An Explanation for Conflicting Records of Triassic–Jurassic Plant Diversity

Total Page:16

File Type:pdf, Size:1020Kb

An Explanation for Conflicting Records of Triassic–Jurassic Plant Diversity An explanation for conflicting records of Triassic–Jurassic plant diversity Luke Mandera,1, Wolfram M. Kürschnerb, and Jennifer C. McElwaina aSchool of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland; and bSection Palaeoecology, Laboratory of Palaeobotany and Palynology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands Edited by Paul E. Olsen, Columbia University, Palisades, NY, and approved July 15, 2010 (received for review March 30, 2010) Macrofossils (mostly leaves) and sporomorphs (pollen and spores) efforts to decipher the causes of mass extinctions and also ques- preserve conflicting records of plant biodiversity during the end- tions the extent to which plants are more persistent than animals Permian (P-Tr), Triassic–Jurassic (Tr-J), and end-Cretaceous (K-T) in the face of global change. Additionally, these observations mass extinctions. Estimates of diversity loss based on macrofossils raise doubts about the potential of the fossil record to provide are typically much higher than estimates of diversity loss based on accurate and consistent data on the response of terrestrial vege- sporomorphs. Macrofossils from the Tr-J of East Greenland indicate tation to episodes of major environmental change, which raises that standing species richness declined by as much as 85% in the doubts about the utility of the fossil record as a source of infor- Late Triassic, whereas sporomorph records from the same region, mation from which we can augment our understanding and man- and from elsewhere in Europe, reveal little evidence of such cata- agement of the current climate and biodiversity crises. To explore strophic diversity loss. To understand this major discrepancy, this issue, we have investigated the macrofossil and sporomorph we have used a new high-resolution dataset of sporomorph assem- records of vegetation change during the Triassic–Jurassic mass blages from Astartekløft, East Greenland, to directly compare the extinction (Tr-J; ∼200 Ma). macrofossil and sporomorph records of Tr-J plant biodiversity. Our The Tr-J coincided with massive volcanism associated with the results show that sporomorph assemblages from the Tr-J boundary opening of the Atlantic Ocean (13–15), which led to a four-fold interval are 10–12% less taxonomically diverse than sporomorph increase in atmospheric CO2 levels (16) and a consequent rise in assemblages from the Late Triassic, and that vegetation composi- global temperatures of between 3 and 6 °C (16–18). Compilations GEOLOGY tion changed rapidly in the boundary interval as a result of emigra- of stratigraphic ranges of animal taxa indicate that 23% of marine tion and/or extirpation of taxa rather than immigration and/or families (5), 63% of marine invertebrate genera (19), and 22% of origination of taxa. An analysis of the representation of different terrestrial families suffered extinction at this time (5). In contrast, plant groups in the macrofossil and sporomorph records at Astar- family-level compilations of plant diversity indicate that only the tekløft reveals that reproductively specialized plants, including cy- Peltaspermaceae, a clade of seed-ferns, was lost from the Earth’s cads, bennettites and the seed-fern Lepidopteris are almost absent biota at the Tr-J (e.g., ref. 9). Investigations of macrofossils in from the sporomorph record. These results provide a means of Jameson Land, East Greenland, have shown a genus-level extinc- ECOLOGY reconciling the macrofossil and sporomorph records of Tr-J vegeta- tion rate of ∼17% and have revealed that standing species rich- tion change, and may help to understand vegetation change dur- ness across the region declined by ∼85% at the Tr-J (20, 21). ing the P-Tr and K-T mass extinctions and around the Paleocene– Plants with specialized reproductive biology (insect pollinated) Eocene Thermal