten genera of Vitaceae.
    [Show full text]
  • A New Species of Colubrina (Rhamnaceae) of the Amazon Region of Ecuador
    Phytotaxa 224 (3): 296–299 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.224.3.9 A new species of Colubrina (Rhamnaceae) of the Amazon region of Ecuador WALTER A. PALACIOS Herbario Nacional del Ecuador (QCNE), Río Coca e Isla Fernandina, Quito–Ecuador; [email protected]. Abstract A new species of Colubrina from the Amazon region of Ecuador is described and illustrated. The species is characterized by its elliptical and distichously arranged leaves, 10–18 × 4–8 cm, and the presence of basal, concave elliptical, glands, the short-shoots of the inflorescence with few nodes and seeds with two inner sides flat-concave and third side, as wide as the previous two and convex. The new species has been widely collected in areas below 700 m, and is expected to occur in similar habitats in the border areas of Colombia and Peru. Key words: Colubrina, amazonica, concave glands, Ecuador Introduction Colubrina Richard ex Brongniart (1826: 61) in the family Rhamnaceae includes 32 species. Species of this genus are distinguished by simple, alternate, distichously arranged leaves, with two glands at the base of the leaves or glands rarely scattered on the abaxial surface. Their inflorescence are arranged in fascicles or a cyme with bisexual flowers, and with a cup-shaped floral tube, with 5 stamens clasped by the petals; a discoid nectary disc fused to the floral tube. The fruits of Colubrina are dry, and fragment into three dehiscent cocci at maturity.
    [Show full text]
  • Forest Succession in Tropical Hardwood Hammocks of the Florida Keys: Effects of Direct Mortality from Hurricane Andrew1
    BIOTROPICA 33(1): 23±33 2001 Forest Succession in Tropical Hardwood Hammocks of the Florida Keys: Effects of Direct Mortality from Hurricane Andrew1 Michael S. Ross2 Florida International University, Southeast Environmental Research Center, University Park, Miami, Florida 33199, U.S.A. Mary Carrington Environmental Biology, Governors State University, University Park, Illinois 60466, U.S.A. Laura J. Flynn The Nature Conservancy, Lower Hudson Chapter, 41 South Moger Avenue, Mt. Kisco, New York 10549, U.S.A. Pablo L. Ruiz Florida International University, Southeast Environmental Research Center, University Park, Miami, Florida 33199, U.S.A. ABSTRACT A tree species replacement sequence for dry broadleaved forests (tropical hardwood hammocks) in the upper Florida Keys was inferred from species abundances in stands abandoned from agriculture or other anthropogenic acitivities at different times in the past. Stands were sampled soon after Hurricane Andrew, with live and hurricane-killed trees recorded separately; thus it was also possible to assess the immediate effect of Hurricane Andrew on stand successional status. We used weighted averaging regression to calculate successional age optima and tolerances for all species, based on the species composition of the pre-hurricane stands. Then we used weighted averaging calibration to calculate and compare inferred successional ages for stands based on (1) the species composition of the pre-hurricane stands and (2) the hurricane-killed species assemblages. Species characteristic of the earliest stages of post-agricultural stand de- velopment remains a signi®cant component of the forest for many years, but are gradually replaced by taxa not present, even as seedlings, during the ®rst few decades.
    [Show full text]
  • Ceanothus Crassifolius Torrey NRCS CODE: Family: Rhamnaceae (CECR) Order: Rhamnales Subclass: Rosidae Class: Magnoliopsida
    I. SPECIES Ceanothus crassifolius Torrey NRCS CODE: Family: Rhamnaceae (CECR) Order: Rhamnales Subclass: Rosidae Class: Magnoliopsida Lower right: Ripening fruits, two already dehisced. Lower center: Longitudinal channeling in stems of old specimen, typical of obligate seeding Ceanothus (>25 yr since last fire). Note dark hypanthium in center of white flowers. Photos by A. Montalvo. A. Subspecific taxa 1. C. crassifolius Torr. var. crassifolius 2. C. crassifolius Torr. var. planus Abrams (there is no NRCS code for this taxon) B. Synonyms 1. C. verrucosus Nuttal var. crassifolius K. Brandegee (Munz & Keck 1968; Burge et al. 2013) 2. C. crassifolius (in part, USDA PLANTS 2019) C. Common name 1. hoaryleaf ceanothus, sometimes called thickleaf ceanothus or thickleaf wild lilac (Painter 2016) 2. same as above; flat-leaf hoary ceanothus and flat-leaf snowball ceanothus are applied to other taxa (Painter 2016) D. Taxonomic relationships Ceanothus is a diverse genus with over 50 taxa that cluster in to two subgenera. C. crassifolius has long been recognized as part of the Cerastes group of Ceanothus based on morphology, life-history, and crossing studies (McMinn 1939a, Nobs 1963). In phylogenetic analyses based on RNA and chloroplast DNA, Hardig et al. (2000) found C. crassifolius clustered into the Cerastes group and in each analysis shared a clade with C. ophiochilus. In molecular and morphological analyses, Burge et al. (2011) also found C. crassifolius clustered into Cerastes. Cerastes included over 20 taxa and numerous subtaxa in both studies. Eight Cerastes taxa occur in southern California (see I. E. Related taxa in region). E. Related taxa in region In southern California, the related Cerastes taxa include: C.
