Book of Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

Book of Abstracts Table of Contents Keynote Address................................................................................................................................... iii Science Board Symposium abstracts (S1)...............................................................................................1 BIO/FIS Topic Session abstracts (S2) ....................................................................................................9 BIO Topic Session abstracts (S3) .........................................................................................................21 BIO Topic Session abstracts (S4) .........................................................................................................33 BIO Topic Session abstracts (S5) .........................................................................................................49 CCCC Topic Session abstracts (S6)......................................................................................................67 FIS/CCCC Topic Session abstracts (S7)...............................................................................................75 FIS/MEQ Topic Session abstracts (S8) ................................................................................................89 MEQ Topic Session abstracts (S9) .....................................................................................................101 POC/MONITOR/CCCC Topic Session abstracts (S10) .....................................................................111 CCCC Paper Session abstracts (S9)....................................................................................................121 FIS Paper Session abstracts (FIS) .......................................................................................................131 POC Paper Session abstracts (POC) ...................................................................................................155 BIO Poster Session abstracts (BIO)....................................................................................................179 MEQ Poster Session abstracts (MEQ)................................................................................................187 Observers Poster Session abstracts .....................................................................................................197 IFEP/MODEL Workshop abstracts (W1)...........................................................................................205 FIS Workshop abstracts (W2).............................................................................................................211 MEQ/FIS Workshop abstracts (W3)...................................................................................................217 MEQ Workshop abstracts (including laboratory demonstration), HAB-S Meeting, and Country Reports/HAE-DAT (W4)................................................................................225 POC Workshop abstracts (W5)...........................................................................................................237 MONITOR/TCODE Workshop abstracts (W6)..................................................................................245 CCCC/CFAME Workshop abstracts (W7) .........................................................................................257 BIO/POC Workshop abstracts (W8)...................................................................................................263 MIE-AP Workshop abstracts and Advisory Panel Meeting (W9)......................................................271 Author Index .......................................................................................................................................275 Acronyms............................................................................................................................................291 Abstracts are sorted first by session and then alphabetically by presenter’s last name. Presenters’ names are in bold and underlined print. The Author Index includes all authors, co-authors, their paper IDs and page numbers. Some abstracts in this collection have not been edited and have been printed in the condition that they were received. i Keynote Address PICES XV Biological production, animal migration and ecosystem regime shifts in the Kuroshio and Oyashio Currents: Perspectives for sustainable use Akihiko Yatsu Hokkaido National Fisheries Research Institute, Katsurakoi 116, Kushiro 085-0802, Japan. E-mail: [email protected] The poleward-flowing Kuroshio and the equatorward-flowing Oyashio are western boundary currents that transport heat, nutrients, and planktonic animals, including fish larvae from the subtropical/subarctic gyres, to the coastal areas of the Japanese archipelago. They converge east of Honshu Island to form an oceanographically complex Transition Zone that is an important area for the recruitment of some pelagic fishes of commercial interest. These species have developed life history traits and horizontal migration patterns by adapting to the seasonality of biological production and oceanography. Climatic and ecosystem regime shifts are key factors affecting the population dynamics of species in this region and need to be considered for the sustainable use of the region’s ecosystem services, including fish harvests. Proper understanding of how ecosystem dynamics are linked to both climate and human activities are essential for wise management, which recognizes ecosystem factors and various uncertainties. The most plausible mechanisms for