History of Mathematics Week 6 Notes Chapter 10: Greek Trigonometry and Mensuration

Total Page:16

File Type:pdf, Size:1020Kb

History of Mathematics Week 6 Notes Chapter 10: Greek Trigonometry and Mensuration History of Mathematics Week 6 Notes Chapter 10: Greek Trigonometry and Mensuration • Law of Cosine appeared in two forms for obtuse and acute angles in Elements of Euclid. Otherwise there was not much organized trigonometry, even though theorems of a trigonometric flavor (dealing with ratios of sides of triangles) had been known to a variety of mathematicians. • Aristarchus proposed a heliocentric system, but his proposal was lost. • Aristarchus wrote On the Sizes and Distances of the Sun and Moon, which uses a geocentric universe. He used the \fact" that during a half- moon, the angle sun-earth-moon is 87 degrees, so the distance from the sun to the earth is 18-20 times the distance from the earth to the moon. In real- ity, it is 400 times the distance, but that is because at half-moon, the angle sun-earth-moon is closer to 89.8 degrees. • Eratosthenes estimated the circumference of the earth at about 25000 miles (actually 24,901 miles at the equator). The original work is lost, but survives through Heron and Ptolemy. • Eratosthenes is best known for developing the \Sieve of Eratosthenes" for computing prime numbers. • Hipparchus earned title \father of trigonometry" for computing a table of arcs and chords for angles from 0 to 180 degrees. The work was intended for use in astronomy. • Menelaus wrote about trigonometry in the plane and on the sphere, showing that spherical triangles are equal if their angles are. • Ptolemy, who lived in the second century A.D., wrote Mathematical Syntaxis, containing 13 books. Since it was considered \the greatest" math- ematical text, it became known as Almagest. • The Almagest contained trigonometric tables of chords. Ptolemy mea- sured angles with 360 degrees (as had been customary in Greece before him) and split degrees into minutes and seconds following Babylonian numeration. His tables measured chords of angles from 0 to 180 degrees by every half de- gree. • The Almagest presented a geocentric system (which is defended by lack of stellar parallax). He moved the earth from the center of the orbit, though, to more accurately match observations. He also used epicycles in his astron- omy. • Ptolemy wrote an authoritative Geography which introduced latitude and longitude. He proposed orthographic and stereographic projections. 1 • Ptolemy also wrote Optics, where angles of incidence and reflection were studied but incorrectly given. • Ptolemy wrote Tetrabiblos, which was essentially an astrology book, using the stars to describe a pseudoreligion. • Heron wrote Metrica where he studied areas of polygons. However, he did not distinguish between exact and approximate answers. • In Heron's Geometrica, he asks for the perimeter, diameter, and area of a circle if the sum is given. Even though this is adding unlike quantities (of unlike dimensions), he solves the problem. • Heron \solved" indeterminate problems, like solving a right triangle given the sum of area and perimeter is 280. • Heron, in Catoptrics, develops the law of reflection using a least-distance argument. • He developed a primitive steam engine in his Pneumatics and described the simple machine of the inclined plane (although did not correctly develop its properties) Revival and Decline of Greek Mathematics • Perhaps there were always two levels of Greek mathematics, but few works of the lower level survived. • Rome contributed little to mathematics. The Roman author Vitruvius wrote that thep three best mathematical discoveries were the 3-4-5 right tri- angle, that 2 is irrational, and Archimedes's discovery of the fraudulent 1 crown. He also gave the equivalent of π = 3 8 , which is worse an approxima- tion than even Archimedes knew. • Romans were chiefly interested in engineering and architecture, not pure mathematics. • Diophantus wrote Arithmetica, a text in the theory of numbers in 13 books. He included a multiplication table up to 10 times 10. Nicomachus wrote Introductio arithmeticae, which reiterated much of Pythagorean sci- ence and math. • Diophantus did not rely on geometry as a basis for number. He required exact solutions to his problems, even though they were sometimes indeter- minate. • Diophantus would solve a problem like giving two numbers with sum 20 and product 208 by first calling the numbers 10 − x and 10 + x and then multiplying. 2 • Diophantus would solve a problem like finding a and b such that a2 + b and b2 + a are perfect squares by letting b = 2a + 1 so that automatically a2 + b is a square, even though this does not give all solutions. He then only looked for when b2 +a was of the form (2a−2)2, which was certainly arbitrary. • Diophantus would obtain exact rational solutions to his problems. • Pappus studied isoperimetric problems, and as such admired bees for their economy. • Pappus declared the Problem of Apollonius open and solved it. He went on to generalize it into what became known as the six lines problem. • In his Collection, Pappus first proved Pappus's Theorem from calculus. • Rome was not a scholar-friendly society, and many chose to leave by about 500 A.D. for the near east. 3.