    [Show full text]
  • Vegetation and Ecological Characterisitics of Mixed-Conifer
    Vegetation and Ecological Charactistics of Mixed-Conifer and Red Fir Forests at the Teakettle Experimental Forest Vegetation and Ecological Characteristics of Mixed-Conifer and Red Fir Forests at the Teakettle Experimental Forest Appendix B: Plant List A total of 152 plants found at the Teakettle Experimental Forest, 80 km east of Fresno, California, by scientific name, common name, and abbreviation used in the text. The list is alphabetically sorted by genus and species. Family Genus species var/ssp Common name Abbre. in text Pinaceae Abies concolor white fir ABCO Pinaceae Abies magnifica red fir ABMA Asteraceae Achillea lanulosa yarrow Asteraceae Achillea millefolium yarrow Asteraceae Adenocaulon bicolor trail plant Asteraceae Agroseris retrorsa spear-leaved agoseris Polemoniaceae Allophylum intregifolium allophylum Asteraceae Anaphalis margaritacea pearly everlasting Apocynaceae Apocynum androsaemifolium dogbane APAN Ranunculaceae Aquilegia formosa columbine AQFO Brassicaceae Arabis platysperma platysperma rock cress ARPL Brassicaceae Arabis rectissima rectissima bristly-leaved rock cress Brassicaceae Arabis repanda repanda repand rock cress Ericaceae Arctostaphylus nevadensis pinemat manzanita ARNE Ericaceae Arctostaphylus patula greenleaf manzanita ARPA Caryophyliaceae Arenaria kingii sandwort Asteraceae Aster foliaceus leafy aster ASFO Asteraceae Aster occidentalis occidentalis western mountain aster ASOC Fabaceae Astragalus bolanderi Bolander’s locoweed ASBO Dryopteridaceae Athryium felix-femina lady fern ATFI Liliaceae Brodiaea elegans elegans harvest brodeia Poaceae Bromus ssp. brome Cupressaceae Calocedrus decurrens incense cedar CADE Liliaceae Calochortus leichtlinii Leichtlin’s mariposa lily CALE Portulacaceae Calyptridium umbellatum pussy paws CAUM Convuvulaceae Calystegia malacophylla morning glory CAMA Brassicaceae Cardamine breweri breweri (continues on next page) 46 USDA Forest Service Gen.Tech. Rep. PSW-GTR-186. 2002. USDA Forest Service Gen.Tech. Rep.
    [Show full text]
  • Colubrina Arborescens 1 Edward F
    Fact Sheet FPS-137 October, 1999 Colubrina arborescens 1 Edward F. Gilman2 Introduction Description Native to south Florida in the coastal upland plant Height: 15 to 25 feet community and the Caribbean Basin, this small tree or large Spread: 12 to 20 feet shrub can reach a height of 20 feet or more (Fig. 1). Handsome, Plant habit: round; oval shiny leaves are borne on thin twigs covered with rust-colored Plant density: dense hairs. Hairs occasionally extend onto the underside of leaves. Growth rate: slow Prominent yellow veins contrast with the dark green leaves. Texture: medium Plants grow in dense clusters in sunny or partially shaded locations. Foliage General Information Leaf arrangement: alternate Leaf type: simple Leaf margin: entire Scientific name: Colubrina arborescens Leaf shape: ovate Pronunciation: kawl-yoo-BRYE-nuh ar-bor-RESS-enz Leaf venation: pinnate Common name(s): Coffee Colubrina, Wild Coffee Leaf type and persistence: evergreen Family: Rhamnaceae Leaf blade length: 2 to 4 inches Plant type: tree Leaf color: green USDA hardiness zones: 10B through 11 (Fig. 1) Fall color: no fall color change Planting month for zone 10 and 11: year round Fall characteristic: not showy Origin: native to Florida Uses: container or above-ground planter; reclamation plant; Flower trained as a standard; hedge; near a deck or patio; specimen; espalier; small parking lot islands (< 100 square feet in size); Flower color: yellow medium-sized parking lot islands (100-200 square feet in size); Flower characteristic: year-round flowering large
    [Show full text]
  • Catalogue of Afghanistan Longhorn Beetles (Coleoptera, Cerambycidae) with Two Descriptions of New Phytoecia (Parobereina Danilevsky, 2018) from Central Asia