sardine/anchovy cycles in the Kuroshio/Oyashio system are discussed to highlight the importance of these interconnections. Perspectives for sustainable use of ecosystem services, including fishing, will be discussed more generally in relation to case studies involving: 1) reclamation effects on a coastal ecosystem, 2) mitigation efforts, 3) successful adaptive co-management in a coastal fish stock, and 4) failure of fisheries management due to an overcapitalization that resulted from a mismatch between investment to fishing fleets and ecosystem regime shifts. iii PICES XV Abstracts Science Board Symposium S1 Boundary current ecosystems Co-Convenors: Kuh Kim (SB), Michael J. Dagg (BIO), Gordon H. Kruse (FIS), John E. Stein (MEQ) Michael G. Foreman (POC), Harold P. Batchelder (CCCC), Suam Kim (CCCC), Jeffrey M. Napp (MONITOR), Igor I. Shevchenko (TCODE), Fangli Qiao (China) and Yukimasa Ishida (Japan) The North Pacific is surrounded by boundary currents (e.g., Kuroshio, Tsushima, Oyashio, California, Alaska, Bering Slope) that support a diversity of ecosystems. These ecosystems are highly variable in space and time due to combinations of climate change, decadal “regime” shifts, ENSO and other interannual variability, seasonal and event mesoscale dynamics. This variability has led to dramatic changes at both low and high trophic levels, including productivity, range extensions, and species dominance. This theme will provide opportunities to address questions such as: 1) How will climate variation and projected climate change influence the dynamics and variability of boundary currents? 2) How will boundary current ecosystems respond to these physical property and transport changes? 3) How does human activity (e.g., fishing, hatcheries) alter the sensitivity of boundary current ecosystems to natural environmental forcing? and 4) What are appropriate management strategies to maintain healthy, sustainable living marine resources in boundary current systems that experience large environmental variations? Presentations that describe, compare and/or contrast physics, biology, fisheries, and geochemistry of boundary currents and the ecosystems they support are encouraged. Monday, October 16, 2006 11:00-17:50 11:00-11:40 Akihiko Yatsu (Keynote) Biological production, animal migration and ecosystem regime shifts in the Kuroshio and Oyashio Currents: Perspectives for sustainable use 11:40-12:10 Ichiro Yasuda (Invited) The Kuroshio and Oyashio current system: Variability and impact on the ecosystem (S1-2788) 12:10-12:30 Robert M. Suryan, Fumio Sato, Gregory R. Balogh, Noboru Nakamura, Paul R. Sievert and Kiyoaki Ozaki Kuroshio and Oyashio boundary currents: Critical foraging habitat for the short-tailed albatross (Phoebastria albatrus), one of Japan’s natural monuments (S1-3121) 12:30-12:50 Sanae Chiba, Hiroya Sugisaki and Toshiro Saino Decadal changes of the Oyashio and Kuroshio affected spatio-temporal variation of the copepod community in the western North Pacific (S1-2812) 12:50-14:10 Lunch 14:10-14:40 Edmundo Casillas and William T. Peterson (Invited) The Northern California Current Ecosystem: Variability, indicator development, and an ocean condition index for fishery management (S1-2820) 14:40-15:00 John A. Barth and John M. Bane Intraseasonal wind oscillations and their influence on northern California Current coastal ecosystems (S1-3054) 15:00-15:30 Arthur J. Miller (Invited) Long-term changes in the climate of the California Current, with biological impacts (S1-3059) 15:30-15:50 Tea/Coffee Break 15:50-16:10 Emanuele Di Lorenzo and Niklas Schneider Intrinsic oceanic decadal variability in the North Pacific generated in the Eastern Boundary Current System (S1-3093) 1 16:10-16:30 James Christian The North Equatorial Countercurrent: An anomalous boundary current with biologically significant upwelling and a predictable response to climate forcing (S1-3055) 16:30-17:00 J. Anthony Koslow, Ming Feng, Stephane Pesant and Peter Fearns (Invited) The
Recommended publications
  • Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands Management Area APPENDICES
    FMP for Groundfish of the BSAI Management Area Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands Management Area APPENDICES Appendix A History of the Fishery Management Plan ...................................................................... A-1 A.1 Amendments to the FMP ......................................................................................................... A-1 Appendix B Geographical Coordinates of Areas Described in the Fishery Management Plan ..... B-1 B.1 Management Area, Subareas, and Districts ............................................................................. B-1 B.2 Closed Areas ............................................................................................................................ B-2 B.3 PSC Limitation Zones ........................................................................................................... B-18 Appendix C Summary of the American Fisheries Act and Subtitle II ............................................. C-1 C.1 Summary of the American Fisheries Act (AFA) Management Measures ............................... C-1 C.2 Summary of Amendments to AFA in the Coast Guard Authorization Act of 2010 ................ C-2 C.3 American Fisheries Act: Subtitle II Bering Sea Pollock Fishery ............................................ C-4 Appendix D Life History Features and Habitat Requirements of Fishery Management Plan SpeciesD-1 D.1 Walleye pollock (Theragra calcogramma) ............................................................................