Maximum. were among those taxa at greatest risk of extinction or extirpation (21), and relative abundance distributions of macrofossil genera extinction ∣ palaeobotany ∣ palynology ∣ taphonomy ∣ Triassic–Jurassic have shown that the pace of biodiversity loss in this region was abrupt rather than gradual (22). The Tr-J in the Newark Basin, North America, records a regional sporomorph diversity loss of ompilations of stratigraphic ranges of land plants through ∼60% Cgeological time do not show abrupt declines in taxonomic (23), but existing sporomorph records spanning the Tr-J in diversity (1–3). This contrasts sharply with the history of animal East Greenland, although qualitative, provide little evidence of life, which is marked by five geologically rapid decreases in global such catastrophic diversity loss (24, 25). There is also little evi- taxonomic diversity, known as mass extinctions (4, 5). This fun- dence for abrupt biodiversity loss in sporomorph records from damental difference between the evolutionary histories of plants nearby sections in Europe (e.g., ref. 26), where the Tr-J is char- and animals may be due to the persistence of higher plant taxa, acterized by compositional change (e.g., refs. 26 and 27). and has led to the suggestion that plants are more resistant to Using a new high-resolution dataset of sporomorph assem- mass extinction than animals (1, 6–9). Despite this, studies of fos- blages from a Tr-J section at Astartekløft, East Greenland, we sil plants during times of faunal mass extinction have revealed present a case study that offers broad insights into the tapho- extensive ecological disruption and decreased plant genus/species nomic processes causing discrepancies between the macrofossil diversity on local and regional scales (8, 9), suggesting that plants and sporomorph records of plants. Specifically, this study aims are not immune to the myriad environmental changes accompa- to provide (i) quantitative estimates of Tr-J terrestrial plant diver- sity at within- and among-sample scales; (ii) an assessment of the nying mass extinctions. However, plant fossils preserve conflicting records of diversity nature and timing of compositional change in the source vegeta- tion; and (iii) an analysis of the agreement between the macro- loss during these critical intervals in Earth history. Estimates of fossil and sporomorph records of the source vegetation. Our diversity loss based on macrofossils (mostly leaves) are typically results show that the sporomorph record does not preserve an much higher than estimates of diversity loss based on sporo- morphs (pollen and spores). The end-Permian mass extinction [P-Tr; ∼251 million years ago (Ma)] in Australia saw a 97% regio- Author contributions: L.M., W.M.K., and J.C.M. designed research; L.M., W.M.K., and J.C.M. nal diversity loss of macrofossils but a 19% loss of sporomorph performed research; L.M. analyzed data; and L.M. wrote the paper. diversity (8, 10), and the end-Cretaceous mass extinction (K-T; The authors declare no conflict of interest. ∼65 Ma) in North America resulted in a 70–90% diversity loss This article is a PNAS Direct Submission. of macrofossils but a 25–30% loss of sporomorph diversity (11, 1To whom correspondence should be addressed. E-mail: [email protected]. 12). These discrepancies present a barrier to understanding floral This article contains supporting information online at www.pnas.org/lookup/suppl/ change during episodes of faunal mass extinction. This hampers doi:10.1073/pnas.1004207107/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1004207107 PNAS Early Edition ∣ 1of6 Downloaded by guest on October 2, 2021 Downloaded by guest on October 2, 2021 fossils wereEarly recorded Jurassic (Hettangian) in agesents (Fig. situ the 1). topmost A from total upper of Rhaetian plant 2,898 and macro- plant beds beds 6 1 and 7 are of and sporomorphs were recorded from 40at productive samples 10 (Table 1 cmDataset intervals S1 within each plant bed and a total of 14,579 beds 1 bed 5 (following recommendations in ref. 32). Accordingly, plant Median records the highest median richnesscords in the the entire lowest section median (Fig.bed richness 1). 