Geodesic Reduction Via Frame Bundle Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Geodesic Reduction Via Frame Bundle Geometry Geodesic Reduction Via Frame Bundle Geometry by Ajit Bhand A thesis submitted to the Department of Mathematics and Statistics in conformity with the requirements for the degree of Doctor of Philosophy Queen's University Kingston, Ontario, Canada July 2007 Copyright c Ajit Bhand, 2007 \Truth is a shining goddess, always veiled, always distant, never wholly approachable, but worthy of all the devotion of which the human spirit is capable." {Bertrand Russell. i Abstract Reduction theory for systems with symmetry deals with the problem of understanding dy- namics on a manifold with an action of a Lie group. In geometric mechanics, this problem can be formulated in the Lagrangian, Hamiltonian or affine connection frameworks. While the Lagrangian and Hamiltonian formulations have been well developed, the results obtained in these setups are based on variational principles and symplectic geometry. These methods cannot be used directly in the affine connection formulation unless additional structure is available. In this thesis, a manifold with an arbitrary affine connection is considered, and the geodesic spray associated with the connection is studied in the presence of a Lie group action. In particular, results are obtained that provide insight into the structure of the reduced dynamics associated with the given invariant affine connection. The geometry of the frame bundle of the given manifold is used to provide an intrinsic description of the geodesic spray. A fundamental relationship between the geodesic spray, the tangent lift and the vertical lift of the symmetric product is obtained, which provides a key to understanding reduction in this formulation. ii Acknowledgements First and foremost, I would like to thank my supervisor Dr. Andrew Lewis for his constant guidance and support. His passion and dedication towards his work has been a source of inspiration for me over the years. As a student in the Mathematics and Statistics department, I have had the pleasure of knowing many remarkable individuals. In particular, I would like to thank David Tyner for always being readily available for discussion on math and non-math topics. His input has been extremely valuable to me. I also thank Elsa Hansen, John Chapman, Cesar Aguilar and Bahman Gharesifard for their active participation in the geometry reading group, which benefitted me greatly. Jennifer Read deserves special recognition for always being supportive and understanding, and being a calming influence. Dr. Navdeep Singh was a major influence in my formative years, and it was his zest for knowledge and his enthusiasm for teaching that led to me to the path that I am walking on now. I would like to thank Sharon and Raoul for being so accomodating, and for always being iii there for me. Last but not the least, I thank my parents for their love and blessings, and for being who they are. They have been the pillars of strength for me and have guided me towards my goals. iv Contents Abstract ii Acknowledgements iii Chapter 1 Introduction 1 1.1. Reduction theory for mechanical systems . 2 1.2. Contribution of this thesis . 3 1.3. Contents of the thesis . 5 Chapter 2 Literature review 8 2.1. The development of Lagrangian reduction theory . 8 2.1.1 Tangent and cotangent bundle reduction. 9 2.1.2 Lagrangian versus Hamiltonian reduction. 10 2.1.3 Routh reduction. 10 2.1.4 Euler-Poincar´e reduction. 11 2.1.5 Lagrange-Poincar´e reduction. 11 2.2. Relation of thesis to previous work . 12 Chapter 3 Definitions and notation 13 3.1. Action of a Lie group on a manifold . 14 3.1.1 Lie groups. 14 3.1.2 Action of a Lie group on a manifold. 15 v 3.2. Locally trivial fiber bundles . 17 3.2.1 Principal fiber bundles. 18 3.2.2 Associated bundles. 19 3.2.3 Connections in principal bundles. 24 3.2.4 Connections in vector bundles. 27 3.3. The bundle of linear frames . 30 3.3.1 The tangent bundle as an associated bundle. 32 3.3.2 Linear connections. 35 3.3.3 Torsion. 40 3.3.4 Geodesics. 41 Chapter 4 The geometry of the linear frame bundle 42 4.1. The space of linear connections of M . 43 4.2. First-order geometry . 46 4.2.1 Tangent and vertical lifts. 46 4.2.2 The geodesic spray of an affine connection. 48 4.3. Ehresmann connections induced by a linear connection . 49 4.4. Invariant principal connections . 52 4.5. The frame bundle L(G) of a Lie group G . 58 4.5.1 The connection 1-form of a left-invariant affine connection on G. 59 4.5.2 Geodesics on G. 61 Chapter 5 Geodesic Reduction 63 vi 5.1. Geodesic invariance . 