Geometric Models for Lie–Hamilton Systems on R2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Infinitesimally Tight Lagrangian Orbits 2
INFINITESIMALLY TIGHT LAGRANGIAN ORBITS ELIZABETH GASPARIM, LUIZ A. B. SAN MARTIN, FABRICIO VALENCIA Abstract. We describe isotropic orbits for the restricted action of a subgroup of a Lie group acting on a symplectic manifold by Hamiltonian symplectomorphisms and admitting an Ad*- equivariant moment map. We obtain examples of Lagrangian orbits of complex flag manifolds, of cotangent bundles of orthogonal Lie groups, and of products of flags. We introduce the notion of infinitesimally tight and study the intersection theory of such Lagrangian orbits, giving many examples. Contents 1. Introduction 1 2. Isotropic orbits 3 3. Orthogonal Lie groups 5 4. Complex flag manifolds 6 5. Products of flags 11 5.1. Shifted diagonals as Lagrangians 13 6. Infinitesimally tight immersions 15 Appendix A. KKS symplectic form on orthogonal groups 18 Appendix B. Open questions 20 Acknowledgments 21 References 21 1. Introduction Let (M,ω) be a connected symplectic manifold, G a Lie group with Lie algebra g, and L a Lie subgroup of G. Assume that there exists a Hamiltonian action of G on M which admits an Ad∗-equivariant moment map µ : M g∗. The purpose of this paper is to study arXiv:1903.03717v2 [math.SG] 4 Aug 2020 those orbits Lx with x M that are Lagrangian→ submanifolds of (M,ω), or more generally, isotropic submanifolds. We∈ also discuss some essential features of the intersection theory of such Lagrangian orbits, namely the concepts of locally tight and infinitesimally tight Lagrangians. The famous Arnold–Givental conjecture, proved in many cases, predicts that the number of intersection points of a Lagrangian and its image ϕ( ) by the flow of a Hamiltonian vector L L field can be estimated from below by the sum of its Z2 Betti numbers: ϕ( ) b ( ; Z ). -
Representation Theory
M392C NOTES: REPRESENTATION THEORY ARUN DEBRAY MAY 14, 2017 These notes were taken in UT Austin's M392C (Representation Theory) class in Spring 2017, taught by Sam Gunningham. I live-TEXed them using vim, so there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Kartik Chitturi, Adrian Clough, Tom Gannon, Nathan Guermond, Sam Gunningham, Jay Hathaway, and Surya Raghavendran for correcting a few errors. Contents 1. Lie groups and smooth actions: 1/18/172 2. Representation theory of compact groups: 1/20/174 3. Operations on representations: 1/23/176 4. Complete reducibility: 1/25/178 5. Some examples: 1/27/17 10 6. Matrix coefficients and characters: 1/30/17 12 7. The Peter-Weyl theorem: 2/1/17 13 8. Character tables: 2/3/17 15 9. The character theory of SU(2): 2/6/17 17 10. Representation theory of Lie groups: 2/8/17 19 11. Lie algebras: 2/10/17 20 12. The adjoint representations: 2/13/17 22 13. Representations of Lie algebras: 2/15/17 24 14. The representation theory of sl2(C): 2/17/17 25 15. Solvable and nilpotent Lie algebras: 2/20/17 27 16. Semisimple Lie algebras: 2/22/17 29 17. Invariant bilinear forms on Lie algebras: 2/24/17 31 18. Classical Lie groups and Lie algebras: 2/27/17 32 19. Roots and root spaces: 3/1/17 34 20. Properties of roots: 3/3/17 36 21. Root systems: 3/6/17 37 22. Dynkin diagrams: 3/8/17 39 23. -
LIE GROUPOIDS and LIE ALGEBROIDS LECTURE NOTES, FALL 2017 Contents 1. Lie Groupoids 4 1.1. Definitions 4 1.2. Examples 6 1.3. Ex
