Rhamnaceae) Jürgen Kellermanna,B

Total Page:16

File Type:pdf, Size:1020Kb

Rhamnaceae) Jürgen Kellermanna,B Swainsona 33: 43–50 (2020) © 2020 Board of the Botanic Gardens & State Herbarium (Adelaide, South Australia) Nomenclatural notes and typifications in Australian species of Paliureae (Rhamnaceae) Jürgen Kellermanna,b a State Herbarium of South Australia, GPO Box 1047, Adelaide, South Australia 5001 Email: [email protected] b The University of Adelaide, School of Biological Sciences, Adelaide, South Australia 5005 Abstract: The nomenclature of the four species of Ziziphus Mill. and the one species of Hovenia Thunb. occurring in Australia is reviewed, including the role of the Hermann Herbarium for the typification of Z. oenopolia (L.) Mill. and Z. mauritiana Lam. Lectotypes are chosen for Z. quadrilocularis F.Muell. and Z. timoriensis DC. A key to species is provided, as well as illustrations for Z. oenopolia, Z. quadrilocularis and H. dulcis Thunb. Keywords: Nomenclature, typification, Hovenia, Ziziphus, Rhamnaceae, Paliureae, Paul Hermann, Carolus Linnaeus, Henry Trimen, Australia Introduction last worldwide overview of the genus was published by Suessenguth (1953). Since then, only regional Rhamnaceae tribe Paliureae Reissek ex Endl. was treatments and revisions have been published, most reinstated by Richardson et al. (2000b), after the first notably by Johnston (1963, 1964, 1972), Bhandari & molecular analysis of the family (Richardson et al. Bhansali (2000), Chen & Schirarend (2007) and Cahen 2000a). It consists of three genera, Hovenia Thunb., et al. (in press). For Australia, the genus as a whole was Paliurus Tourn. ex Mill. and Ziziphus Mill., which last reviewed by Bentham (1863), with subsequent until then were assigned to the tribes Rhamneae regional treatments by Wheeler (1992) and Rye (1997) Horan. (Hovenia) and Zizypheae Brongn. (= Paliureae; for the Kimberley region, Western Australia, and Bailey Paliurus and Ziziphus; Suessenguth 1953). This new (1899) and Stanley & Ross (1986) for Queensland. tribal classification was confirmed in the analyses of Hauenschild et al. (2016, 2018). Two of the genera are In preparation for the Flora of Australia treatment of present in Australia: Hovenia and Ziziphus. Rhamnaceae, the nomenclature and typification of the species of Ziziphus and Hovenia occurring in Australia The four species of Hovenia (POWO 2020) are are clarified and discussed in this paper. distributed in south-east Asia from India, through Bhutan, Nepal and Myanmar to China, Japan and The synonymies of the widespread species H. dulcis, Korea. The genus was last reviewed by Kimura Z. mauritiana and Z. oenopolia (L.) Mill. only list (1939) and Suessenguth (1953), followed by regional names that have been used in Australia (APC 2020; treatments, e.g. for China (Chen & Schirarend 2007), APNI 2020). All types have been examined, unless India (Sen Gupta & Safui 1984) and Japan (Noshiro indicated by “n.v.”; those that were seen online via 1999). The cultivated species Hovenia dulcis Thunb. is JSTOR Global Plants and other herbarium websites are sparingly naturalised in Australia (Harden 1990). indicated by “photo seen”. Until recently, Ziziphus was regarded as a genus The holotype designations by Johnston (1972) are distributed throughout the tropics and warm dry regions here accepted if no other specimens of the type could of the world (Medan & Schirarend 2004). Islam & be found; if there are several specimens then Johnston’s Simmonds (2006) recognised that there are two distinct listing of a “holotype” is interpreted as lectotypification clades of Ziziphus, one from the Americas and one (an error to be corrected, according to Art. 9.10; from Europe, Africa and Australasia. Following a more Turland et al. 2018; see also McNeill 2014). These detailed analysis, Hauenschild et al. (2016) reinstated