Wifi Evolution | Michail Balkonis

Total Page:16

File Type:pdf, Size:1020Kb

Wifi Evolution | Michail Balkonis WIFI EVOLUTION | MICHAIL BALKONIS WIFI EVOLUTION “BEYOND WIFI 6” Master's thesis Digital Communications & Networks Balkonis Michail mwe1905 Supervisor: Angeliki Alexiou Athens, June 2021 pg. 1 WIFI EVOLUTION | MICHAIL BALKONIS This thesis is dedicated to my beloved sister Elli as well as my parents who gave us all the supplies… pg. 2 WIFI EVOLUTION | MICHAIL BALKONIS TABLE OF CONTENTS TABLE OF CONTENTS ........................................................................................................................................... 3 List of Abbreviations ........................................................................................................................................... 6 Acknowledgements............................................................................................................................................. 8 ABSTRACT ........................................................................................................................................................... 9 ΠΕΡΙΛΗΨΗ ........................................................................................................................................................ 10 1. INTRODUCTION IN WIRELESS TECHNOLOGY ............................................................................................. 11 1.1 Brief History of Wireless Technology ................................................................................................. 13 1.2 IEEE 802.11 Architecture .................................................................................................................... 13 1.2.1 Station ....................................................................................................................................... 13 1.2.2 Access Point ............................................................................................................................... 13 1.2.3 Wireless Medium ....................................................................................................................... 14 1.3 Architectures ..................................................................................................................................... 14 1.4 Evolution of the standard 802.11 ....................................................................................................... 16 1.5 IEEE 802.11 Physical Layer ................................................................................................................. 21 1.5.1 Physical layer (phy) frame structure .......................................................................................... 22 1.5.2 Operating Physical Layer ............................................................................................................ 23 1.6 Medium Access Control (MAC) Layer & Key Technologies ................................................................. 24 1.6.1 Distributed Coordination Function (DCF) ................................................................................... 24 2. INTRODUCTION OF WI FI 6 (802.11AX) ...................................................................................................... 26 2.1 Can 802.11ax go so fast? .................................................................................................................... 27 2.2 Design Goals of Wi-Fi 6 ...................................................................................................................... 28 2.3 New Features in Wi-Fi 6 ..................................................................................................................... 29 2.4 Overview of Wi-Fi 6 ........................................................................................................................... 30 2.5 Physical Enhancements Overview of 802.11ax .................................................................................. 32 2.5.1 New modulation technology ...................................................................................................... 33 2.5.2 New Coding Strategy .................................................................................................................. 36 2.5.3 New Mechanism Subcarrier Division .......................................................................................... 36 2.5.4 Enhanced Multiple Access Technology ....................................................................................... 37 2.5.5 Channel Bonding Enhancement ................................................................................................. 44 2.5.6 New Headers PPDU .................................................................................................................... 47 pg. 3 WIFI EVOLUTION | MICHAIL BALKONIS 2.6 BSS Coloring ....................................................................................................................................... 49 2.6.1 What is BSS Coloring? ................................................................................................................ 50 2.6.2 BSS coloring (Benefits and Advantages) ..................................................................................... 