Recommended publications
  • Elementary Functions: Towards Automatically Generated, Efficient
    Elementary functions : towards automatically generated, efficient, and vectorizable implementations Hugues De Lassus Saint-Genies To cite this version: Hugues De Lassus Saint-Genies. Elementary functions : towards automatically generated, efficient, and vectorizable implementations. Other [cs.OH]. Université de Perpignan, 2018. English. NNT : 2018PERP0010. tel-01841424 HAL Id: tel-01841424 https://tel.archives-ouvertes.fr/tel-01841424 Submitted on 17 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par l’Université de Perpignan Via Domitia Préparée au sein de l’école doctorale 305 – Énergie et Environnement Et de l’unité de recherche DALI – LIRMM – CNRS UMR 5506 Spécialité: Informatique Présentée par Hugues de Lassus Saint-Geniès [email protected] Elementary functions: towards automatically generated, efficient, and vectorizable implementations Version soumise aux rapporteurs. Jury composé de : M. Florent de Dinechin Pr. INSA Lyon Rapporteur Mme Fabienne Jézéquel MC, HDR UParis 2 Rapporteur M. Marc Daumas Pr. UPVD Examinateur M. Lionel Lacassagne Pr. UParis 6 Examinateur M. Daniel Menard Pr. INSA Rennes Examinateur M. Éric Petit Ph.D. Intel Examinateur M. David Defour MC, HDR UPVD Directeur M. Guillaume Revy MC UPVD Codirecteur À la mémoire de ma grand-mère Françoise Lapergue et de Jos Perrot, marin-pêcheur bigouden.
    [Show full text]
  • A Centennial Celebration of Two Great Scholars: Heiberg's
    A Centennial Celebration of Two Great Scholars: Heiberg’s Translation of the Lost Palimpsest of Archimedes—1907 Heath’s Publication on Euclid’s Elements—1908 Shirley B. Gray he 1998 auction of the “lost” palimp- tains four illuminated sest of Archimedes, followed by col- plates, presumably of laborative work centered at the Walters Matthew, Mark, Luke, Art Museum, the palimpsest’s newest and John. caretaker, remind Notices readers of Heiberg was emi- Tthe herculean contributions of two great classical nently qualified for scholars. Working one century ago, Johan Ludvig support from a foun- Heiberg and Sir Thomas Little Heath were busily dation. His stature as a engaged in virtually “running the table” of great scholar in the interna- mathematics bequeathed from antiquity. Only tional community was World War I and a depleted supply of manuscripts such that the University forced them to take a break. In 2008 we as math- of Oxford had awarded ematicians should honor their watershed efforts to him an honorary doc- make the cornerstones of our discipline available Johan Ludvig Heiberg. torate of literature in Photo courtesy of to even mathematically challenged readers. The Danish Royal Society. 1904. His background in languages and his pub- Heiberg lications were impressive. His first language was In 1906 the Carlsberg Foundation awarded 300 Danish but he frequently published in German. kroner to Johan Ludvig Heiberg (1854–1928), a He had publications in Latin as well as Arabic. But classical philologist at the University of Copenha- his true passion was classical Greek. In his first gen, to journey to Constantinople (present day Is- position as a schoolmaster and principal, Heiberg tanbul) to investigate a palimpsest that previously insisted that his students learn Greek and Greek had been in the library of the Metochion, i.e., the mathematics—in Greek.