can be accepted, as Johnston (1972) clearly indicated Sarcomphalus P.Browne for the New World taxa and that he accepted the type specimens; also, at the time removed two species close to the unrelated Condalia of writing, Johnston was not required to state “here Cav. (tribe Rhamneae) to the new genus Pseudoziziphus designated” after type designations (Art. 7.11). Hauenschild. The redefined Ziziphus is now a genus of c. 65 species (Mabberley 2017), occurring in Identification keys and notes on the five species are Europe, Africa, south Asia, Melanesia and Australia. also provided, as well as line-drawings of H. dulcis, Three species are native to northern Australia, and one Z. oenopolia and Z. quadrilocularis F.Muell., a taxon further species, Z. mauritiana Lam., is introduced. The that does not seem to have been illustrated before. Published online: 8 May 2020 • flora.sa.gov.au/swainsona ISSN 2206-1649 (Print) • ISSN 2206-1657 (Online) J. Kellermann Swainsona 33 (2020) Key to genera of Paliureae in Australia 1. Leaves with 3 nerves, oblique; stipules persistent, often growing into spines; infructescence axes not thickened; fruit a dry-fleshed drupe . Ziziphus 1: Leaves penninerved, symmetric; stipules caducous; infructescence axes thickened, fleshy; fruit a capsule . Hovenia Nomenclature 1. Ziziphus oenopolia (L.) Mill. Gard. Dict. ed 8 [not paginated] Ziziphus no. 3 (1768), as Rhamnaceae trib. Paliureae Reissek ex Endl. “oenoplia”. — Rhamnus oenopolia L., Sp. Pl. 194 (1753). Gen. Pl. 1095 (1840). — Type: Paliurus Mill. — Type citation: “Habitat in Zeylonia ђ” Linnaeus also quotes the following references: “Fl. Zeyl. 88 *”, “Burm. Rhamnaceae trib. Zizypheae Brongn., Énum. Pl. Mus. zeyl. 131. t. 61”. Lectotype: Ceylon, Herb. Hermann 3: Paris 122 (1843). — Type: Ziziphus Mill. 46, no. 88 (BM000621972 & BM000621973; photos seen), fide Trimen, J. Linn. Soc., Bot. 24: 137 (1887), non Ziziphus Mill. P.I.Forster, Austrobaileya 3: 563 (1991), nec Wadhwa, Gard. Dict. abridg. ed. 4 [not paginated] (1754). Revis. Handb. Fl. Ceylon 10: 367 (1996). — Type: Z. jujuba Mill., nom. cons., fide Britton Ziziphus celtidifolia DC., Prodr. 2: 20 (1825). — Type & P.Wilson, Sci. Surv. Porto Rico 5: 535 (1924). citation: “in ins. Timor”. Holotype: Timor (G-DC, Rhamnus zizyphus L. Ziziphus zizyphus (L.) H.Karst.,≡ annotated “Museum de Paris 1821”; photo seen, IDC nom. rej. (see Kirkbride≡ et al. 2006; Brummitt 2009; Micro-Edition 500, fiche 277). Wiersema et al. 2020). Ziziphus rufula Miq., Fl. Ned. Ind. 1(1): 643 (1856), as “Zizyphus”. — Type citation: “in Herb. Horsf.”, Etymology. Derived from the Greek ζιζυφον (zízyphon), “Java, tusschen de struiken in Bogor”. Type not which originated from the Phoenician zizuf (Paclt located (possibly K). Synonym fide Benth., Fl. Austral. 1999), the name for the lotus or jujube tree, Ziziphus 1: 412 (1863). lotus (L.) Lam. Ziziphus oligantha Merr. & L.M.Perry, J. Arnold. Arbor. 20: 338 (1939) (as “Zizyphus”). — Type citation: The original spelling of the genus name is Ziziphus. A “British New Guinea: Western Division, Mabaduan, common and widely used orthographic variant of the Brass 6488 (type), April, 1936”; the authors also state: name is “Zizyphus”, which “appears to be more correct “The types […], unless otherwise stated, are deposited philologically, […] but it is not permissible under the in the herbarium of the Arnold Arboretum” (p. 324). Rules to make orthographic corrections based solely on Holotype: Mabaduan, Western Province, Papua New philological grounds” (Sprague 1929: 52). The rejection Guinea, Apr. 1936, L.J. Brass 6488 (A00051554). of a recent proposal by Paclt (1999) to conserve the Isotypes: BM000838645, BRI-AQ0317638, name “Zizyphus” with that spelling confirms this assess- G00440946, K000723081, L0013808; photos seen ment (Brummit 2000). (see also P.I.Forster, Austrobaileya 