50 2.7 Target Wake Time .............................................................................................................................. 51 2.8 Use Cases for Wi-Fi 6 Technology ...................................................................................................... 52 2.9 User Experience of Wi-Fi 6 ................................................................................................................. 53 2.10 Advantages in Wi-Fi 6 ........................................................................................................................ 53 2.11 Disadvantages in Wi-Fi 6 .................................................................................................................... 54 3. THE FUTURE OF WI-FI ................................................................................................................................ 55 3.1 Wi-Fi 6E: “The New Lane” .................................................................................................................. 55 3.2 The Importance of 6GHz .................................................................................................................... 55 3.3 IEEE 802.11ax/be Frequency Bands ................................................................................................... 56 3.4 Benefits of 6 GHz ............................................................................................................................... 56 3.5 6 GHz Wi-Fi Challenges and Strategics ............................................................................................... 57 4. 802.11BE WI-FI 7: EXTREMELY HIGH THROUGHPUT ................................................................................. 58 4.1 Evolution to Wi-Fi 7 .......................................................................................................................... 58 4.2 How Extreme High Throughput can be achieved ? ............................................................................. 59 4.3 The Development Timeline of IEEE 802.11be ..................................................................................... 60 4.3.1 Release 1 Features ..................................................................................................................... 61 4.3.2 Release 2 Features ..................................................................................................................... 63 4.4 Physical Frame ................................................................................................................................... 65 4.5 The MAC Layer ................................................................................................................................... 68 4.5.1 Multi-link operation ................................................................................................................... 68 4.5.2 enhancements of Spatial streams and MIMO ............................................................................ 74 4.5.3 Multi-Ap Features ...................................................................................................................... 75 4.5.4 HARQ ......................................................................................................................................... 78 4.5.5 Non-Orthogonal Multiple Access ............................................................................................... 80 4.5.6 The Channel Sounding................................................................................................................ 81 4.6 Physical Enhancements for EHT ......................................................................................................... 83 4.6.1 New Bandwidth Mode ............................................................................................................... 85 4.6.2 Support Multi RU ....................................................................................................................... 87 4.6.3 Preamble Design of Extremely High Throughput........................................................................ 88 4.6.4 Higher-Order Modulation.......................................................................................................... 90 pg. 4 WIFI EVOLUTION | MICHAIL BALKONIS 4.7
Recommended publications
  • Prostep Ivip CPO Statement Template
    CPO Statement of Mentor Graphics For Questa SIM Date: 17 June, 2015 CPO Statement of Mentor Graphics Following the prerequisites of ProSTEP iViP’s Code of PLM Openness (CPO) IT vendors shall determine and provide a list of their relevant products and the degree of fulfillment as a “CPO Statement” (cf. CPO Chapter 2.8). This CPO Statement refers to: Product Name Questa SIM Product Version Version 10 Contact Ellie Burns [email protected] This CPO Statement was created and published by Mentor Graphics in form of a self-assessment with regard to the CPO. Publication Date of this CPO Statement: 17 June 2015 Content 1 Executive Summary ______________________________________________________________________________ 2 2 Details of Self-Assessment ________________________________________________________________________ 3 2.1 CPO Chapter 2.1: Interoperability ________________________________________________________________ 3 2.2 CPO Chapter 2.2: Infrastructure _________________________________________________________________ 4 2.3 CPO Chapter 2.5: Standards ____________________________________________________________________ 4 2.4 CPO Chapter 2.6: Architecture __________________________________________________________________ 5 2.5 CPO Chapter 2.7: Partnership ___________________________________________________________________ 6 2.5.1 Data Generated by Users ___________________________________________________________________ 6 2.5.2 Partnership Models _______________________________________________________________________ 6 2.5.3 Support of