    [Show full text]
  • Generating Highly Accurate Values for All Trigonometric Functions
    GENERATING HIGHLY ACCURATE VALUES FOR ALL TRIGONOMETRIC FUNCTIONS INTRODUCTION: Although hand calculators and electronic computers have pretty much eliminated the need for trigonometric tables starting about sixty years ago, this was not the case back during WWII when highly accurate trigonometric tables were vital for the calculation of projectile trajectories. At that time a good deal of the war effort in mathematics was devoted to building ever more accurate trig tables some ranging up to twenty digit numerical accuracy. Today such efforts can be considered to have been a waste of time, although they were not so at the time. It is our purpose in this note to demonstrate a new approach for quickly obtaining values for all trigonometric functions exceeding anything your hand calculator can achieve. BASIC TRIGNOMETRIC FUNCTIONS: We begin by defining all six basic trigonometric functions by looking at the following right triangle- The sides a,b, and c of this triangle satisfy the Pythagorean Theorem- a2+b2=c2 we define the six trig functions in terms of this triangle as- sin()=b/c cos( )=a/c tan()=b/a csc()=c/b sec()=c/a) cot()=b/a From Pythagorous we also have at once that – 1 sin( )2 cos( )2 1 and [1 tan( )2 ] . cos( )2 It was the ancient Egyptian pyramid builders who first realized that the most important of these trigonometric functions is tan(). Their measure of this tangent was given in terms of sekels, where 1 sekhel=7. Converting each of the above trig functions into functions of tan() yields- tan( ) 1 sin( ) cos( ) tan( ) tan( ) 1 tan( )2 1 tan( )2 1 tan( )2 1 csc( ) sec( ) 1 tan( )2 cot( ) tan( ) tan( ) In using these equivalent definitions one must be careful of signs and infinities appearing in the approximations to tan().
    [Show full text]
  • Octonion Multiplication and Heawood's
    CONFLUENTES MATHEMATICI Bruno SÉVENNEC Octonion multiplication and Heawood’s map Tome 5, no 2 (2013), p. 71-76. <http://cml.cedram.org/item?id=CML_2013__5_2_71_0> © Les auteurs et Confluentes Mathematici, 2013. Tous droits réservés. L’accès aux articles de la revue « Confluentes Mathematici » (http://cml.cedram.org/), implique l’accord avec les condi- tions générales d’utilisation (http://cml.cedram.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation á fin strictement personnelle du copiste est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Confluentes Math. 5, 2 (2013) 71-76 OCTONION MULTIPLICATION AND HEAWOOD’S MAP BRUNO SÉVENNEC Abstract. In this note, the octonion multiplication table is recovered from a regular tesse- lation of the equilateral two timensional torus by seven hexagons, also known as Heawood’s map. Almost any article or book dealing with Cayley-Graves algebra O of octonions (to be recalled shortly) has a picture like the following Figure 0.1 representing the so-called ‘Fano plane’, which will be denoted by Π, together with some cyclic ordering on each of its ‘lines’. The Fano plane is a set of seven points, in which seven three-point subsets called ‘lines’ are specified, such that any two points are contained in a unique line, and any two lines intersect in a unique point, giving a so-called (combinatorial) projective plane [8,7].
    [Show full text]
  • Chapter Two Democritus and the Different Limits to Divisibility
    CHAPTER TWO DEMOCRITUS AND THE DIFFERENT LIMITS TO DIVISIBILITY § 0. Introduction In the previous chapter I tried to give an extensive analysis of the reasoning in and behind the first arguments in the history of philosophy in which problems of continuity and infinite divisibility emerged. The impact of these arguments must have been enormous. Designed to show that rationally speaking one was better off with an Eleatic universe without plurality and without motion, Zeno’s paradoxes were a challenge to everyone who wanted to salvage at least those two basic features of the world of common sense. On the other hand, sceptics, for whatever reason weary of common sense, could employ Zeno-style arguments to keep up the pressure. The most notable representative of the latter group is Gorgias, who in his book On not-being or On nature referred to ‘Zeno’s argument’, presumably in a demonstration that what is without body and does not have parts, is not. It is possible that this followed an earlier argument of his that whatever is one, must be without body.1 We recognize here what Aristotle calls Zeno’s principle, that what does not have bulk or size, is not. Also in the following we meet familiar Zenonian themes: Further, if it moves and shifts [as] one, what is, is divided, not being continuous, and there [it is] not something. Hence, if it moves everywhere, it is divided everywhere. But if that is the case, then everywhere it is not. For it is there deprived of being, he says, where it is divided, instead of ‘void’ using ‘being divided’.2 Gorgias is talking here about the situation that there is motion within what is.