LIE GROUPOIDS AND LIE ALGEBROIDS LECTURE NOTES, FALL 2017 ECKHARD MEINRENKEN Abstract. These notes are under construction. They contain errors and omissions, and the references are very incomplete. Apologies! Contents 1. Lie groupoids 4 1.1. Definitions 4 1.2. Examples 6 1.3. Exercises 9 2. Foliation groupoids 10 2.1. Definition, examples 10 2.2. Monodromy and holonomy 12 2.3. The monodromy and holonomy groupoids 12 2.4. Appendix: Haefliger’s approach 14 3. Properties of Lie groupoids 14 3.1. Orbits and isotropy groups 14 3.2. Bisections 15 3.3. Local bisections 17 3.4. Transitive Lie groupoids 18 4. More constructions with groupoids 19 4.1. Vector bundles in terms of scalar multiplication 20 4.2. Relations 20 4.3. Groupoid structures as relations 22 4.4. Tangent groupoid, cotangent groupoid 22 4.5. Prolongations of groupoids 24 4.6. Pull-backs and restrictions of groupoids 24 4.7. A result on subgroupoids 25 4.8. Clean intersection of submanifolds and maps 26 4.9. Intersections of Lie subgroupoids, fiber products 28 4.10. The universal covering groupoid 29 5. Groupoid actions, groupoid representations 30 5.1. Actions of Lie groupoids 30 5.2. Principal actions 31 5.3. Representations of Lie groupoids 33 6. Lie algebroids 33 1 2 ECKHARD MEINRENKEN 6.1. Definitions 33 6.2. Examples 34 6.3. Lie subalgebroids 36 6.4. Intersections of Lie subalgebroids 37 6.5. Direct products of Lie algebroids 38 7. Morphisms of Lie algebroids 38 7.1. Definition of morphisms 38 7.2. -
Fundamental Vector Fields on Type Fibres of Jet Prolongations of Tensor Bundles
Mathematica Slovaca Demeter Krupka Fundamental vector fields on type fibres of jet prolongations of tensor bundles Mathematica Slovaca, Vol. 29 (1979), No. 2, 159--167 Persistent URL: http://dml.cz/dmlcz/136207 Terms of use: © Mathematical Institute of the Slovak Academy of Sciences, 1979 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz Moth. Slovaca 29,1979, No. 2,159—167 FUNDAMENTAL VECTOR FIELDS ON TYPE FIBRES OF JET PROLONGATIONS OF TENSOR BUNDLES DEMETER KRUPKA 1. Introduction. In this paper the problem of constructing the fundamental vector fields [9] on the type fibres of the jet prolongations of tensor bundles is considered. This is one of the most important problems of the theory of invariant Lagrangian structures [3], [4], [7]. The well-known direct method of finding these vector fields follows from their definition, and is based on the formulas for the action of the structure group of tensor bundles on their type fibres. Examples [4] show, however, that the corresponding computations are rather complicated and in the cases of higher jet prolongations practically non-realizable. In this paper we determine the fundamen tal vector fields by a simple differentiation procedure which makes use of their relation to the jet prolongations of the so called induced vector fields on tensor bundles [2], [5], [6]. -
Notes on Differential Geometry
Notes on Differential Geometry Domenico Giulini University of Freiburg Department of Physics Hermann-Herder-Strasse 3 D-79104 Freiburg, Germany May 12, 2003 Abstract These notes present various concepts in differential geometry from the el- egant and unifying point of view of principal bundles and their associated vector bundles. 1 Contents 1 The principal bundle 3 1.1 Sections in P . 3 1.2 Fundamental vector fields and vertical subspaces . 4 1.3 Bundle automorphisms and gauge transformations . 4 ¢¡¤£¢¥§¦©¨ ¥¨ 1.4 Lifts from to . 5 ¥§¦©¨ 1.4.1 Push-forward lift to . 6 1.4.2 Lifts by global sections . 6 1.5 Connections . 7 1.6 Parallel transportation in P . 7 2 Associated vector bundles 8 2.1 Definition . 8 2.2 Densitized representations . 9 2.3 Gauge transformations . 9 2.3.1 `Constant' gauge transformations do not exist . 9 2.4 Parallel transportation in E . 10 2.5 Sections in E . 10 2.6 Derivatives of sections in . 11 3 Derivatives 12 3.1 The covariant derivative . 12 3.2 The Lie derivative . 14 4 Curvature and torsion 17 4.1 Curvature . 17 4.2 Torsion . 18 4.3 Relating covariant and Lie derivatives . 19 5 Building new from old principal bundles 19 5.1 Splicing . 19 5.2 Reduction . 21 5.3 Extension . 22 A Construction of principal bundles 22 Notation: Throughout we consistently use hats and overbars on symbols as follows: hats for `raised' (i.e. lifted) maps of the base or `raised' sections (equivariant functions on total space), overbars for `projected' maps or local representatives of sections. -