    [Show full text]
  • Beyond BIOS Developing with the Unified Extensible Firmware Interface
    Digital Edition Digital Editions of selected Intel Press books are in addition to and complement the printed books. Click the icon to access information on other essential books for Developers and IT Professionals Visit our website at www.intel.com/intelpress Beyond BIOS Developing with the Unified Extensible Firmware Interface Second Edition Vincent Zimmer Michael Rothman Suresh Marisetty Copyright © 2010 Intel Corporation. All rights reserved. ISBN 13 978-1-934053-29-4 This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought. Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Intel may make changes to specifications, product descriptions, and plans at any time, without notice. Fictitious names of companies, products, people, characters, and/or data mentioned herein are not intended to represent any real individual, company, product, or event. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Intel, the Intel logo, Celeron, Intel Centrino, Intel NetBurst, Intel Xeon, Itanium, Pentium, MMX, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
    [Show full text]
  • Power Reduction of a CMOS High-Speed Interface Using Power Gating
    FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Power reduction of a CMOS high-speed interface using power gating Luís Miguel Granja Gomes FOR JURY EVALUATION Mestrado Integrado em Engenharia Eletrotécnica e de Computadores FEUP Supervisor: Prof. João Canas Ferreira Synopsys Supervisor: Engineer Hélder Araújo June 25, 2013 c Luís Gomes, 2013 Resumo A indústria de circuitos VLSI sofreu uma série de revoluções na forma como os chips eletrónicos são projetados. Começou com o uso de linguagens de descrição de hardware e de avançadas ferramentas de trabalho, com o objetivo de diminuir os tempos de projeto e de produção, ao mesmo tempo que circuitos mais rápidos e pequenos eram construídos. A produção de dispos- itivos eletrónicos aumentou significativamente, de tal modo que, hoje, são usados biliões todos os dias. Atualmente, o maior desafio não é só projetar circuitos integrados mais pequenos e rápidos, mas manter esses acréscimos de velocidade e diminuição de tamanho, reduzindo simultaneamente o consumo de potência. Com a diminuição do tamanho da tecnologia e o uso de transístores com tensões de threshold cada vez mais reduzidas, o consumo de potência dinâmica e estática atingiu níveis insuportáveis. Chegou-se a um ponto em que, tanto económica como ambientalmente fa- lando, é obrigatório projetar para reduzir a potência. Synopsys, uma das maiores empresas desta indústria, apresentou um projeto com o objetivo de implementar Power Gating numa das suas interfaces de alta velocidade, como técnica mais eficaz na redução da potência estática. Esta dissertação apresenta as adaptações necessárias para a implementação de Power Gating us- ando ferramentas Synopsys, aplicando-as a um caso de estudo complexo.
    [Show full text]
  • Powerpoint Template
    Accellera Overview February 27, 2017 Lu Dai | Accellera Chairman Welcome Agenda . About Accellera . Current news . Technical activities . IEEE collaboration 2 © 2017 Accellera Systems Initiative, Inc. February 2017 Accellera Systems Initiative Our Mission To provide a platform in which the electronics industry can collaborate to innovate and deliver global standards that improve design and verification productivity for electronics products. 3 © 2017 Accellera Systems Initiative, Inc. February 2017 Broad Industry Support Corporate Members 4 © 2017 Accellera Systems Initiative, Inc. February 2017 Broad Industry Support Associate Members 5 © 2017 Accellera Systems Initiative, Inc. February 2017 Global Presence SystemC Evolution Day DVCon Europe DVCon U.S. SystemC Japan Design Automation Conference DVCon China Verification & ESL Forum DVCon India 6 © 2017 Accellera Systems Initiative, Inc. February 2017 Agenda . About Accellera . Current news . Technical activities . IEEE collaboration 7 © 2017 Accellera Systems Initiative, Inc. February 2017 Accellera News . Standards - IEEE Approves UVM 1.2 as IEEE 1800.2-2017 - Accellera relicenses SystemC reference implementation under Apache 2.0 . Outreach - First DVCon China to be held April 19, 2017 - Get IEEE free standards program extended 10 years/10 standards . Awards - Thomas Alsop receives 2017 Technical Excellence Award for his leadership of the UVM Working Group - Shrenik Mehta receives 2016 Accellera Leadership Award for his role as Accellera chair from 2005-2010 8 © 2017 Accellera Systems Initiative, Inc. February 2017 DVCon – Global Presence 29th Annual DVCon U.S. 4th Annual DVCon Europe www.dvcon-us.org 4th Annual DVCon India www.dvcon-europe.org 1st DVCon China www.dvcon-india.org www.dvcon-china.org 9 © 2017 Accellera Systems Initiative, Inc.