1 in to the plant section(Fig. 1). bed and Median 5 plant richness (Fig. declines bedSimpson through 7 1). the Plant Triassic from bed plant 6 (earliest Jurassic) re- ian and interquartile range.at Whiskers 301 counted represent sporomorphs, maximum and Simpson andref. 31). minimum. Box and whisker plotFig. of 1. rarefied within-sample sporomorph richness Floral Diversity and Composition. of the pollen morphospecies boundary at Astartekløft is approximatedJameson by Land, the first Eastfrom occurrence Greenland eight (Fig. horizons 1 richThe in macrofossils and plant and ref. sporomorphs macrofossils analyzedResults 21). at here Astartekløft The were in collected Tr-J change. tween macrofossil andrecord, sporomorph and this records provides one ofLepidopteris explanation for Tr-J the vegetation discrepancy be- include cycadsin (28), the boundary interval. bennettites Reproductively specializedGreenland, (29, plants, which and that 30), the vegetationabrupt and changed loss composition of the rapidly terrestrial plant seed-fern biodiversity across the Tr-J in East 2of6 and bed 1 (Fig. 1). The(Fig. interquartile 1). ranges The of lowest within-sample richness richness (KW is no statistically significantsamples difference from each in plant median bed. within-sample Using a Kruskal Dataset S2 D ∣ – Schematic sedimentary log of the Astartekløft section (adapted from Meters are large, demonstrating considerable variation within- 4 are of Late Triassic (Rhaetian) age, plant bed 5 repre- 10 20 30 40 50 60 70 ’ D s diversity index values ( www.pnas.org/cgi/doi/10.1073/pnas.1004207107 ). Rock samples for sporomorph analysis were taken Sand Plant Bed is lowest in plant bed 6 and highest in plant bed 7 (Kap Stewart Group)Triassic (Rhaetian) Jurassic (Hettangian) (21), are underrepresented in the sporomorph fossil ¼ ). 12 Mud 1 1.5 2 3 4 5 6 7 15 20 25 30 35 0.5 0.7 0.9 D . 319 values are recorded in samples from plant 6 Expected Richness Index Simpson’s ; 1 ; 4 ; 7 ; 6 Cerebropollenites thiergartii – ; 9 ; 3 ; D 4 ) fluctuate through the section Within-sample richness and ’ s diversity index.
Recommended publications
  • Gymnosperm Foliage from the Upper Triassic of Lunz, Lower Austria: an Annotated Check List and Identification Key
    Geo.Alp, Vol. 7, S. 19–38, 2010 GYMNOSPERM FOLIAGE FROM THE UPPER TRIASSIC OF LUNZ, LOWER AUSTRIA: AN ANNOTATED CHECK LIST AND IDENTIFICATION KEY Christian Pott1 & Michael Krings2 With 7 figures and 1 table 1 Naturhistoriska riksmuseet, Sektionen för paleobotanik, Box 50007, SE-104 05 Stockholm, Sweden; [email protected] 2 Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians-Universität, and Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 München, Germany; [email protected] Abstract The famous Lunz flora from Lower Austria is one of the richest and most diverse Late Triassic floras of the Northern He- misphere. The historical outcrops (mainly coal mines) are no longer accessible, but showy fossils can still be collected from natural exposures around the town of Lunz-am-See and from several of the old spoil tips. This paper presents an annotated check list with characterisations of all currently recognised gymnosperm foliage taxa in the Lunz flora. The descriptions are exemplified by illustrations of typical specimens and diagnostic features of the leaf morphology and epidermal anatomy. Moreover, a simple identification key for the taxa based on macromorphological features is provided that facilitates identification of newly collected specimens. 1. Introduction The Carnian (Late Triassic) flora from Lunz in Lo- ments (i.e. reproductive structures) among the fossils wer Austria is one of only a few well-preserved flo- (see e.g., Krasser, 1917, 1919; Kräusel, 1948, 1949, ras from the Alpine Triassic (Cleal, 1993; Dobruskina, 1953; Pott et al., 2010), the most striking feature of 1998).