Homogeneous Almost Hypercomplex and Almost Quaternionic Pseudo-Hermitian Manifolds with Irreducible Isotropy Groups
Homogeneous almost hypercomplex and almost quaternionic pseudo-Hermitian manifolds with irreducible isotropy groups Dissertation zur Erlangung des Doktorgrades der Fakultät für Mathematik, Informatik und Naturwissenschaften der Universität Hamburg vorgelegt im Fachbereich Mathematik von Benedict Meinke Hamburg 2015 Datum der Disputation: 18.12.2015 Folgende Gutachter empfehlen die Annahme der Dissertation: Prof. Dr. Vicente Cortés Suárez Prof. Dr. Ines Kath Prof. Dr. Abdelghani Zeghib Contents Acknowledgements v Notation and conventions ix 1 Introduction 1 2 Basic Concepts 5 2.1 Homogeneous and symmetric spaces . .5 2.2 Hyper-Kähler and quaternionic Kähler manifolds . .9 2.3 Amenable groups . 11 2.4 Hyperbolic spaces . 15 2.5 The Zariski topology . 21 3 Algebraic results 23 3.1 SO0(1; n)-invariant forms . 23 3.2 Connected H-irreducible Lie subgroups of Sp(1; n) .............. 34 4 Main results 41 4.1 Classification of isotropy H-irreducible almost hypercomplex pseudo-Hermitian manifolds of index 4 . 41 4.2 Homogeneous almost quaternionic pseudo-Hermitian manifolds of index 4 with H-irreducible isotropy group . 45 5 Open problems 47 A Facts about Lie groups and Lie algebras 49 B Spaces with constant quaternionic sectional curvature 51 Bibliography 55 iii Acknowledgements First of all I would like to thank my advisor Vicente Cort´es for suggesting the topic and his patient mentoring, continuous encouragement and support, and helpful discussions during the last four years. Special thanks go to Abdelghani Zeghib and the ENS de Lyon for helpful discussions and hospitality during my stay in Lyon in October 2013. I would like to thank Marco Freibert for carefully reading my thesis and giving me valu- able feedback. -
Arxiv:2006.12477V1 [Math.SG]
RIGIDITY OF COTANGENT LIFTS AND INTEGRABLE SYSTEMS PAU MIR AND EVA MIRANDA Abstract. In this article we generalize a theorem by Palais on the rigidity of compact group actions to cotangent lifts. We use this result to prove rigidity results for integrable systems on symplectic manifolds including sytems with degenerate singularities which are invariant under a torus action. 1. Introduction In [Pal61] Palais proved that two close compact Lie group actions on a compact manifold are equivalent in the sense that there exists a diffeomorphism conjugating both actions. This rigidity result comes hand-in-hand with other classical stability results `ala Mather-Thom for differentiable maps in the 60’s and 70’s for which stability yields equivalence of close maps (see for instance [Mat68] and [Tho72]). Symplectic manifolds provide a natural landscape to test stability ideas as among the classical actions of Lie groups on symplectic manifolds the ones admitting a moment map stand out. These are Hamiltonian actions where the group action can be read off from a mapping µ : M −→ g∗ where g is the Lie algebra of the Lie group. In [Mir07] it was proved that C2-close symplectic actions on a compact symplec- tic manifold are equivalent in the sense that not only the actions are conjugated by a diffeomorphism but this diffeomorphism preserves the symplectic form. The proof in [Mir07] (see also [MMZ12]) uses the path method requiring differentiability of degree 2 as the diffeomorphism yielding the equivalence comes from integration of a time-dependent vector field. Generalizations of this result can be easily achieved for Hamiltonian actions in the symplectic context. -
Geometry of Toric Manifolds