    [Show full text]
  • Apollonian Circle Packings: Dynamics and Number Theory
    APOLLONIAN CIRCLE PACKINGS: DYNAMICS AND NUMBER THEORY HEE OH Abstract. We give an overview of various counting problems for Apol- lonian circle packings, which turn out to be related to problems in dy- namics and number theory for thin groups. This survey article is an expanded version of my lecture notes prepared for the 13th Takagi lec- tures given at RIMS, Kyoto in the fall of 2013. Contents 1. Counting problems for Apollonian circle packings 1 2. Hidden symmetries and Orbital counting problem 7 3. Counting, Mixing, and the Bowen-Margulis-Sullivan measure 9 4. Integral Apollonian circle packings 15 5. Expanders and Sieve 19 References 25 1. Counting problems for Apollonian circle packings An Apollonian circle packing is one of the most of beautiful circle packings whose construction can be described in a very simple manner based on an old theorem of Apollonius of Perga: Theorem 1.1 (Apollonius of Perga, 262-190 BC). Given 3 mutually tangent circles in the plane, there exist exactly two circles tangent to all three. Figure 1. Pictorial proof of the Apollonius theorem 1 2 HEE OH Figure 2. Possible configurations of four mutually tangent circles Proof. We give a modern proof, using the linear fractional transformations ^ of PSL2(C) on the extended complex plane C = C [ f1g, known as M¨obius transformations: a b az + b (z) = ; c d cz + d where a; b; c; d 2 C with ad − bc = 1 and z 2 C [ f1g. As is well known, a M¨obiustransformation maps circles in C^ to circles in C^, preserving angles between them.
    [Show full text]
  • A Dual-Purpose Real/Complex Logarithmic Number System ALU
    A Dual-Purpose Real/Complex Logarithmic Number System ALU Mark G. Arnold Sylvain Collange Computer Science and Engineering ELIAUS Lehigh University Universite´ de Perpignan Via Domitia [email protected] [email protected] Abstract—The real Logarithmic Number System (LNS) allows advantages to using logarithmic arithmetic to represent <[X¯] fast and inexpensive multiplication and division but more expen- and =[X¯]. Several hundred papers [26] have considered con- sive addition and subtraction as precision increases. Recent ad- ventional, real-valued LNS; most have found some advantages vances in higher-order and multipartite table methods, together with cotransformation, allow real LNS ALUs to be implemented for low-precision implementation of multiply-rich algorithms, effectively on FPGAs for a wide variety of medium-precision like (1) and (2). special-purpose applications. The Complex LNS (CLNS) is a This paper considers an even more specialized number generalization of LNS which represents complex values in log- system in which complex values are represented in log-polar polar form. CLNS is a more compact representation than coordinates. The advantage is that the cost of complex multi- traditional rectangular methods, reducing the cost of busses and memory in intensive complex-number applications like the plication and division is reduced even more than in rectangular FFT; however, prior CLNS implementations were either slow LNS at the cost of a very complicated addition algorithm. CORDIC-based or expensive 2D-table-based approaches. This This paper proposes a novel approach to reduce the cost of paper attempts to leverage the recent advances made in real- this log-polar addition algorithm by using a conventional real- valued LNS units for the more specialized context of CLNS.
    [Show full text]
  • Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar Ve Yorumlar
    Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar ve Yorumlar David Pierce October , Matematics Department Mimar Sinan Fine Arts University Istanbul http://mat.msgsu.edu.tr/~dpierce/ Preface Here are notes of what I have been able to find or figure out about Thales of Miletus. They may be useful for anybody interested in Thales. They are not an essay, though they may lead to one. I focus mainly on the ancient sources that we have, and on the mathematics of Thales. I began this work in preparation to give one of several - minute talks at the Thales Meeting (Thales Buluşması) at the ruins of Miletus, now Milet, September , . The talks were in Turkish; the audience were from the general popu- lation. I chose for my title “Thales as the originator of the concept of proof” (Kanıt kavramının öncüsü olarak Thales). An English draft is in an appendix. The Thales Meeting was arranged by the Tourism Research Society (Turizm Araştırmaları Derneği, TURAD) and the office of the mayor of Didim. Part of Aydın province, the district of Didim encompasses the ancient cities of Priene and Miletus, along with the temple of Didyma. The temple was linked to Miletus, and Herodotus refers to it under the name of the family of priests, the Branchidae. I first visited Priene, Didyma, and Miletus in , when teaching at the Nesin Mathematics Village in Şirince, Selçuk, İzmir. The district of Selçuk contains also the ruins of Eph- esus, home town of Heraclitus. In , I drafted my Miletus talk in the Math Village. Since then, I have edited and added to these notes.