    [Show full text]
  • Historical Fish Specimens Collected from the Tohoku District by the Saito Ho-On Kai Museum of Natural History
    Bull. Natl. Mus. Nat. Sci., Ser. A, 35(1), pp. 9–54, March 22, 2009 Historical Fish Specimens Collected from the Tohoku District by the Saito Ho-on Kai Museum of Natural History Keiichi Matsuura1, Gento Shinohara2 and Masanori Nakae1 1 Collection Center, National Museum of Nature and Science, 3–23–1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169–0073 Japan E-mail: [email protected]; [email protected] 2 Department of Zoology, National Museum of Nature and Science, 3–23–1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169–0073 Japan E-mail: [email protected] Abstract The fish collection of the Saito Ho-on Kai Museum of Natural History was transferred to the National Museum of Nature and Science, Tokyo in February 2006. Ninety percent of the fish collection contains specimens collected from the Tohoku District during the period from 1930 to 1933 when natural environments of Japan were in good condition for various groups of fishes. The fish specimens from the Tohoku District were classified into 361 species/subspecies of 273 genera belonging to 131 families of 31 orders. A list of the species is shown with remarks on distribution. Key words: Fish specimens, Saito Ho-on Kai Museum, Tohoku District, inventory. stead of natural sicence. The museum has tried to Introduction keep its activity at the level before the war, but it The Saito Ho-on Kai Museum was established failed to do so because of financial difficulties. In in November 1933 in Sendai City, Miyagi Pre- 2005, the Saito Ho-on Kai Museum of Natural fecture, Japan.
    [Show full text]
  • The Ulleung Eddy Owes Its Existence to Β and Nonlinearities
    The Ulleung eddy owes its existence to β and nonlinearities ∗ Wilton Z. Arruda a,1, Doron Nof a, ,2, James J. O’Brien b aDepartment of Oceanography 4320, The Florida State University, Tallahassee, FL 32306-4320, USA bCenter for Ocean Atmospheric Prediction Studies (COAPS), The Florida State University, Tallahassee, FL 32306-2840, USA Abstract A nonlinear theory for the generation of the Ulleung Warm Eddy (UWE) is pro- posed. Using the nonlinear reduced gravity (shallow water) equations, it is shown analytically that the eddy is established in order to balance the northward momen- tum flux exerted by the separating western boundary current. In this scenario the presence of β produces a southward (eddy) force balancing the northward momen- tum flux imparted by the separating East Korean Warm Current. 1/6 The solution is derived using an expansion in powers of (here = βRd/f0 where Rd is the Rossby radius based on the undisturbed upper layer thickness H). It is found that, for a high Rossby number western boundary current (i.e., highly 1/6 nonlinear current) the eddy radius is roughly 2Rd/ implying that the UWE has a scale larger than that of most eddies (Rd). This solution shows that, in contrast to the familiar idea attributing the formation of eddies to instabilities (i.e., the breakdown of a known steady solution), the UWE is an integral part of the steady stable solution. A reduced gravity numerical model is used to further analyze the relationship between β, nonlinearity and the eddy formation. First, we show that high Rossby number western boundary current which is forced to separate from the wall on an f-plane does not produce an eddy near the separation.
    [Show full text]
  • Approved List of Japanese Fishery Fbos for Export to Vietnam Updated: 11/6/2021
    Approved list of Japanese fishery FBOs for export to Vietnam Updated: 11/6/2021 Business Approval No Address Type of products Name number FROZEN CHUM SALMON DRESSED (Oncorhynchus keta) FROZEN DOLPHINFISH DRESSED (Coryphaena hippurus) FROZEN JAPANESE SARDINE ROUND (Sardinops melanostictus) FROZEN ALASKA POLLACK DRESSED (Theragra chalcogramma) 420, Misaki-cho, FROZEN ALASKA POLLACK ROUND Kaneshin Rausu-cho, (Theragra chalcogramma) 1. Tsuyama CO., VN01870001 Menashi-gun, FROZEN PACIFIC COD DRESSED LTD Hokkaido, Japan (Gadus macrocephalus) FROZEN PACIFIC COD ROUND (Gadus macrocephalus) FROZEN DOLPHIN FISH ROUND (Coryphaena hippurus) FROZEN ARABESQUE GREENLING ROUND (Pleurogrammus azonus) FROZEN PINK SALMON DRESSED (Oncorhynchus gorbuscha) - Fresh fish (excluding fish by-product) Maekawa Hokkaido Nemuro - Fresh bivalve mollusk. 2. Shouten Co., VN01860002 City Nishihamacho - Frozen fish (excluding fish by-product) Ltd 10-177 - Frozen processed bivalve mollusk Frozen Chum Salmon (round, dressed, semi- dressed,fillet,head,bone,skin) Frozen Alaska Pollack(round,dressed,semi- TAIYO 1-35-1 dressed,fillet) SANGYO CO., SHOWACHUO, Frozen Pacific Cod(round,dressed,semi- 3. LTD. VN01840003 KUSHIRO-CITY, dressed,fillet) KUSHIRO HOKKAIDO, Frozen Pacific Saury(round,dressed,semi- FACTORY JAPAN dressed) Frozen Chub Mackerel(round,fillet) Frozen Blue Mackerel(round,fillet) Frozen Salted Pollack Roe TAIYO 3-9 KOMABA- SANGYO CO., CHO, NEMURO- - Frozen fish 4. LTD. VN01860004 CITY, - Frozen processed fish NEMURO HOKKAIDO, (excluding by-product) FACTORY JAPAN