3: 563, 1991). Note. Ziziphus jujuba Mill. has been recorded from Spelling & etymology. The original spelling of the name Australia, but probably in error due to Lamarck’s in the first edition of Species plantarum is “Rhamnus synonym for Z. mauritiana (viz. Z. jujuba (L.) Lam., oenopolia” (Linnaeus 1753: 194), but in the 10th edition which has often been confused with Z. jujuba Mill.); of Vol. 2 of Systema naturae, Linnaeus (1759: 938) spelt it is widely cultivated throughout the drier tropics and the epithet “oenopia”. In the second edition of Species is occasionally found in cultivation in Australia, but plantarum (Linnaeus 1763: 282) and the 12th edition of seems not to have naturalized. Systema naturae (1767, vol. 2: 180), the author used the Key to species of Ziziphus in Australia 1. Leaves distinctly discolorous, densely and closely greyish-pubescent beneath (W.A., N.T., Qld) . 2. Z. mauritiana 1: Mature leaves ±concolorous, glabrous or sparsely pubescent beneath 2. Young stems and buds with numerous prominent, pale lenticels; tall rainforest tree (Qld: MacIlwraith Range) . 3. Z. timoriensis 2: Young stems and buds without prominent lenticels; small trees, scrambling shrubs or lianes 3. Leaves thin-textured; flowers in apparent lateral clusters; carpels 2; fruits 6–8 mm long (N.T., Qld, Torres Strait islands) . 1. Z. oenopolia 3: Leaves thick; flowers in distinct zig-zag rhipidia; carpels 3 or 4; fruits 14–26 mm long (W.A., N.T.) . 4. Z. quadrilocularis 44 Swainsona 33 (2020) Nomenclature of Australian species of Paliureae (Rhamnaceae) spelling “oenoplia”. This evolution of the spelling of the · In Species plantarum (1753), for species previously name has already been noted by Richter (1840). It is not described in Flora Zeylanica, “Linnaeus was clear whether Linnaeus intended to correct the spelling careful to quote under them the numbers of the of the name, or if these are merely printers’ errors,
Recommended publications
  • Urticalean Rosids: Circumscription, Rosid Ancestry, and Phylogenetics Based on Rbcl, Trnl-F, and Ndhf Sequences1
    American Journal of Botany 89(9): 1531±1546. 2002. URTICALEAN ROSIDS: CIRCUMSCRIPTION, ROSID ANCESTRY, AND PHYLOGENETICS BASED ON RBCL, TRNL-F, AND NDHF SEQUENCES1 KENNETH J. SYTSMA,2,9 JEFFERY MORAWETZ,2,4 J. CHRIS PIRES,2,5 MOLLY NEPOKROEFF,2,6 ELENA CONTI,2,7 MICHELLE ZJHRA,2,8 JOCELYN C. HALL,2 AND MARK W. C HASE3 2Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 USA, and 3Molecular Systematics Section, Royal Botanic Gardens, Kew, UK To address the composition of the urticalean rosids, the relationships of the component families (maximally Cannabaceae, Cecro- piaceae, Celtidaceae, Moraceae, Ulmaceae, and Urticaceae) and analyze evolution of morphological characters, we analyzed sequence variation for a large sampling of these families and various rosid outgroups using rbcL, trnL-F, and ndhF plastid regions. Urticalean rosids are derived out of a lineage including Barbeyaceae, Dirachmaceae, Elaeagnaceae, and Rhamnaceae, with Rosaceae less closely related; thus, they are imbedded within Rosales. Ulmaceae are the sister to all remaining families. Cannabaceae are derived out of a subclade of Celtidaceae; this expanded family should be called Cannabaceae. Cecropiaceae are derived within Urticaceae and are polyphyletic with Poikilospermum derived elsewhere within Urticaceae; this expanded family should be called Urticaceae. Monophy- letic Moraceae are sister to this expanded Urticaceae. Support for these relationships comes from a number of morphological characters (¯oral sexuality, presence or absence of hypanthium, stamen type and dehiscence, pollen pore number, ovule position, and embryo alignment) and chromosome numbers. Most fruit types, in terms of ecological dispersal, are derived independently multiple times and are strongly correlated with habitat.