    [Show full text]
  • La Flora Triásica Del Grupo El Tranquilo, Provincia De Santa Cruz, Patagonia
    Asociación Paleontológica Argentina. Publicación Especial 6 ISSN0002-7014 X Simposio Argentino de Paleobotánica y Palinología: 27-32. Buenos Aires, 30-08-99 La flora triásica del Grupo El Tranquilo, provincia de Santa Cruz, Patagonia. Parte VII: Cycadophyta Silvia GNAEDINGER' Abstract. THE TRIASSICFLORAOF THE EL TRANQUILOGROUP, SANTA CRUZ PROVINCE,PATAGONIA.PART VII. CYCADOPHYTA.Plants impressions of the Cycadopsida (sensu lato) from the Upper Triassic El Tranquilo Group are described. This plant group is limited to the genus Pseudocienis and PterophyIlum and comprí- ses: Pseudoctenis fissa Du Toit, Pseudoctenis spaiulata Du Toit and PterophyIlum muliilineaium Shirley from the Cañadon Largo Formation and Pseudoctenis sp. from the Laguna Colorada Formation. They are very scarcely represented in the flora, slightly more abundant in the Cañadón Largo Formation. Key words. Cycadophyta, Impressions, Systematics, Upper Triassic, Santa Cruz, Argentina. Palabras clave. Cycadophyta, Impresiones, Sistemática, Triásico Superior, Santa Cruz, Argentina. Introducción tados como Cycadales en tanto que Pterophyllum Brongniart por datos cuticulares de algunas de sus La presente contribución es parte de una serie de- especies se ubica en las Bennettitales. En este caso las dicada al estudio sistemático de la tafoflora del Gru- formas descriptas carecen de materia orgánica pre- po El Tranquilo, e involucra la descripción de las Cy- servada y como no hay evidencia de caracteres cutí- cadophyta. culares en este trabajo son tratadas como Cycadopsí- En la primera parte de esta serie, [alfin y Herbst da en un sentido amplio. (1995), brindan datos estratigráficos y sedimen- tológicos de las unidades portadoras de las plantas que integran el Grupo El Tranquilo (Triásico Supe- Materiales y métodos rior), provincia de Santa Cruz.
    [Show full text]
  • A New Genus Navipelta (Peltaspermales, Pteridospermae) from the Permian/Triassic Boundary Deposits of the Moscow Syneclise E
    ISSN 0031-0301, Paleontological Journal, 2009, Vol. 43, No. 10, pp. 1262–1271. © Pleiades Publishing, Ltd., 2009. A New Genus Navipelta (Peltaspermales, Pteridospermae) from the Permian/Triassic Boundary Deposits of the Moscow Syneclise E. V. Karasev Borissiak Paleontological Institute of the Russian Academy of Sciences, 117997, Profsoyuznaya, 123, Moscow e-mail: [email protected] Received January 25, 2009 Abstract—A new genus of peltaspermalean ovuliferous organs Navipelta gen. nov. is described from the ter- restrial deposits of the Nedubrovo locality (village of Nedubrovo, Vologda Region, Russia), belonging to the base of Vetlugian Group (Upper Permian–Lower Triassic). Data on the anatomy of the peltate bilateral ovulif- erous organs are obtained for the first time. Vascular strands in the peltoid depart from that of a stalk and branch up to three times distally. Transfusion tissue around the vascular strands is well developed. The new genus had a system of radially arranged resin canals, broaden into large secretory cavities. Key words: Peltaspermaceae, ovuliferous organs, Peltaspermum, Autunia, Permian/Triassic boundary, Vetlu- gian Group, systematics. DOI: 10.1134/S0031030109100086 INTRODUCTION angium Zhao ex Gomankov et Meyen and Autuniopsis Poort et Kerp) or on the basis of their association with The family Peltaspermaceae attracts attention of different foliage (Peltaspermopsis buevichiae Goman- many researchers, because its members were the main kov et. Meyen and Meyenopteris, Poort et Kerp) component of the Late Permian Angaraland floras. (Gomankov and Meyen, 1986; Poort and Kerp, 1990). They escaped the global crisis on the Permian/Triassic boundary and transited in the Mesozoic, where domi- The morphology and epidermal structure of seed- nated during the Middle and Late Triassic of the North- bearing organs in the Peltaspermaceae were studied rel- ern as well as Southern hemispheres.