    [Show full text]
  • Designing PCI Cards and Drivers for Power Macintosh Computers
    Designing PCI Cards and Drivers for Power Macintosh Computers Revised Edition Revised 3/26/99 Technical Publications © Apple Computer, Inc. 1999 Apple Computer, Inc. Adobe, Acrobat, and PostScript are Even though Apple has reviewed this © 1995, 1996 , 1999 Apple Computer, trademarks of Adobe Systems manual, APPLE MAKES NO Inc. All rights reserved. Incorporated or its subsidiaries and WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH No part of this publication may be may be registered in certain RESPECT TO THIS MANUAL, ITS reproduced, stored in a retrieval jurisdictions. QUALITY, ACCURACY, system, or transmitted, in any form America Online is a service mark of MERCHANTABILITY, OR FITNESS or by any means, mechanical, Quantum Computer Services, Inc. FOR A PARTICULAR PURPOSE. AS A electronic, photocopying, recording, Code Warrior is a trademark of RESULT, THIS MANUAL IS SOLD “AS or otherwise, without prior written Metrowerks. IS,” AND YOU, THE PURCHASER, ARE permission of Apple Computer, Inc., CompuServe is a registered ASSUMING THE ENTIRE RISK AS TO except to make a backup copy of any trademark of CompuServe, Inc. ITS QUALITY AND ACCURACY. documentation provided on Ethernet is a registered trademark of CD-ROM. IN NO EVENT WILL APPLE BE LIABLE Xerox Corporation. The Apple logo is a trademark of FOR DIRECT, INDIRECT, SPECIAL, FrameMaker is a registered Apple Computer, Inc. INCIDENTAL, OR CONSEQUENTIAL trademark of Frame Technology Use of the “keyboard” Apple logo DAMAGES RESULTING FROM ANY Corporation. (Option-Shift-K) for commercial DEFECT OR INACCURACY IN THIS purposes without the prior written Helvetica and Palatino are registered MANUAL, even if advised of the consent of Apple may constitute trademarks of Linotype-Hell AG possibility of such damages.
    [Show full text]
  • Chapter 1. Origins of Mac OS X
    1 Chapter 1. Origins of Mac OS X "Most ideas come from previous ideas." Alan Curtis Kay The Mac OS X operating system represents a rather successful coming together of paradigms, ideologies, and technologies that have often resisted each other in the past. A good example is the cordial relationship that exists between the command-line and graphical interfaces in Mac OS X. The system is a result of the trials and tribulations of Apple and NeXT, as well as their user and developer communities. Mac OS X exemplifies how a capable system can result from the direct or indirect efforts of corporations, academic and research communities, the Open Source and Free Software movements, and, of course, individuals. Apple has been around since 1976, and many accounts of its history have been told. If the story of Apple as a company is fascinating, so is the technical history of Apple's operating systems. In this chapter,[1] we will trace the history of Mac OS X, discussing several technologies whose confluence eventually led to the modern-day Apple operating system. [1] This book's accompanying web site (www.osxbook.com) provides a more detailed technical history of all of Apple's operating systems. 1 2 2 1 1.1. Apple's Quest for the[2] Operating System [2] Whereas the word "the" is used here to designate prominence and desirability, it is an interesting coincidence that "THE" was the name of a multiprogramming system described by Edsger W. Dijkstra in a 1968 paper. It was March 1988. The Macintosh had been around for four years.
    [Show full text]
  • University of Cape Town Declaration
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Automated Gateware Discovery Using Open Firmware Shanly Rajan Supervisor: Prof. M.R. Inggs Co-supervisor: Dr M. Welz University of Cape Town Declaration I understand the meaning of plagiarism and declare that all work in the dissertation, save for that which is properly acknowledged, is my own. It is being submitted for the degree of Master of Science in Engineering in the University of Cape Town. It has not been submitted before for any degree or examination in any other university. Signature of Author . Cape Town South Africa May 12, 2013 University of Cape Town i Abstract This dissertation describes the design and implementation of a mechanism that automates gateware1 device detection for reconfigurable hardware. The research facilitates the pro- cess of identifying and operating on gateware images by extending the existing infrastruc- ture of probing devices in traditional software by using the chosen technology. An automated gateware detection mechanism was devised in an effort to build a software system with the goal to improve performance and reduce software development time spent on operating gateware pieces by reusing existing device drivers in the framework of the chosen technology. This dissertation first investigates the system design to see how each of the user specifica- tions set for the KAT (Karoo Array Telescope) project in [28] could be achieved in terms of design decisions, toolchain selection and software modifications.