    [Show full text]
  • Glossy Buckthorn Rhamnusoriental Frangula Bittersweet / Frangula Alnus Control Guidelines Fact Sheet
    Glossy buckthorn Oriental bittersweet Rhamnus frangula / Frangula alnus Control Guidelines Fact Sheet NH Department of Agriculture, Markets & Food, Division of Plant Industry, 29 Hazen Dr, Concord, NH 03301 (603) 271-3488 Common Name: Glossy buckthorn Latin Name: Rhamnus frangula / Frangula alnus New Hampshire Invasive Species Status: Prohibited (Agr 3800) Native to: Japan leaves (spring) Glossy buckthorn invasion Sapling (summer) Flowers (spring) Roadside invasion of saplings Fleshy fruits (fall) Gray bark w/ lenticels (Summer) Emodin in berries - effects to birds Fall foliage (Autumn) Description: Deciduous shrub or small tree measuring 20' by 15'. Bark: Grayish to brown with raised lenticels. Stems: Cinnamon colored with light gray lenticels. Leaves: Alternate, simple and broadly ovate. Flowers: Inconspicuous, 4- petaled, greenish-yellow, mid-May. Fruit: Fleshy, 1/4” diameter turning black in the fall. Zone: 3-7. Habitat: Adapts to most conditions including pH, heavy shade to full sun. Spread: Seeds are bird dispersed. Comments: Highly Aggressive, fast growing, outcompetes native species. Controls: Remove seedlings and saplings by hand. Larger trees can be cut or plants can be treated with an herbicide. General Considerations Glossy buckthorn can either grow as a multi-stemmed shrub or single-stemmed tree up to 23’ (7 m) tall. Leaves are deciduous, simple, and generally arranged alternately. Leaves are dark-green and glossy above while dull-green below. The leaf margins are smooth/entire and tend to be slightly wavy. Flowers are small, about ¼” and somewhat inconspicuous forming in May to June. They develop and in small clusters of 2-8. Fruits form in mid to late summer and contain 2-3 seeds per berry.
    [Show full text]
  • A Compilation and Analysis of Food Plants Utilization of Sri Lankan Butterfly Larvae (Papilionoidea)
    MAJOR ARTICLE TAPROBANICA, ISSN 1800–427X. August, 2014. Vol. 06, No. 02: pp. 110–131, pls. 12, 13. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia & Taprobanica Private Limited, Homagama, Sri Lanka http://www.sljol.info/index.php/tapro A COMPILATION AND ANALYSIS OF FOOD PLANTS UTILIZATION OF SRI LANKAN BUTTERFLY LARVAE (PAPILIONOIDEA) Section Editors: Jeffrey Miller & James L. Reveal Submitted: 08 Dec. 2013, Accepted: 15 Mar. 2014 H. D. Jayasinghe1,2, S. S. Rajapaksha1, C. de Alwis1 1Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, Sri Lanka 2 E-mail: [email protected] Abstract Larval food plants (LFPs) of Sri Lankan butterflies are poorly documented in the historical literature and there is a great need to identify LFPs in conservation perspectives. Therefore, the current study was designed and carried out during the past decade. A list of LFPs for 207 butterfly species (Super family Papilionoidea) of Sri Lanka is presented based on local studies and includes 785 plant-butterfly combinations and 480 plant species. Many of these combinations are reported for the first time in Sri Lanka. The impact of introducing new plants on the dynamics of abundance and distribution of butterflies, the possibility of butterflies being pests on crops, and observations of LFPs of rare butterfly species, are discussed. This information is crucial for the conservation management of the butterfly fauna in Sri Lanka. Key words: conservation, crops, larval food plants (LFPs), pests, plant-butterfly combination. Introduction Butterflies go through complete metamorphosis 1949). As all herbivorous insects show some and have two stages of food consumtion.