64 5.2. Frame bundle adapted to a principal connection . 66 5.2.1 The reduced frame bundle. 69 5.3. The reduced geodesic spray . 73 5.3.1 Decomposition of the reduced geodesic spray. 74 5.3.2 Discussion. 83 Chapter 6 Conclusions and future work 87 6.1. Conclusions . 87 6.2. Future work . 88 vii Chapter 1 Introduction The geometry of systems with symmetry has been an active area of research in the last 30 years. The study of manifolds with certain special geometric structure invariant under Lie group action leads to what is known as reduction theory. Such questions arise in, for example, geometric mechanics. In this framework, the presence of symmetry allows the dynamics on a manifold to be studied on a lower dimensional manifold. In mechanics, there are at least three different ways of describing dynamics on a manifold, corresponding to the Lagrangian, Hamiltonian and affine connection formulations respectively. While the reduction theory for Lagrangian and Hamiltonian systems has been well developed (see [22, 1, 7, 6]), the results have been obtained by using variational analysis and symplectic geometry respectively. The main reason behind following this approach is the fact that the dynamics for such systems arises from variational principles which are manifested by symplectic structures in the Hamil- tonian framework. However, when the dynamics on a manifold are given in terms of the 1 geodesic equation of an affine connection, we cannot use variational analysis unless additional structure is provided. 1.1. Reduction theory for mechanical systems In this section we motivate the idea of reduction in mechanics by presenting a simple example. What we say here can be found in [21, 20]. A detailed review of reduction theory will be presented in Chapter 2. The equations of motion of a particle with charge e and mass m in a magentic field can be considered as reduced equations coming from dynamics on a larger manifold as we discuss below. 3 First of all, let B be a closed two-form on R and let B = Bxi + Byj + BZ k be the associated divergence free vector field satisfying iB(dx ^ dy ^ dz) = B; where iB refers to the interior product. The vector field B can be thought of as a magnetic field. Let the configuration space be given by M = R3 × S1 with variables (q; θ). The Lie group G = S1 acts on M in a natural way and M=G ' R3. If B = dA, for some one-form A on R3, that is, B = r × A, where A[ = A, we consider the one-form ! = A + dθ regarded as a principal connection one-form. Define a Lagrangian L : T M ! R as follows: 1 1 L(q; q_; θ; θ_) = mjjq_jj2 + (!(q; q_; θ; θ_))2: 2 2 2 Now, the Euler{Lagrange equations corresponding to this Lagrangian are the geodesic equa- tions on M for the Levi{Civita connection corresponding to the metric for which L is the kinetic energy. These equations can be reduced, for example, by using the procedure de- scribed in [20], and the reduced dynamics is given by e mx¨ = (B y_ − B z_); c z y e my¨ = (B z_ − B x_); (1.1.1) c x z e mz¨ = (B x_ − B y_): c y x These equations correspond to the Lorentz force law for a particle with charge e and mass m: dv e m = v × B; dt c where v = (x:_ y_; z_). This therefore provides an example of a physical system whose dynamics can be thought of as the dynamics of a reduced system. 1.2. Contribution of this thesis In this thesis, we consider an arbitrary affine connection on a manifold and provide results that enable us to decompose the reduced geodesic spray corresponding to the affine connection using tools from affine differential geometry only. In other words, we do not use variational methods. In arriving at our results, we come to a deeper understanding of the geometry of bundle of linear frames and its relationship with the geometry of the tangent bundle of the 3 given manifold. The setup we consider is the following. Let M be a manifold and G a Lie group which acts on M in such a manner that M is the total space of a principal bundle over M=G. Let A be an arbitrary principal connection on this bundle. The Lie group G also acts on the bundle L(M) of linear frames over M via the lifted action. In such a case we say that L(M) is G-compatible. It is known that there is a one-to-one correspondence between principal connections on L(M) and affine connections on M [12]. Let ! be a G-invariant linear connection on L(M) with r the corresponding affine connection on M. The geodesic spray Z corresponding to r is a second-order vector field on the tangent bundle T M with the property that the projection of its integral curves correspond to geodesics on M.