    [Show full text]
  • Triassic) in Barreal Depocenter, San Juan Province, Argentina
    Andean Geology ISSN: 0718-7092 ISSN: 0718-7106 [email protected] Servicio Nacional de Geología y Minería Chile Stratigraphical, sedimentological and palaeofloristic characterization of the Sorocayense Group (Triassic) in Barreal depocenter, San Juan Province, Argentina Bodnar, Josefina; Iglesias, Ari; Colombi, Carina E.; Drovandi, Juan Martín Stratigraphical, sedimentological and palaeofloristic characterization of the Sorocayense Group (Triassic) in Barreal depocenter, San Juan Province, Argentina Andean Geology, vol. 46, no. 3, 2019 Servicio Nacional de Geología y Minería, Chile Available in: https://www.redalyc.org/articulo.oa?id=173961656006 This work is licensed under Creative Commons Attribution 3.0 International. PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative Josefina Bodnar, et al. Stratigraphical, sedimentological and palaeofloristic characterization of ... Research article Stratigraphical, sedimentological and palaeofloristic characterization of the Sorocayense Group (Triassic) in Barreal depocenter, San Juan Province, Argentina Caracterización estratigráfica, sedimentológica y paleoflorística del Grupo Sorocayense (Triásico) en el área de Barreal, provincia de San Juan, Argentina Josefina Bodnar *12 Redalyc: https://www.redalyc.org/articulo.oa? Universidad Nacional de La Plata, Argentina id=173961656006 [email protected] Ari Iglesias 23 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina [email protected] Carina E. Colombi 24 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina [email protected] Juan Martín Drovandi 24 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina [email protected] Received: 30 November 2017 Accepted: 30 October 2018 Published: 04 February 2019 Abstract: e northern area of Cuyo Basin (west-central Argentina) corresponds to the Rincón Blanco half-graben, whose filling is arranged into the Rincón Blanco and Sorocayense groups.
    [Show full text]
  • Coevolution of Cycads and Dinosaurs George E
    Coevolution of cycads and dinosaurs George E. Mustoe* INTRODUCTION TOXICOLOGY OF EXTANT CYCADS cycads suggests that the biosynthesis of ycads were a major component of Illustrations in textbooks commonly these compounds was a trait that C forests during the Mesozoic Era, the depict herbivorous dinosaurs browsing evolved early in the history of the shade of their fronds falling upon the on cycad fronds, but biochemical evi- Cycadales. Brenner et al. (2002) sug- scaly backs of multitudes of dinosaurs dence from extant cycads suggests that gested that macrozamin possibly serves a that roamed the land. Paleontologists these reconstructions are incorrect. regulatory function during cycad have long postulated that cycad foliage Foliage of modern cycads is highly toxic growth, but a strong case can be made provided an important food source for to vertebrates because of the presence that the most important reason for the reptilian herbivores, but the extinction of two powerful neurotoxins and carcin- evolution of cycad toxins was their of dinosaurs and the contemporaneous ogens, cycasin (methylazoxymethanol- usefulness as a defense against foliage precipitous decline in cycad popula- beta-D-glucoside) and macrozamin (beta- predation at a time when dinosaurs were tions at the close of the Cretaceous N-methylamine-L-alanine). Acute symp- the dominant herbivores. The protective have generally been assumed to have toms triggered by cycad foliage inges- role of these toxins is evidenced by the resulted from different causes. Ecologic tion include vomiting, diarrhea, and seed dispersal characteristics of effects triggered by a cosmic impact are abdominal cramps, followed later by loss modern cycads. a widely-accepted explanation for dino- of coordination and paralysis of the saur extinction; cycads are presumed to limbs.
    [Show full text]
  • Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
    438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna.