    [Show full text]
  • Independent Evolution of the Specialized Pharyngeal Jaw Apparatus in Cichlid and Labrid Fishes Kohji Mabuchi*1, Masaki Miya2, Yoichiro Azuma1 and Mutsumi Nishida1
    BMC Evolutionary Biology BioMed Central Research article Open Access Independent evolution of the specialized pharyngeal jaw apparatus in cichlid and labrid fishes Kohji Mabuchi*1, Masaki Miya2, Yoichiro Azuma1 and Mutsumi Nishida1 Address: 1Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano-ku, Tokyo 164-8639, Japan and 2Department of Zoology, Natural History Museum & Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba 260-8682, Japan Email: Kohji Mabuchi* - [email protected]; Masaki Miya - [email protected]; Yoichiro Azuma - [email protected]; Mutsumi Nishida - [email protected] * Corresponding author Published: 30 January 2007 Received: 1 August 2006 Accepted: 30 January 2007 BMC Evolutionary Biology 2007, 7:10 doi:10.1186/1471-2148-7-10 This article is available from: http://www.biomedcentral.com/1471-2148/7/10 © 2007 Mabuchi et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Fishes in the families Cichlidae and Labridae provide good probable examples of vertebrate adaptive radiations. Their spectacular trophic radiations have been widely assumed to be due to structural key innovation in pharyngeal jaw apparatus (PJA), but this idea has never been tested based on a reliable phylogeny. For the first step of evaluating the hypothesis, we investigated the phylogenetic positions of the components of the suborder Labroidei (including Pomacentridae and Embiotocidae in addition to Cichlidae and Labridae) within the Percomorpha, the most diversified (> 15,000 spp) crown clade of teleosts.
    [Show full text]
  • Chapter 10 Adjacent Seas of the Pacific Ocean Although The
    Chapter 10 Adjacent seas of the Pacific Ocean Although the adjacent seas of the Pacific Ocean do not impact much on the hydrography of the oceanic basins, they cover a substantial part of its area and deserve separate discussion. All are located along the western rim of the Pacific Ocean. From the point of view of the global oceanic circulation, the most important adjacent sea is the region on either side of the equator between the islands of the Indonesian archipelago. This region is the only mediterranean sea of the Pacific Ocean and is called the Australasian Mediterranean Sea. Its influence on the hydrography of the world ocean is far greater in the Indian than in the Pacific Ocean, and a detailed discussion of this important sea is therefore postponed to Chapter 13. The remaining adjacent seas can be grouped into deep basins with and without large shelf areas, and shallow seas that form part of the continental shelf. The Japan, Coral and Tasman Seas are deep basins without large shelf areas. The circulation and hydrography of the Coral and Tasman Seas are closely related to the situation in the western South Pacific Ocean and were already covered in the last two chapters; so only the Japan Sea will be discussed here. The Bering Sea, the Sea of Okhotsk, and the South China Sea are also deep basins but include large shelf areas as well. The East China Sea and Yellow Sea are shallow, forming part of the continental shelf of Asia. Other continental shelf seas belonging to the Pacific Ocean are the Gulf of Thailand and the Java Sea in South-East Asia and the Timor and Arafura Seas with the Gulf of Carpentaria on the Australian shelf.
    [Show full text]
  • Proximate Composition, Energy, Fatty Acid, Sodium, and Cholesterol Content of Finfish, Shellfish, and Their Products
    I lW\! " O.~~ NOAA Technical Report NMFS 55 July 1987 Proximate Composition, Energy, Fatty Acid, Sodium, and Cholesterol Content of Finfish, Shellfish, and their Products Judith Krzynowek Jenny Murphy u.s. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA TECHNICAL REPORT NMFS The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for their optimum use. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs. and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The NOAA Technical Report NMFS series was established in 1983 to replace two subcategories of the Technical Reports series: "Special Scientific Report-Fisheries" and "Circular." The series contains the following types of reports: Scientific investigations that document long-term continuing programs of NMFS; intensive scientific reports on studies of restricted scope; papers on applied fishery problems; technical reports of general interest intended to aid conservation and management; reports that review in con­ siderable detail and at a high technical level certain broad areas of research; and technical papers originating in economics studies and from management investigations.