Department of Physics and Astronomy Advanced Physics - Project Course, 10c Geometry of Toric Manifolds Nikolaos Iakovidis Supervisor: Jian Qiu 8 January 2016 Academic Year 2015/2016 Contents 1 Background 2 1.1 Complex Manifolds . .2 1.2 Almost Complex Structure . .2 1.3 Hermitian Manifolds . .3 1.4 K¨ahlerManifolds . .4 1.5 K¨ahlerManifold Examples . .5 1.5.1 Complex Space Cn ..............................5 1.5.2 Complex Projective Space CPn .......................6 2 Toric Manifolds 8 2.1 Group Actions . .8 2.1.1 Orbits and Stabilizers . .9 2.1.2 Types of Group Action . .9 2.2 Hamiltonian Actions and the Moment Map . .9 2.3 K¨ahlerReduction . 10 2.4 Delzant Construction . 13 3 Examples 16 3.1 Circle action T1 on the complex plane C ...................... 16 3.2 Torus action Td on Cd ................................ 18 3.3 Circle action T1 on Cd ................................ 19 3.4 Torus action Tn on CPn ............................... 20 3.5 Delzant Polytope and Symplectic Reduction . 21 3.6 K¨ahlerReduction on C3 by circle action T1 .................... 24 1 Abstract This project is an overview of Hamiltonian geometry of K¨ahlermanifolds and of K¨ahler reduction. In the first section we define complex manifolds, give their basic properties and build some structures on them. We are mainly interested in K¨ahlermanifolds which are a subset of symplectic manifolds. In the second section we discuss group actions on manifolds. We are only concerned with Hamiltonian actions for which we can compute their moment maps. From these we prove how to construct new manifolds using a process called K¨ahlerreduction. -
Lie Groups and Representations
Notes for Lie Groups & Representations Instructor: Andrei Okounkov Henry Liu December 12, 2016 Abstract These are my live-texed notes for the Fall 2016 offering of MATH GR6343 Lie Groups & Representa- tions. There are known omissions from when I zone out in class, and additional material from when I'm trying to better understand the material. Let me know when you find errors or typos. I'm sure there are plenty. 1 Lie Groups 1 1.1 Definition and Examples . 1 1.2 Lie group actions . 2 1.3 Proper actions . 4 1.4 Some Lie group properties . 7 1.5 Symplectic matrices . 7 1.6 Fundamental groups of Lie groups . 8 2 Lie Algebras 9 2.1 From Lie groups to Lie algebras . 9 2.2 The Lie functor . 10 2.3 Lie algebra to Lie group . 11 2.4 Exponential map . 12 2.5 Digression: classical mechanics . 14 2.6 Universal enveloping algebra . 15 2.7 Poisson algebras and Poisson manifolds . 17 2.8 Baker{Campbell–Hausdorff formula . 19 3 Compact Lie groups 21 3.1 Peter{Weyl theorem . 21 3.2 Compact operators . 23 3.3 Complexifications . 24 3.4 Symmetric spaces . 24 4 Subgroups and subalgebras 27 4.1 Solvable and nilpotent Lie algebras . 27 4.2 Parabolic and Borel subgroups . 30 4.3 Maximal tori . 32 4.4 More Borel subgroups . 33 4.5 Levi{Malcev decomposition . 35 5 Semisimple theory 37 5.1 Roots and weights . 37 5.2 Root systems . 39 a Chapter 1 Lie Groups 1.1 Definition and Examples Definition 1.1.1. -
Lie Groups and Lie Algebras Lecture Notes, University of Toronto, Fall 2010
Lie groups and Lie algebras Eckhard Meinrenken Lecture Notes, University of Toronto, Fall 2010 1. Terminology and notation 1.1. Lie groups. Definition 1.1. A Lie group is a group G, equipped with a manifold structure such that the group operations Mult: G × G ! G; (g1; g2) 7! g1g2 Inv: G ! G; g 7! g−1 are smooth. A morphism of Lie groups G; G0 is a morphism of groups φ: G ! G0 that is smooth. Remark 1.2. Using the implicit function theorem, one can show that smoothness of Inv is in fact automatic. (Exercise) The first example of a Lie group is the general linear group GL(n; R) = fA 2 Matn(R)j det(A) 6= 0g of invertible n × n matrices. It is an open subset of Matn(R), hence a submanifold, and the smoothness of group multiplication follows since the product map for Matn(R) is obviously smooth. Our next example is the orthogonal group T O(n) = fA 2 Matn(R)j A A = Ig: To see that it is a Lie group, it suffices to show that O(n) is an embedded submanifold of Matn(R). In order to construct submanifold charts, we use the exponential map of matrices 1 X 1 exp: Mat ( ) ! Mat ( );B 7! exp(B) = Bn n R n R n! n=0 d (an absolutely convergent series). One has dt jt=0 exp(tB) = B, hence the differential of exp at 0 is the identity idMatn(R). By the inverse function theorem, this means that there is > 0 such that exp restricts to a diffeomorphism from the open neighborhood U = fB : jjBjj < g of 0 onto an open neighborhood exp(U) of I. -