    [Show full text]
  • Apa 1065.Qxd
    AMEGHINIANA (Rev. Asoc. Paleontol. Argent.) - 42 (2): 377-394. Buenos Aires, 30-06-2005 ISSN 0002-7014 Las tafofloras triásicas de la región de los Lagos, Xma Región, Chile Rafael HERBST1, Alejandro TRONCOSO2 y Jorge MUÑOZ3 Abstract. THE TRIASSIC TAPHOFLORAS FROM THE LAKE DISTRICT, XTH REGION, CHILE. A list of the fossil plants, in some cases with their description, from the Panguipulli and Tralcán Formations, from the lo- calities Licán Ray, Punta Peters and Cerro Tralcán, from the Lake District (72º15’ S and 39º30’/39º45’ W), Xth Region, Chile, is presented. The flora is composed of 27 species of the following genera: Hepatica in- det., Neocalamites, Asterotheca, Cladophlebis, Gleichenites, Dicroidium, Johnstonia, Lepidopteris, Pterophyllum, Pseudoctenis, Sphenobaiera, Ginkgoites, Phoenicopsis, Rissikia, Heidiphyllum, Gen. et sp. indet., Linguifolium and Taeniopteris; a new species of Astrerotheca and two new species of Pterophyllum are also described. The quantitative composition of the three localities is analyzed showing that they are quite different, in spite of being of similar age and geographically close to each other; it is suggested that the difference is basically paleoenvironmental. Resumen. Se da a conocer la composición florística y la descripción de algunas especies de tres tafofloras de la región de los Lagos del sur de Chile, provenientes de las localidades de Licán Ray, Punta Peters y cerro Tralcán (72°15’ S - 39°30’/39°45’ O), que forman parte de las Formaciones Panguipulli, las dos pri- meras, y Tralcán, la última. La flora se compone de 27 especies incluidas en los géneros: Hepatica indet., Neocalamites, Asterotheca, Cladophlebis, Gleichenites, Dicroidium, Johnstonia, Lepidopteris, Pterophyllum, Pseudoctenis, Sphenobaiera, Ginkgoites, Phoenicopsis, Rissikia, Heidiphyllum, Gen.
    [Show full text]
  • © in This Web Service Cambridge University
    Cambridge University Press 978-0-521-88715-1 - An Introduction to Plant Fossils Christopher J. Cleal & Barry A. Thomas Index More information Index Abscission 33, 76, 81, 82, 119, Antarctica 25, 26, 93, 117, 150, 153, Baiera 169 150, 191 209, 212 Balme, Basil 24 Acer 195, 198, 216 Antheridia 56, 64, 88 Bamboos 197 Acitheca 49, 119 Antholithus 31 Banks, Harlan P. 28 Acorus 194 Araliaceae 191 Baragwanathia 28, 43, 72, 74 Acrostichum 129, 130 Araliosoides 187 Bark 67 Actinocalyx 190 Araucaria 157, 159, 160, 164, 181 Barsostrobus 76 Adpressions 3, 4, 9, 12, 38 Araucariaceae 163, 212, 214 Barthel, Manfred 21 Agathis 157 Araucarites 163 Bean, William 29 Agavaceae 192 Arber, Agnes 19, 65 Beania 30 Agave 193 Arber, E. A. Newell 18, 19, 30 ReconstructionofBeania-tree169,172 Aglaophyton 64 Arcellites 133 Bear Island 94, 95 Agriculture 220 Archaeanthus 187, 189 Beck, Charles 69 Alethopteris 46, 144, 145 Archaeocalamitaceae 97, 205 Belgium 19, 22, 39, 68, 112, 129 Algae 55 Archaeocalamites 9799, 100, 105 Belize 125 Alismataceae 194 Archaeopteridales 69 Bennettitales 33, 157, 170, 171, Allicospermum 165 Archaeopteris 39, 40, 68, 69, 71, 153 172174, 182, 211214 Allochthonous assemblages 3, 11 Archaeosperma 137, 139 Bennie, James 24 Alnus 24, 179, 216 Archegonia 56, 135, 137 Bentall, R. 24 Aloe 192 Arctic-Alpine flora 219 Bertrand, Paul 18 Alternating generations 1, 5557, 85 Arcto-Tertiary flora 117, 215, 216 Bertrandia 114 Amerosinian Flora 96, 97, 205, Argentina 3, 77, 130, 164 Betulaceae 179, 195, 215 206, 208 Ariadnaesporites 132 Bevhalstia 188 Amber, preservation in 7, 42, 194 Arnold, Chester 28, 29, 67 Binney, Edward 21 Anabathra 81 Arthropitys 97, 101 Biomes 51 Andrews, Henry N.