    [Show full text]
  • November, 2006 Doc.: IEEE 802.11-06/1740R0 IEEE P802.11 Wireless Lans Tentative
    November, 2006 doc.: IEEE 802.11-06/1740r0 IEEE P802.11 Wireless LANs Tentative Minutes of the IEEE P802.11 Full Working Group Date: 2006-11-13 Author(s): Name Company Address Phone Email Tim Godfrey Freescale +1-913-814-7883 Abstract Minutes of the 802.11 full working group. Notice: This document has been prepared to assist IEEE 802.11. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.11. Patent Policy and Procedures: The contributor is familiar with the IEEE 802 Patent Policy and Procedures <http:// ieee802.org/guides/bylaws/sb-bylaws.pdf>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication.
    [Show full text]
  • Powerpc™ Open Firmware Quick Start Guide Release
    PowerPC™ Open Firmware Quick Start Guide Release 2.0 PPCOFWQSA/UG2 Notice While reasonable efforts have been made to assure the accuracy of this document, Motorola, Inc. assumes no liability resulting from any omissions in this document, or from the use of the information obtained therein. Motorola reserves the right to revise this document and to make changes from time to time in the content hereof without obligation of Motorola to notify any person of such revision or changes. No part of this material may be reproduced or copied in any tangible medium, or stored in a retrieval system, or transmitted in any form, or by any means, radio, electronic, mechanical, photocopying, recording or facsimile, or otherwise, without the prior written permission of Motorola, Inc. It is possible that this publication may contain reference to, or information about Motorola products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Motorola intends to announce such Motorola products, programming, or services in your country. Restricted Rights Legend If the documentation contained herein is supplied, directly or indirectly, to the U.S. Government, the following notice shall apply unless otherwise agreed to in writing by Motorola, Inc. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. Motorola, Inc. Computer Group 2900 South Diablo Way Tempe, Arizona 85282 Preface The PowerPC Open Firmware Quick Start Guide provides the general information and procedures required to test and initialize the system hardware, determine the hardware conÞguration, and to boot the operating system.
    [Show full text]
  • 2.4/5 Ghz Dual-Band 1X1 Wi-Fi 5 (802.11Ac) and Bluetooth 5.2 Solution Rev
    88W8987_SDS 2.4/5 GHz Dual-band 1x1 Wi-Fi 5 (802.11ac) and Bluetooth 5.2 Solution Rev. 2 — 21 May 2021 Product short data sheet 1 Product overview The 88W8987 is a highly integrated Wi-Fi (2.4/5 GHz) and Bluetooth single-chip solution, specifically designed to support the speed, reliability, and quality requirements of next generation Very High Throughput (VHT) products. The System-on-Chip (SoC) provides both simultaneous and independent operation of the following: • IEEE 802.11ac (Wave 2), 1x1 with data rates up to MCS9 (433 Mbit/s) • Bluetooth 5.2 (includes Bluetooth Low Energy (LE)) The SoC also provides: • Bluetooth Classic and Bluetooth LE dual (Smart Ready) operation • Wi-Fi indoor location positioning (802.11mc) For security, the device supports high performance 802.11i security standards through implementation of the Advanced Encryption Standard (AES)/Counter Mode CBC- MAC Protocol (CCMP), AES/Galois/Counter Mode Protocol (GCMP), Wired Equivalent Privacy (WEP) with Temporal Key Integrity Protocol (TKIP), AES/Cipher-Based Message Authentication Code (CMAC), and WLAN Authentication and Privacy Infrastructure (WAPI) security mechanisms. For video, voice, and multimedia applications, 802.11e Quality of Service (QoS) is supported. The device also supports 802.11h Dynamic Frequency Selection (DFS) for detecting radar pulses when operating in the 5 GHz range. Host interfaces include SDIO 3.0 and high-speed UART interfaces for connecting Wi-Fi and Bluetooth technologies to the host processor. The device is designed with two front-end configurations to accommodate Wi-Fi and Bluetooth on either separate or shared paths: • 2-antenna configuration—1x1 Wi-Fi and Bluetooth on separate paths (QFN) • 1-antenna configuration—1x1 Wi-Fi and Bluetooth on shared paths (eWLP) The following figures show the application diagrams for each package option.