    [Show full text]
  • An Introduction to Pythagorean Arithmetic
    AN INTRODUCTION TO PYTHAGOREAN ARITHMETIC by JASON SCOTT NICHOLSON B.Sc. (Pure Mathematics), University of Calgary, 1993 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES Department of Mathematics We accept this thesis as conforming tc^ the required standard THE UNIVERSITY OF BRITISH COLUMBIA March 1996 © Jason S. Nicholson, 1996 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my i department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver, Canada Dale //W 39, If96. DE-6 (2/88) Abstract This thesis provides a look at some aspects of Pythagorean Arithmetic. The topic is intro• duced by looking at the historical context in which the Pythagoreans nourished, that is at the arithmetic known to the ancient Egyptians and Babylonians. The view of mathematics that the Pythagoreans held is introduced via a look at the extraordinary life of Pythagoras and a description of the mystical mathematical doctrine that he taught. His disciples, the Pythagore• ans, and their school and history are briefly mentioned. Also, the lives and works of some of the authors of the main sources for Pythagorean arithmetic and thought, namely Euclid and the Neo-Pythagoreans Nicomachus of Gerasa, Theon of Smyrna, and Proclus of Lycia, are looked i at in more detail.
    [Show full text]
  • Lecture 4. Pythagoras' Theorem and the Pythagoreans
    Lecture 4. Pythagoras' Theorem and the Pythagoreans Figure 4.1 Pythagoras was born on the Island of Samos Pythagoras Pythagoras (born between 580 and 572 B.C., died about 497 B.C.) was born on the island of Samos, just off the coast of Asia Minor1. He was the earliest important philosopher who made important contributions in mathematics, astronomy, and the theory of music. Pythagoras is credited with introduction the words \philosophy," meaning love of wis- dom, and \mathematics" - the learned disciplines.2 Pythagoras is famous for establishing the theorem under his name: Pythagoras' theorem, which is well known to every educated per- son. Pythagoras' theorem was known to the Babylonians 1000 years earlier but Pythagoras may have been the first to prove it. Pythagoras did spend some time with Thales in Miletus. Probably by the suggestion of Thales, Pythagoras traveled to other places, including Egypt and Babylon, where he may have learned some mathematics. He eventually settled in Groton, a Greek settlement in southern Italy. In fact, he spent most of his life in the Greek colonies in Sicily and 1Asia Minor is a region of Western Asia, comprising most of the modern Republic of Turkey. 2Is God a mathematician ? Mario Livio, Simon & Schuster Paperbacks, New York-London-Toronto- Sydney, 2010, p. 15. 23 southern Italy. In Groton, he founded a religious, scientific, and philosophical organization. It was a formal school, in some sense a brotherhood, and in some sense a monastery. In that organization, membership was limited and very secretive; members learned from leaders and received education in religion.
    [Show full text]
  • Apollonius of Pergaconics. Books One - Seven
    APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro].
    [Show full text]
  • Multiplication Fact Strategies Assessment Directions and Analysis
    Multiplication Fact Strategies Wichita Public Schools Curriculum and Instructional Design Mathematics Revised 2014 KCCRS version Table of Contents Introduction Page Research Connections (Strategies) 3 Making Meaning for Operations 7 Assessment 9 Tools 13 Doubles 23 Fives 31 Zeroes and Ones 35 Strategy Focus Review 41 Tens 45 Nines 48 Squared Numbers 54 Strategy Focus Review 59 Double and Double Again 64 Double and One More Set 69 Half and Then Double 74 Strategy Focus Review 80 Related Equations (fact families) 82 Practice and Review 92 Wichita Public Schools 2014 2 Research Connections Where Do Fact Strategies Fit In? Adapted from Randall Charles Fact strategies are considered a crucial second phase in a three-phase program for teaching students basic math facts. The first phase is concept learning. Here, the goal is for students to understand the meanings of multiplication and division. In this phase, students focus on actions (i.e. “groups of”, “equal parts”, “building arrays”) that relate to multiplication and division concepts. An important instructional bridge that is often neglected between concept learning and memorization is the second phase, fact strategies. There are two goals in this phase. First, students need to recognize there are clusters of multiplication and division facts that relate in certain ways. Second, students need to understand those relationships. These lessons are designed to assist with the second phase of this process. If you have students that are not ready, you will need to address the first phase of concept learning. The third phase is memorization of the basic facts. Here the goal is for students to master products and quotients so they can recall them efficiently and accurately, and retain them over time.
    [Show full text]