    [Show full text]
  • Estimating Age-Specific Natural Mortality for Sandfish in the Eastern
    mathematics Article Estimating Age-Specific Natural Mortality for Sandfish in the Eastern Coastal Waters of Korea Giphil Cho 1, Daewook Kim 2 , Sukgeun Jung 3, Il Hyo Jung 4 and Sangil Kim 4,* 1 Finance Fishery Manufacture Industrial Mathematics Center on Big Data, Pusan National University, · · Busan 46241, Korea; [email protected] 2 Department of Mathematics Education, Seowon University, Cheongju, Chungbuk 28674, Korea; [email protected] 3 Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; [email protected] 4 Department of Mathematics, Pusan National University, Busan 46241, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-51-510-2209 Received: 25 August 2020; Accepted: 16 September 2020; Published: 18 September 2020 Abstract: To estimate age-specific natural mortality, we proposed an age-structured biomass model with an impulsive dynamical system. In the estimation of natural mortality, we considered growth rate and also reproduction rate, growth, and catch of sandfish, Arctoscopus japonicus. Assuming a linear relationship between observed values of the catch per unit effort (CPUE) and total biomass estimated by the age-structured biomass model, we estimated the age-specific natural mortality using the CPUE and catch data, from 1994 to 2009, for varying values of the assumed initial total biomass in 1994, by selecting the largest coefficient of determination (R2). We suggested the following empirical q K(i+1 t ) formula: M = ln e − 0 1 , which estimated natural mortality of sandfish, and the derived i KL K(i t0) − 1 e − 1 age-specific natural mortality− was significantly related to fecundity and growth.
    [Show full text]
  • Cambridge University Press 978-1-108-42318-2 — Oceanic Histories Edited by David Armitage , Alison Bashford , Sujit Sivasundaram Index More Information 319
    Cambridge University Press 978-1-108-42318-2 — Oceanic Histories Edited by David Armitage , Alison Bashford , Sujit Sivasundaram Index More Information 319 Index Aa, Pieter van der, 185 sea ice, 286 – 92 Aboriginal Australians, 66 – 67 , 68 , thermohaline circulation, 276 127 , 301 whaling, 284 – 85 , 299 , 302 Abu Mufarrij, 168 Arktika , 277 Adam of Bremen, 211 – 12 Armitage, David, 171 Adelman, Jeremy, 145 , 146 artillery, 248 Aden, 54 , 55 , 168 , 171 Ascension Island, 100 Gulf of, 171 Ascherson, Neal, 241 Adigal, Ilango, 36 Atlantic age, 22 African American Monument, South Atlantic Charter, 93 Carolina, US, 10 Atlantic islands, 99 – 100 Agatharchides of Cnidus, 167 Atlantic Ocean, 85 – 108 , 138 Agnew, John, 273 circum- Atlantic history, 96 – 97 agricultural exchanges, Indian cis- Atlantic history, 96 – 97 Ocean, 49 – 50 extra- Atlantic history, 97 , 105 – 8 Albert, Duke of Saxony, 212 infra- Atlantic history, 97 , 98 – 102 , 108 Albrecht of Bavaria, 212 migration, 93 , 95 , 103 – 4 , 107 Alencastro, Luiz Felipe de, 91 slave trade, 90 – 92 , 93 – 94 , 95 , 104 , 106 Alexander III, tsar of Russia, 256 sub- Atlantic history, 97 , 102 – 5 , 108 Alexander the Great, 163 , 243 sub- oceanic regions, 89 – 91 Al- Masudi, 168 trade, 106 – 7 amber, 217 trans- Atlantic history, 96 – 97 Amino Yoshihiko, 187 , 192 Atlantis, 99 Andaman Islands, 57 – 59 Aurobindo, Sri, 37 Andaya, Barbara Watson, 49 Azad, Abul Kalam, 57 Antarctic Circumpolar Current, 296 Antarctic Treaty, 310 , 311 – 12 Baekje Kingdom, Korea, 187 , 188 Antarctica Bailyn, Bernard,
    [Show full text]
  • Fishery Bulletin/U S Dept of Commerce National Oceanic
    Abstract.-The sandfish family Trichodontidae is comprised of two Contrast in Reproductive Style species endemic to the boreal Pacific: Arctoscopus japonicus is a common Between Two Species of Sandfishes demersal fish of commercial impor­ tance in the western area around (Family TrichodontidaeJ northern Japan, while Trichodon tri­ chodon is found in the eastern waters, from Alaska to California, although Muneo Oklyama there is no fishery for this species. Ocean Research Institute. UniverSity of Tokyo. )-) 5-1 The two species share many similar Minamidai. Nakano. Tokyo 164. Japan reproductive features such as large demersal eggs of 3.3-3.5 mm diam­ eter, moderate fecundities of 1000­ 2000 eggs, and peculiar spawning habits on rocky shores. However, The family Trichodontidae is a small Comparison between there are striking contrasts in sev· family of marine fishes endemic to Arctoscopus