    [Show full text]
  • Biology of a Rust Fungus Infecting Rhamnus Frangula and Phalaris Arundinacea
    Biology of a rust fungus infecting Rhamnus frangula and Phalaris arundinacea Yue Jin USDA-ARS Cereal Disease Laboratory University of Minnesota St. Paul, MN Reed canarygrass (Phalaris arundinacea) Nature Center, Roseville, MN Reed canarygrass (Phalaris arundinacea) and glossy buckthorn (Rhamnus frangula) From “Flora of Wisconsin” Ranked Order of Terrestrial Invasive Plants That Threaten MN -Minnesota Terrestrial Invasive Plants and Pests Center Puccinia coronata var. hordei Jin & Steff. ✧ Unique spore morphology: ✧ Cycles between Rhamnus cathartica and grasses in Triticeae: o Hordeum spp. o Secale spp. o Triticum spp. o Elymus spp. ✧ Other accessory hosts: o Bromus tectorum o Poa spp. o Phalaris arundinacea Rust infection on Rhamnus frangula Central Park Nature Center, Roseville, MN June 2017 Heavy infections on Rhamnus frangula, but not on Rh. cathartica Uredinia formed on Phalaris arundinacea soon after mature aecia released aeiospores from infected Rhamnus frangula Life cycle of Puccinia coronata from Nazaredno et al. 2018, Molecular Plant Path. 19:1047 Puccinia coronata: a species complex Forms Telial host Aecial host (var., f. sp.) (primanry host) (alternate host) avenae Oat, grasses in Avenaceae Rhamnus cathartica lolii Lolium spp. Rh. cathartica festucae Fescuta spp. Rh. cathartica hoci Hocus spp. Rh. cathartica agronstis Agrostis alba Rh. cathartica hordei barley, rye, grasses in triticeae Rh. cathartica bromi Bromus inermis Rh. cathartica calamagrostis Calamagrostis canadensis Rh. alnifolia ? Phalaris arundinacea Rh. frangula Pathogenicity test on cereal crop species using aeciospores from Rhamnus frangula Cereal species Genotypes Response Oats 55 Immune Barley 52 Immune Wheat 40 Immune Rye 6 Immune * Conclusion: not a pathogen of cereal crops Pathogenicity test on grasses Grass species Genotypes Response Phalaris arundinacea 12 Susceptible Ph.
    [Show full text]
  • Physicochemical and Antioxidant Capacity of Jujube (Ziziphus Jujuba Mill.) at Different Maturation Stages
    agronomy Article Physicochemical and Antioxidant Capacity of Jujube (Ziziphus jujuba Mill.) at Different Maturation Stages Juana Reche 1, Maria Soledad Almansa 2, Francisca Hernández 1 , Asunción Amorós 2 and Pilar Legua 1,* 1 Department of Plant Sciences and Microbiology, Universidad Miguel Hernández de Elche. Ctra. de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain; [email protected] (J.R.); [email protected] (F.H.) 2 Department of Applied Biology, Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche. Ctra. de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain; [email protected] (M.S.A.); [email protected] (A.A.) * Correspondence: [email protected]; Tel.: +34-966-749-669 Abstract: Jujube is a crop very resistant to drought and salinity, making it an interesting growing alternative in southeastern Spain. The characteristics of five different cultivars of the jujube fruit have been evaluated and classified into four different maturation stages according to the color of the peel, ranging from green in its most immature stage, to white, yellow, and red in its last, more mature stage. This is due in part to the amount of carotenoids and chlorophylls studied, which vary as the fruit matures. The cultivars ‘GAL-E’ and ‘GAL-T’ are the largest in size and weight, followed by ‘MSI’, ‘PSI’, and ‘DAT’, which are the smallest cultivars. The content of phenolic compounds was also analyzed. The antioxidant activity, which was studied by different methods, 2,20-azino-bis(3- ethylbenzothiazoline-6-sulphonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP), showed the highest activity in stages 3 and 4 of jujube fruit.