Recommended publications
  • Representation Theory
    M392C NOTES: REPRESENTATION THEORY ARUN DEBRAY MAY 14, 2017 These notes were taken in UT Austin's M392C (Representation Theory) class in Spring 2017, taught by Sam Gunningham. I live-TEXed them using vim, so there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Kartik Chitturi, Adrian Clough, Tom Gannon, Nathan Guermond, Sam Gunningham, Jay Hathaway, and Surya Raghavendran for correcting a few errors. Contents 1. Lie groups and smooth actions: 1/18/172 2. Representation theory of compact groups: 1/20/174 3. Operations on representations: 1/23/176 4. Complete reducibility: 1/25/178 5. Some examples: 1/27/17 10 6. Matrix coefficients and characters: 1/30/17 12 7. The Peter-Weyl theorem: 2/1/17 13 8. Character tables: 2/3/17 15 9. The character theory of SU(2): 2/6/17 17 10. Representation theory of Lie groups: 2/8/17 19 11. Lie algebras: 2/10/17 20 12. The adjoint representations: 2/13/17 22 13. Representations of Lie algebras: 2/15/17 24 14. The representation theory of sl2(C): 2/17/17 25 15. Solvable and nilpotent Lie algebras: 2/20/17 27 16. Semisimple Lie algebras: 2/22/17 29 17. Invariant bilinear forms on Lie algebras: 2/24/17 31 18. Classical Lie groups and Lie algebras: 2/27/17 32 19. Roots and root spaces: 3/1/17 34 20. Properties of roots: 3/3/17 36 21. Root systems: 3/6/17 37 22. Dynkin diagrams: 3/8/17 39 23.
    [Show full text]
  • LIE GROUPOIDS and LIE ALGEBROIDS LECTURE NOTES, FALL 2017 Contents 1. Lie Groupoids 4 1.1. Definitions 4 1.2. Examples 6 1.3. Ex
    LIE GROUPOIDS AND LIE ALGEBROIDS LECTURE NOTES, FALL 2017 ECKHARD MEINRENKEN Abstract. These notes are under construction. They contain errors and omissions, and the references are very incomplete. Apologies! Contents 1. Lie groupoids 4 1.1. Definitions 4 1.2. Examples 6 1.3. Exercises 9 2. Foliation groupoids 10 2.1. Definition, examples 10 2.2. Monodromy and holonomy 12 2.3. The monodromy and holonomy groupoids 12 2.4. Appendix: Haefliger’s approach 14 3. Properties of Lie groupoids 14 3.1. Orbits and isotropy groups 14 3.2. Bisections 15 3.3. Local bisections 17 3.4. Transitive Lie groupoids 18 4. More constructions with groupoids 19 4.1. Vector bundles in terms of scalar multiplication 20 4.2. Relations 20 4.3. Groupoid structures as relations 22 4.4. Tangent groupoid, cotangent groupoid 22 4.5. Prolongations of groupoids 24 4.6. Pull-backs and restrictions of groupoids 24 4.7. A result on subgroupoids 25 4.8. Clean intersection of submanifolds and maps 26 4.9. Intersections of Lie subgroupoids, fiber products 28 4.10. The universal covering groupoid 29 5. Groupoid actions, groupoid representations 30 5.1. Actions of Lie groupoids 30 5.2. Principal actions 31 5.3. Representations of Lie groupoids 33 6. Lie algebroids 33 1 2 ECKHARD MEINRENKEN 6.1. Definitions 33 6.2. Examples 34 6.3. Lie subalgebroids 36 6.4. Intersections of Lie subalgebroids 37 6.5. Direct products of Lie algebroids 38 7. Morphisms of Lie algebroids 38 7.1. Definition of morphisms 38 7.2.
    [Show full text]
  • Homogeneous Almost Hypercomplex and Almost Quaternionic Pseudo-Hermitian Manifolds with Irreducible Isotropy Groups
    Homogeneous almost hypercomplex and almost quaternionic pseudo-Hermitian manifolds with irreducible isotropy groups Dissertation zur Erlangung des Doktorgrades der Fakultät für Mathematik, Informatik und Naturwissenschaften der Universität Hamburg vorgelegt im Fachbereich Mathematik von Benedict Meinke Hamburg 2015 Datum der Disputation: 18.12.2015 Folgende Gutachter empfehlen die Annahme der Dissertation: Prof. Dr. Vicente Cortés Suárez Prof. Dr. Ines Kath Prof. Dr. Abdelghani Zeghib Contents Acknowledgements v Notation and conventions ix 1 Introduction 1 2 Basic Concepts 5 2.1 Homogeneous and symmetric spaces . .5 2.2 Hyper-Kähler and quaternionic Kähler manifolds . .9 2.3 Amenable groups . 11 2.4 Hyperbolic spaces . 15 2.5 The Zariski topology . 21 3 Algebraic results 23 3.1 SO0(1; n)-invariant forms . 23 3.2 Connected H-irreducible Lie subgroups of Sp(1; n) .............. 34 4 Main results 41 4.1 Classification of isotropy H-irreducible almost hypercomplex pseudo-Hermitian manifolds of index 4 . 41 4.2 Homogeneous almost quaternionic pseudo-Hermitian manifolds of index 4 with H-irreducible isotropy group . 45 5 Open problems 47 A Facts about Lie groups and Lie algebras 49 B Spaces with constant quaternionic sectional curvature 51 Bibliography 55 iii Acknowledgements First of all I would like to thank my advisor Vicente Cort´es for suggesting the topic and his patient mentoring, continuous encouragement and support, and helpful discussions during the last four years. Special thanks go to Abdelghani Zeghib and the ENS de Lyon for helpful discussions and hospitality during my stay in Lyon in October 2013. I would like to thank Marco Freibert for carefully reading my thesis and giving me valu- able feedback.