    [Show full text]
  • Fundamentals of Palaeobotany Fundamentals of Palaeobotany
    Fundamentals of Palaeobotany Fundamentals of Palaeobotany cuGU .叮 v FimditLU'φL-EjAA ρummmm 吋 eαymGfr 伊拉ddd仇側向iep M d、 況 O C O W Illustrations by the author uc削 ∞叩N Nn凹創 刊,叫MH h 咀 可 白 a aEE-- EEA First published in 1987 by Chapman αndHallLtd 11 New Fetter Lane, London EC4P 4EE Published in the USA by Chα~pman and H all 29 West 35th Street: New Yo地 NY 10001 。 1987 S. V. M秒len Softcover reprint of the hardcover 1st edition 1987 ISBN-13: 978-94-010-7916-7 e-ISBN-13: 978-94-009-3151-0 DO1: 10.1007/978-94-009-3151-0 All rights reserved. No part of this book may be reprinted, or reproduced or utilized in any form or by any electronic, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any information storage and retrieval system, without permission in writing from the publisher. British Library Cataloguing in Publication Data Mey凹, Sergei V. Fundamentals of palaeobotany. 1. Palaeobotany I. Title 11. Osnovy paleobotaniki. English 561 QE905 Library 01 Congress Catα loging in Publication Data Mey凹, Sergei Viktorovich. Fundamentals of palaeobotany. Bibliography: p. Includes index. 1. Paleobotany. I. Title. QE904.AIM45 561 8ι13000 Contents Foreword page xi Introduction xvii Acknowledgements xx Abbreviations xxi 1. Preservation 抄'pes αnd techniques of study of fossil plants 1 2. Principles of typology and of nomenclature of fossil plants 5 Parataxa and eutaxa S Taxa and characters 8 Peculiarity of the taxonomy and nomenclature of fossil plants 11 The binary (dual) system of fossil plants 12 The reasons for the inflation of generic na,mes 13 The species problem in palaeobotany lS The polytypic concept of the species 17 Assemblage-genera and assemblage-species 17 The cladistic methods 18 3.
    [Show full text]
  • Habit and Ecology of the Petriellales, an Unusual Group of Seed Plants from the Triassic of Gondwana Author(S): Benjamin Bomfleur, Anne-Laure Decombeix, Andrew B
    Habit and Ecology of the Petriellales, an Unusual Group of Seed Plants from the Triassic of Gondwana Author(s): Benjamin Bomfleur, Anne-Laure Decombeix, Andrew B. Schwendemann, Ignacio H. Escapa, Edith L. Taylor, Thomas N. Taylor, Stephen McLoughlin Source: International Journal of Plant Sciences, Vol. 175, No. 9 (November/December 2014), pp. 1062-1075 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/10.1086/678087 . Accessed: 08/12/2014 09:32 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to International Journal of Plant Sciences. http://www.jstor.org This content downloaded from 130.242.24.193 on Mon, 8 Dec 2014 09:32:01 AM All use subject to JSTOR Terms and Conditions Int. J. Plant Sci. 175(9):1062–1075. 2014. q 2014 by The University of Chicago. All rights reserved. 1058-5893/2014/17509-0008$15.00 DOI:10.1086/678087 HABIT AND ECOLOGY OF THE PETRIELLALES, AN UNUSUAL GROUP OF SEED PLANTS FROM THE TRIASSIC OF GONDWANA Benjamin Bomfleur,1,*,† Anne-Laure Decombeix,‡ Andrew B.