    [Show full text]
  • Non Timber Tree Products: Alternative Source of Livelihood in Man-Crop/Grass-Livestock-Tree/Shrub Continuum of Arid Regions
    MOJ Ecology & Environmental Science Review Article Open Access Non timber tree products: alternative source of livelihood in man-crop/grass-livestock-tree/shrub continuum of arid regions Volume 2 Issue 4 - 2017 JC Tewari,1 Kamlesh Pareek,1 Shiran K,1 MM Introduction Roy1 1ICAR- Central Arid Zone Research Institute, India For the most of recorded history, people have valued forest and 2ICAR-Indian Sugarcane Research Institute, India trees not for wood, but for other products. Ancient writings from China, Egypt and India record a wide variety of use for forests and Correspondence: JC Tewari, ICAR- Central Arid Zone trees, and compilation of botanical knowledge from western Asia Research Institute, Jodhpur- 342003, India, were prized by the ancient Greeks (Wickens, 1990). Whereas wood Email products have become major international commodities in modern Received: June 01, 2017 | Published: June 30, 2017 times, non-timber tree produce (NTTP) often referred as non-wood forest produce rank among the oldest traded commodities.1 Ancient Egyptians important gum Arabic from Sudan for use in paints and mummification process.2 International trade in sandalwood oil dates back to the twelfth century A. D. Why have modern science and Governments overlook the importance of NTTP wealth for so long? The answer is three fold. First, most of these products are used mainly grasses cannot grow successfully. The cattle, buffaloes and sheep for rural subsistence or local markets. They often go unrecorded in are grazers and feed upon pasture land production, which often also official statistics, which focus on nationally traded goods.3 Second, contains leaves of tree/shrubs species, whereas goats and camels are because modern Government administration have divided these pre-dominantly browsers and thrive upon top feed.8 Thus, leaf fodder products among forestry, agriculture and horticulture and therefore, of trees and shrubs is important life support of livestock in this part statistics do not recognize even nationally and internationally NTTP.
    [Show full text]
  • Seed Dormancy and Consequences for Direct Tree Seeding H
    Seed dormancy and consequences for direct tree seeding H. Frochot, Philippe Balandier, A. Sourisseau To cite this version: H. Frochot, Philippe Balandier, A. Sourisseau. Seed dormancy and consequences for direct tree seed- ing. Final COST E47 conference Forest vegetation management towards environmental sustainability, May 2009, Vejle, Denmark. p. 43 - p. 45. hal-00468732 HAL Id: hal-00468732 https://hal.archives-ouvertes.fr/hal-00468732 Submitted on 31 Mar 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Forest Vegetation Management – towards environmental sustainability, N.S. Bentsen (Ed.), Proccedings from the final COST E47 Conference, Vejle, Denmark, 2009/05/5-7, Forest and Landscape Working Papers n° 35-2009, 43-45. Seed dormancy and consequences for direct tree seeding Henri Frochot1), Philippe Balandier2,3), Agnès Sourisseau4) 1) INRA, UMR1092 LERFOB, F-54280 Champenoux, France, [email protected]; [email protected] 2) Cemagref, UR EFNO, Nogent sur Vernisson, France 3) INRA, UMR547 PIAF, Clermont-Ferrand, France 4) Independent Landscaper, Paris, France Key words Afforestation, direct seeding, dormancy, seed, tree Introduction Whereas direct tree seeding was probably used extensively in France in the past, it is currently only employed for the reforestation of Pinus pinaster and some species with big seeds such as oak.
    [Show full text]
  • Frangula Paruensis, a New Name for Rhamnus Longipes Steyermark (Rhamnaceae)
    FRANGULA PARUENSIS, A NEW NAME FOR RHAMNUS LONGIPES STEYERMARK (RHAMNACEAE) GERARDO A. AYMARD C.1, 2 Abstract. The new name Frangula paruensis (Rhamnaceae) is proposed to replace the illegitimate homonym Rhamnus longipes Steyermark (1988). Chorological, taxonomic, biogeographical, and habitat notes about this taxon also are provided. Resumen. Se propone Frangula paruensis (Rhamnaceae) como un nuevo nombre para reemplazar el homónimo ilegítimo Rhamnus longipes Steyermark (1988). Se incluye información corológica, taxonómica, biogeográfica, y de hábitats acerca de la especie. Keywords: Frangula, Rhamnus, Rhamnaceae, Parú Massif, Tepuis flora, Venezuela Rhamnus L. and Frangula Miller (Rhamnaceae) have Frangula paruensis is a shrub, ca. 2 m tall, with leaves ca. 150 and ca. 50 species, respectively (Pool, 2013, 2015). ovate, or oblong-ovate, margin subrevolute, repand- These taxa are widely distributed around the world but are crenulate, a slightly elevated tertiary venation on the lower absent in Madagascar, Australia, and Polynesia (Medan and surface, and mature fruiting peduncle and pedicels 1–1.5 Schirarend, 2004). According to Grubov (1949), Kartesz cm long, and fruiting calyx lobes triangular-lanceolate and Gandhi (1994), Bolmgren and Oxelman (2004), and (two main features to separate Frangula from Rhamnus). Pool (2013) the recognition of Frangula is well supported. This species is endemic to the open, rocky savannas On the basis of historical and recent molecular work the on tepui slopes and summits at ca. 2000 m (Steyermark genus is characterized by several remarkable features. Pool and Berry, 2004). This Venezuelan taxon was described (2013: 448, table 1) summarized 11 features to separate the as Rhamnus longipes by Steyermark (1988), without two genera.