japonlcus eral reproductive and early-life-his­ the boreal Pacific comprised of two tory traits: the shape of the egg mass and Trichodon trlchodon is spherical in A. japonicus versus species, AretosCO'pUS japonicus (Stein­ an irregular shape in T. trichodon; dachner) from the western Pacific spawning substrate is mostly Sargas­ around Japan and Trichodon tricho­ Distribution sum spp. versus rock; incubation don (Tilesius) from the eastern Pacif­ The family Trichodontidae is restricted period is about 2 months versus near­ ic, ranging from Alaska to California. in distribution to the coastal boreal ly 1 year; and, at hatching, T. tricho­ As indicated by the common name regions of the North Pacific between don. has precocious pectoral and 0 caudal rays as well as preopercular "sandfishes," they typically lie partly about 35°N and 60 N (Fig.
    [Show full text]
  • Worksheet BSAI Pollock
    Worksheet BSAI Pollock Worksheet – species-specific determinations on whether EFH needs to be changed (please refer to Item B under instructions above) 1. EFH Description Update Does new information warrant change to the EFH text description (Y or N) or the EFH distribution maps by life stage? Y or N If yes, explain. No, but editorial and some minor text revisions. Does the new description, and any associated information, change the level of information known for the species life stage (e.g., not-identified to Level 1; Level 1 to 2*)? No 2. New Information Is there any new information (published or other) that you have used in the review that is not listed in the revisions to the FMP text? If so, please reference it here. References added to document If appropriate, please briefly list any relevant studies that are currently underway that may be useful for EFH reviews in the future. BSIERP 3. Research and Information Needs Is research needed or do data gaps exist? Briefly explain and list in order of priority. No 4. Fishing Activities Does new information, and any changes in the distribution of fishing intensity, suggest that the fishing effects analysis summarized in the FMP should be updated? Explain. See item #4 in section B of instructions. No 5. Habitat Areas of Particular Concern (HAPC) Are there specific ecologically significant, rare, or sensitive sites, relevant to your species, that are particularly vulnerable to human perturbation, which the Council might want to consider identifying as HAPC? Y or N. If yes, list. No 6. Conservation recommendations Do you have any EFH conservation recommendations that the Council may want to consider? Explain.
    [Show full text]
  • Supplementary Information Doi: 10.1038/Nclimate1691
    SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE1691 Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems Supplementary information Method Dynamic Bioclimate Envelope Model (DBEM) As a first step, we predicted the current (19702000) distribution map of each species an algorithm described in [1,2]. This algorithm estimates the relative abundance of a species on a 30’ latitude x 30’ longitude grid of the world ocean. Input parameters for DBEM include the species’ maximum and minimum depth limits, northern and southern latitudinal range limits, an index of association to major habitat types (seamounts, estuaries, inshore, offshore, continental shelf, continental slope and the abyssal) and known occurrence boundaries. The parameter values of each species, which are posted on the Sea Around Us Project website (http://www.seaaroundus.org/distribution/search.aspx), were derived from data in online databases, mainly FishBase (www.fishbase.org). Jones et al. 3 compared the predicted species distribution from this algorithm with empirically observed occurrence records and found that the algorithm has high predictive power, and that its skills are comparable with other commonly used species distribution modelling approach for marine species such as Maxent4 and Aquamap5. As a second step, we used DBEM to identify the ‘environmental preference profiles’ of the studied species, defined by outputs from the Earth System Models, including sea water temperature (bottom and surface), depth, salinity, distance from seaice and habitat types. Preference profiles are defined as the suitability of each of these environmental conditions to each species, with suitability calculated by overlaying environmental data (19702000) with maps of relative abundance of the species 6.
    [Show full text]