    [Show full text]
  • La Paleoflora Triásica Del Cerro Cacheuta, Provincia De Mendoza, Argentina
    AMEGHINIANA - 2011 - Tomo 48 (4): 520 – 540 ISSN 0002-7014 LA PALEOFLORA TRIÁSICA DEL CERRO CACHEUTA, PROVINCIA DE MENDOZA, ARGENTINA. PETRIELLALES, CYCADALES, GINKGOALES, VOLTZIALES, CONIFERALES, GNETALES Y GIMNOSPERMAS INCERTAE SEDIS EDUARDO M. MOREL1, 2, ANALÍA E. ARTABE1, 3, DANIEL G. GANUZA1 y ADOLFO ZÚÑIGA1 1División Paleobotánica, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. Paseo del Bosque s/n, B1900FWA La Plata, Argentina. emorel@museo. fcnym.unlp.edu.ar, [email protected], [email protected], [email protected] 2Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC) 3Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Resumen. En el Cerro Cacheuta (noroeste de la provincia de Mendoza, Argentina) se relevaron cuatro perfiles de detalle, y en las localidades de Puesto Míguez y Agua de las Avispas se reconocieron siete estratos con plantas fósiles. En este aporte se presenta el estudio sistemático de las plantas fósiles encontradas y se analizan los taxones correspondientes a las Gymnospermopsida: Petriellales, Cycadales, Ginkgoales, Voltziales, Coniferales, Gnetales y Gymnospermophyta incertae sedis. El estudio sistemático incluye 25 taxones identificados como Rochipteris truncata (Frenguelli) comb. nov., Nilssonia taeniopteroides Halle, Kurtziana brandmayri Frenguelli, K. cacheutensis (Kurtz) Frenguelli, Pseudoctenis fal- coneriana (Morris) Bonetti, P. spectabilis Harris, Baiera cuyana Frenguelli, B. rollerii Frenguelli, Ginkgoidium bifidum Frenguelli, Sphenobaiera argentinae (Kurtz) Frenguelli, Heidiphyllum elongatum (Morris) Retallack, Telemachus elongatus Anderson, T. lignosus Retallack, Rissikia me- dia (Tenison-Woods) Townrow, Cordaicarpus sp., Gontriglossa sp., Yabeiella brackebuschiana (Kurtz) Ôishi, Y. mareyesiaca (Geinitz) Ôishi, Y. spathulata Ôishi, Y. wielandi Ôishi, Fraxinopsis andium (Frenguelli) Anderson y Anderson, F.
    [Show full text]
  • Fossilized Pollination Droplet in a New Seed Genus from the Middle Triassic of Nidpur, India
    Fossilized pollination droplet in a new seed genus from the Middle Triassic of Nidpur, India NUPUR BHOWMIK and SHABNAM PARVEEN Bhowmik, N. and Parveen, S. 2014. Fossilized pollination droplet in a new seed genus from the Middle Triassic of Nidpur, India. Acta Palaeontologica Polonica 59 (2): 491–503. The present article reports a fossilized pollination droplet at the micropylar orifice in a compressed seed Gopadisper- mum papillatus gen. et sp. nov. from the Middle Triassic beds of Nidpur, Madhya Pradesh, India. The shapeless droplet forming a convexity above the micropylar orifice is comprised of a resinous crystalline substance. Entrapped within the droplet are a few saccate pollen grains. The seeds are small, oblong to widely elliptical in shape, about 3 mm long and generally 2 mm broad. The micropylar end shows a short straight beak-like micropyle often extended beyond a persistently adhering wrinkled tissue lying outside the seed coat. The seed is composed of four membranes excluding the adherent tissue. They are the outer and inner cuticles of integument, the nucellar cuticle distally modified to form a dark collar-like pollen chamber and the innermost megaspore membrane. Cuticles of the tissue adhering to seed coat are different from seed coat cuticles. The pollen grains inside the pollen chamber are frequently clumped together forming a pollen mass. Individual pollen grains appear spheroidal to ellipsoidal in shape and are saccate. This is the first report of the preservation of a pollination droplet in a compressed seed specimen from the Nidpur Triassic beds. Preservation of the droplet can be attributed to its supposed resinous constitution and the entrapped organic contents (pollen grains).
    [Show full text]