    [Show full text]
  • The Framework Species Approach to Forest Restoration: Using Functional Traits As Predictors of Species Performance
    - 1 - The Framework Species Approach to forest restoration: using functional traits as predictors of species performance. Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Hannah Betts July 2013 - 2 - - 3 - Abstract Due to forest degradation and loss, the use of ecological restoration techniques has become of particular interest in recent years. One such method is the Framework Species Approach (FSA), which was developed in Queensland, Australia. The Framework Species Approach involves a single planting (approximately 30 species) of both early and late successional species. Species planted must survive in the harsh conditions of an open site as well as fulfilling the functions of; (a) fast growth of a broad dense canopy to shade out weeds and reduce the chance of forest fire, (b) early production of flowers or fleshy fruits to attract seed dispersers and kick start animal-mediated seed distribution to the degraded site. The Framework Species Approach has recently been used as part of a restoration project in Doi Suthep-Pui National Park in northern Thailand by the Forest Restoration Research Unit (FORRU) of Chiang Mai University. FORRU have undertaken a number of trials on species performance in the nursery and the field to select appropriate species. However, this has been time-consuming and labour- intensive. It has been suggested that the need for such trials may be reduced by the pre-selection of species using their functional traits as predictors of future performance. Here, seed, leaf and wood functional traits were analysed against predictions from ecological models such as the CSR Triangle and the pioneer concept to assess the extent to which such models described the ecological strategies exhibited by woody species in the seasonally-dry tropical forests of northern Thailand.
    [Show full text]
  • Phylogenetic Analysis of Vitaceae Based on Plastid Sequence Data
    PHYLOGENETIC ANALYSIS OF VITACEAE BASED ON PLASTID SEQUENCE DATA by PAUL NAUDE Dissertation submitted in fulfilment of the requirements for the degree MAGISTER SCIENTAE in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: DR. M. VAN DER BANK December 2005 I declare that this dissertation has been composed by myself and the work contained within, unless otherwise stated, is my own Paul Naude (December 2005) TABLE OF CONTENTS Table of Contents Abstract iii Index of Figures iv Index of Tables vii Author Abbreviations viii Acknowledgements ix CHAPTER 1 GENERAL INTRODUCTION 1 1.1 Vitaceae 1 1.2 Genera of Vitaceae 6 1.2.1 Vitis 6 1.2.2 Cayratia 7 1.2.3 Cissus 8 1.2.4 Cyphostemma 9 1.2.5 Clematocissus 9 1.2.6 Ampelopsis 10 1.2.7 Ampelocissus 11 1.2.8 Parthenocissus 11 1.2.9 Rhoicissus 12 1.2.10 Tetrastigma 13 1.3 The genus Leea 13 1.4 Previous taxonomic studies on Vitaceae 14 1.5 Main objectives 18 CHAPTER 2 MATERIALS AND METHODS 21 2.1 DNA extraction and purification 21 2.2 Primer trail 21 2.3 PCR amplification 21 2.4 Cycle sequencing 22 2.5 Sequence alignment 22 2.6 Sequencing analysis 23 TABLE OF CONTENTS CHAPTER 3 RESULTS 32 3.1 Results from primer trail 32 3.2 Statistical results 32 3.3 Plastid region results 34 3.3.1 rpL 16 34 3.3.2 accD-psa1 34 3.3.3 rbcL 34 3.3.4 trnL-F 34 3.3.5 Combined data 34 CHAPTER 4 DISCUSSION AND CONCLUSIONS 42 4.1 Molecular evolution 42 4.2 Morphological characters 42 4.3 Previous taxonomic studies 45 4.4 Conclusions 46 CHAPTER 5 REFERENCES 48 APPENDIX STATISTICAL ANALYSIS OF DATA 59 ii ABSTRACT Five plastid regions as source for phylogenetic information were used to investigate the relationships among ten genera of Vitaceae.