    Humanity space International almanac VOL. 8, No 2, 2019: 104-140 http://zoobank.org/urn:lsid:zoobank.org:pub:30F6FA0A-2D7A-4ED2-9EAE-AB7707FFBE61 Catalogue of Afghanistan Longhorn beetles (Coleoptera, Cerambycidae) with two descriptions of new Phytoecia (Parobereina Danilevsky, 2018) from Central Asia M.A. Lazarev State Budget Professional Educational Institution of the Moscow Region “Chekhov technical college” Novaya str., 4, Novyi Byt village, Chekhov District, Moscow Region 142322 Russia e-mail: [email protected]; [email protected] Key words: Coleoptera, Cerambycidae, taxonomy, distribution, new species, Afghanistan, Pakistan. Abstract: The Catalogue includes all 78 Cerambycidae species of Afghanistan fauna known up to 2019 with the references to the original descriptions; 22 species were not mentioned for Afghanistan in Palaearctic Cerambycidae Catalogue by Löbl & Smetana (2010). Bibliography of each species usually includes the geographical information from corresponding publications. Many new taxonomy positions published after 2010 are used here without special remarks. Agapanthia (Epoptes) dahli ustinovi Danilevsky, 2013 stat. nov. is downgraded from the species level. Two species are described as new Phytoecia (Parobereina) pashtunica sp. n. from Afghanistan and Phytoecia (Parobereina) heinzi sp.n. from Pakistan. The present work is an attempt to summarize all data published up to now on Cerambycidae of Afghanistan fauna. Family CERAMBYCIDAE Latreille, 1802 subfamily Prioninae Latreille, 1802 tribe Macrotomini J. Thomson, 1861 genus Anomophysis Quentin & Villiers, 1981: 374 type species Prionus spinosus Fabricius, 1787 inscripta C.O. Waterhouse, 1884: 380 (Macrotoma) Heyrovský, 1936: 211 - Wama; Tippmann, 1958: 41 - Kabul, Ost- Afghanistan, 1740; Sarobi, am Kabulflus, 900 m; Mangul, Bashgultal, Nuristan, Ost-Afghanistan, 1250 m; Fuchs, 1961: 259 - Sarobi 1100 m, O.-Afghanistan; Fuchs, 1967: 432 - Afghanistan, 25 km N von Barikot, 1800 m, Nuristan; Nimla, 40 km SW von Dschelalabad; Heyrovský, 1967: 156 - Zentral-Afghanistan, Prov.
    [Show full text]
  • A Phylogenetic Analysis of Rhamnaceae Using Rbcl and Trnl-F Plastid DNA Sequences James E. Richardson
    A Phylogenetic Analysis of Rhamnaceae using rbcL and trnL-F Plastid DNA Sequences James E. Richardson; Michael F. Fay; Quentin C. B. Cronk; Diane Bowman; Mark W. Chase American Journal of Botany, Vol. 87, No. 9. (Sep., 2000), pp. 1309-1324. Stable URL: http://links.jstor.org/sici?sici=0002-9122%28200009%2987%3A9%3C1309%3AAPAORU%3E2.0.CO%3B2-5 American Journal of Botany is currently published by Botanical Society of America. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/botsam.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology.
    [Show full text]
  • Taxonomic Notes on Colubrina (Rhamnaceae)
    Nesom, G.L. 2013. Taxonomic notes on Colubrina (Rhamnaceae). Phytoneuron 2013-4: 1–21. Published 28 January 2013. ISSN 2153 733X TAXONOMIC NOTES ON COLUBRINA (RHAMNACEAE) GUY L. NESOM 2925 Hartwood Drive Fort Worth, Texas 76109 [email protected] ABSTRACT Colubrina stricta Engelm. ex Blankinship (not Engelm. ex M.C. Johnston) has previously been regarded as a rare and widely scattered species of Texas and northern Coahuila and Nuevo León, Mexico, but is treated here as including C. texensis var. pedunculata , a taxon of Chihuahua, Coahuila, and Durango, much broadening its range. Colubrina texensis (Torrey & A. Gray) A. Gray occurs in south-central Texas and in northern Coahuila, Nuevo León, and Tamaulipas and is partly sympatric with C. stricta but morphologically distinct and apparently non-intergrading. The isolated population system identified as C. stricta in El Paso County is geographically disjunct and atypical in morphology but variants occur elsewhere in the overall range as well. Colubrina greggii S. Wats. has previously been regarded as having three varieties, but each of the three is treated here at specific rank: Colubrina greggii sensu stricto is widespread in eastern Mexico, with a single population in southeastern Texas; Colubrina angustior (M.C. Johnston) Nesom, comb. et stat. nov., apparently is relatively narrowly localized in east-central Mexico (San Luis Potosí, Veracruz, and Tamaulipas); Colubrina yucatanensis (M.C. Johnston) Nesom, comb. et stat. nov., is an abundant species of the Yucatán Peninsula (Petén, Guatemala, and Campeche, Quintana Roo, and Yucatán), long-disjunct from the range of typical C. greggii . Geographic range maps and images showing variability are included.
    [Show full text]