    [Show full text]
  • Time-Sensitive Networking Technologies for Industrial Automation in Wireless Communication Systems
    energies Review Time-Sensitive Networking Technologies for Industrial Automation in Wireless Communication Systems Yoohwa Kang 1 , Sunwoo Lee 2, Songi Gwak 2 , Taekyeong Kim 2 and Donghyeok An 2,* 1 Electronics and Telecommunications Research Institute, Daejeon 34129, Korea; [email protected] 2 Department of Computer Engineering, Changwon National University, Changwon 51140, Korea; [email protected] (S.L.); [email protected] (S.G.); infi[email protected] (T.K.) * Correspondence: [email protected]; Tel.: +82-55-213-3814 Abstract: The fourth industrial revolution is accelerating industrial automation. In industrial net- works, manufacturing processes require hard real-time communication where the latency is less than 1ms. Time-sensitive networking (TSN) technology over Ethernet already supports deterministic de- livery for real-time communication. However, TSN technologies over wireless networks are currently in their initial development stage. Therefore, this study presents an overview of TSN research trends in wireless communications. This paper focuses on 5G networks and IEEE 802.11. We summarize standardization trends for TSN in 5G networks and introduce the TSN technologies for 802.11-based WLAN. Then, we introduce the integration scenario of 5GS with WLAN. This study provides insights into wireless communication technologies for wireless TSN. Keywords: time-sensitive networking (TSN); 5G; 802.11; low latency; reliability; industrial automation Citation: Kang, Y.; Lee, S.; Gwak, S.; Kim, T.; An, D. Time-Sensitive Networking Technologies for 1. Introduction Industrial Automation in Wireless Industrial automation is a representative system attracting attention in the fourth Communication Systems. Energies industrial revolution. In the industrial automation system, data and controls are exchanged 2021, 14, 4497.
    [Show full text]
  • Progress Codes
    Power Systems Progress codes Power Systems Progress codes Note Before using this information and the product it supports, read the information in “Notices,” on page 109, “Safety notices” on page v, the IBM Systems Safety Notices manual, G229-9054, and the IBM Environmental Notices and User Guide, Z125–5823. This edition applies to IBM Power Systems™ servers that contain the POWER6® processor and to all associated models. © Copyright IBM Corporation 2007, 2009. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Safety notices ............v Chapter 13. (CAxx) Partition firmware progress codes ...........79 Chapter 1. Progress codes overview . 1 Chapter 14. (CF00) Linux kernel boot Chapter 2. AIX IPL progress codes . 3 progress codes ...........91 Chapter 3. AIX diagnostic load Chapter 15. (D1xx) Service processor progress indicators .........29 firmware progress codes .......93 Chapter 4. Dump progress indicators Chapter 16. (D1xx) Service processor (dump status codes) .........33 status progress codes ........95 Chapter 5. AIX crash progress codes Chapter 17. (D1xx) Service processor (category 1) ............35 dump status progress codes .....97 Chapter 6. AIX crash progress codes Chapter 18. (D1xx) Platform dump (category 2) ............37 status progress codes .......101 Chapter 7. AIX crash progress codes Chapter 19. (D2xx) Partition status (category 3) ............39 progress codes ..........103 Chapter 8. (C1xx) Service processor Chapter 20. (D6xx) General status progress codes ...........41 progress codes ..........105 Chapter 9. (C2xx) Virtual service Chapter 21. (D9xx) General status processor progress codes ......63 progress codes ..........107 Chapter 10. (C3xx, C5xx, C6xx) IPL Appendix. Notices .........109 status progress codes ........67 Trademarks ..............110 Electronic emission notices .........111 Chapter 11.
    [Show full text]