    [Show full text]
  • (GISD) 2021. Species Profile Ziziphus Mauritiana. Availab
    FULL ACCOUNT FOR: Ziziphus mauritiana Ziziphus mauritiana System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Magnoliopsida Rhamnales Rhamnaceae Common name appeldam (English, Dutch West Indies), baher (English, Fiji), bahir (English, Fiji), baer (English, Fiji), jujube (English, Guam), manzanita (English, Guam), manzanas (English, Guam), jujubier (French), Chinese date (English), Chinese apple (English), Indian jujube (English), Indian plum (English), Indian cherry (English), Malay jujube (English), coolie plum (English, Jamaica), crabapple (English, Jamaica), dunk (English, Barbados), mangustine (English, Barbados), dunks (English, Trinidad), dunks (English, Tropical Africa), Chinee apple (English, Queensland, Australia), ponsigne (English, Venezuela), yuyubo (English, Venezuela), aprin (English, Puerto Rico), yuyubi (English, Puerto Rico), perita haitiana (English, Dominican Republic), pomme malcadi (French, West Indies), pomme surette (French, West Indies), petit pomme (French, West Indies), liane croc chien (French, West Indies), gingeolier (French, West Indies), dindoulier (French, West Indies), manzana (apple) (English, Philippines), manzanita (little apple) (English, Philippines), bedara (English, Malaya), widara (English, Indonesia), widara (English, Surinam), phutsa (English, Thailand), ma-tan (English, Thailand), putrea (English, Cambodia), tao (English, Vietnam), tao nhuc (English, Vietnam), ber (English, India), bor (English, India) Synonym Ziziphus jujuba , (L.) Lam., non P. Mill. Rhamnus mauritiana
    [Show full text]
  • (Rhamnaceae) from Nepal Himalayas
    Indian Journal of Plant Sciences ISSN: 2319–3824(Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jps.htm 2015 Vol.4 (2) April -June, pp.71-77/Bhattarai and Pathak Research Article A NEW SPECIES OF ZIZIPHUS (RHAMNACEAE) FROM NEPAL HIMALAYAS *Khem Raj Bhattarai and Mitra Lal Pathak National Herbarium and Plant Laboratories, Department of Plant Resources, Godawari, Lalitpur, G.P.O. Box 3708, Nepal *Author for Correspondence ABSTRACT A tree belonging to Ziziphus (Rhamnaceae) from Timal region of Kavrepalanchok district, Central Nepal is illustrated and described as a new species Ziziphus budhensis KR. Bhattarai & Pathak, a narrow endemic from central Nepal. This species did not match with the Ziziphus species reported from this region. Although the new species is similar to Z. montana W.W.Sm. from Yunan, China with trinerved leaves lacking conspicuous secondary veins, it differs tree habit, shape and size of leaves, length of peduncle, carpel, and shape and size of fruits and seeds as well as distribution range. Detailed taxonomic description, illustration, photographs, ecology and its economic and religious value are discussed. Keywords: Ziziphus, Rhamnaceae, Timal, New Species, Endemic, Nepal INTRODUCTION Ziziphus has about 100 species reported from warm-temperate and subtropical regions throughout the world (Mabberley 2008), among them 17 species are from India (Bhandari and Bhansali, 2000), 12 species from China (Zao, 2007), seven species from Bhutan (Grierson and Long, 1991) and six species are already reported from Nepal (NHPL, 2011). The unidentified species belongs to genus Ziziphus and family Rhamnaceae. Due to its economical importance local people from the Timal region of Kavreplanchok district brought material to the National Herbarium and Plant Laboratories (KATH) for identification.
    [Show full text]