Lie Groups and Lie Algebras (Fall 2019)
Lie groups and Lie algebras (Fall 2019) 1. Terminology and notation 1.1. Lie groups. A Lie group is a group object in the category of manifolds: Definition 1.1. A Lie group is a group G, equipped with a manifold structure such that the group operations Mult: G × G ! G; (g1; g2) 7! g1g2 Inv: G ! G; g 7! g−1 are smooth. A morphism of Lie groups G; G0 is a morphism of groups φ: G ! G0 that is smooth. Remark 1.2. Using the implicit function theorem, one can show that smoothness of Inv is in fact automatic. (Exercise) 1 The first example of a Lie group is the general linear group GL(n; R) = fA 2 Matn(R)j det(A) 6= 0g of invertible n × n matrices. It is an open subset of Matn(R), hence a submanifold, and ∼ n2 the smoothness of group multiplication follows since the product map for Matn(R) = R is obviously smooth { in fact, it is a polynomial. Our second example is the orthogonal group > O(n) = fA 2 Matn(R)j A A = Ig: To see that it is a Lie group, it suffices to show Lemma 1.3. O(n) is an (embedded) submanifold of GL(n; R) ⊆ Matn(R). Proof. This may be proved by using the regular value theorem: If we consider A 7! A>A as a map to the space of symmetric n×n-matrices, then I is a regular value. We'll give a somewhat longer argument, by directly constructing submanifold charts near any given A 2 O(n): that is, local coordinate charts of Matn(R) around A in which O(n) looks like a subspace. -
Differential Operators and Actions of Lie Algebroids
Contemporary Mathematics DIFFERENTIAL OPERATORS AND ACTIONS OF LIE ALGEBROIDS Y. Kosmann-Schwarzbach and K. C. H. Mackenzie Abstract. We demonstrate that the notions of derivative representation of a Lie algebra on a vector bundle, of semi-linear representation of a Lie group on a vector bundle, and related concepts, may be understood in terms of representations of Lie algebroids and Lie groupoids, and we indicate how these notions extend to derivative representations of Lie algebroids and semi-linear representations of Lie groupoids in general. Introduction This paper deals with actions on vector bundles. The first part (Sections 1–3) deals with the infinitesimal actions of Lie algebras and Lie algebroids, while the second part (Sections 4 and 5) deals with the global actions of Lie groups and Lie groupoids. When passing from the case of actions on vector spaces to that of actions on vector bundles, the notions of linear endomorphism and linear isomorphism admit straightforward generalizations which, however, have rarely been spelled out in the literature. On the global level, it is clear that the analogue of a linear isomorphism is a vector bundle automorphism, not necessarily base-preserving. Such an auto- morphism gives rise to an isomorphism of the vector space of sections which has the additional property of semi-linearity, i.e., when a section is multiplied by a function on the base, the image of this section is multiplied by the given function composed with the inverse of the diffeomorphism of the base defined by the vector bundle automorphism. (This could be viewed as a morphism from the space of sections to itself, equipped with two module structures.) Actions of Lie groups on a vector bundle therefore give rise to representations in its space of sections by semi-linear isomorphisms.