    [Show full text]
  • Lie Groups and Representations
    Notes for Lie Groups & Representations Instructor: Andrei Okounkov Henry Liu December 12, 2016 Abstract These are my live-texed notes for the Fall 2016 offering of MATH GR6343 Lie Groups & Representa- tions. There are known omissions from when I zone out in class, and additional material from when I'm trying to better understand the material. Let me know when you find errors or typos. I'm sure there are plenty. 1 Lie Groups 1 1.1 Definition and Examples . 1 1.2 Lie group actions . 2 1.3 Proper actions . 4 1.4 Some Lie group properties . 7 1.5 Symplectic matrices . 7 1.6 Fundamental groups of Lie groups . 8 2 Lie Algebras 9 2.1 From Lie groups to Lie algebras . 9 2.2 The Lie functor . 10 2.3 Lie algebra to Lie group . 11 2.4 Exponential map . 12 2.5 Digression: classical mechanics . 14 2.6 Universal enveloping algebra . 15 2.7 Poisson algebras and Poisson manifolds . 17 2.8 Baker{Campbell–Hausdorff formula . 19 3 Compact Lie groups 21 3.1 Peter{Weyl theorem . 21 3.2 Compact operators . 23 3.3 Complexifications . 24 3.4 Symmetric spaces . 24 4 Subgroups and subalgebras 27 4.1 Solvable and nilpotent Lie algebras . 27 4.2 Parabolic and Borel subgroups . 30 4.3 Maximal tori . 32 4.4 More Borel subgroups . 33 4.5 Levi{Malcev decomposition . 35 5 Semisimple theory 37 5.1 Roots and weights . 37 5.2 Root systems . 39 a Chapter 1 Lie Groups 1.1 Definition and Examples Definition 1.1.1.
    [Show full text]
  • Lie Groups and Lie Algebras Lecture Notes, University of Toronto, Fall 2010
    Lie groups and Lie algebras Eckhard Meinrenken Lecture Notes, University of Toronto, Fall 2010 1. Terminology and notation 1.1. Lie groups. Definition 1.1. A Lie group is a group G, equipped with a manifold structure such that the group operations Mult: G × G ! G; (g1; g2) 7! g1g2 Inv: G ! G; g 7! g−1 are smooth. A morphism of Lie groups G; G0 is a morphism of groups φ: G ! G0 that is smooth. Remark 1.2. Using the implicit function theorem, one can show that smoothness of Inv is in fact automatic. (Exercise) The first example of a Lie group is the general linear group GL(n; R) = fA 2 Matn(R)j det(A) 6= 0g of invertible n × n matrices. It is an open subset of Matn(R), hence a submanifold, and the smoothness of group multiplication follows since the product map for Matn(R) is obviously smooth. Our next example is the orthogonal group T O(n) = fA 2 Matn(R)j A A = Ig: To see that it is a Lie group, it suffices to show that O(n) is an embedded submanifold of Matn(R). In order to construct submanifold charts, we use the exponential map of matrices 1 X 1 exp: Mat ( ) ! Mat ( );B 7! exp(B) = Bn n R n R n! n=0 d (an absolutely convergent series). One has dt jt=0 exp(tB) = B, hence the differential of exp at 0 is the identity idMatn(R). By the inverse function theorem, this means that there is > 0 such that exp restricts to a diffeomorphism from the open neighborhood U = fB : jjBjj < g of 0 onto an open neighborhood exp(U) of I.
    [Show full text]
  • Lie Groups and Lie Algebras (Fall 2019)
    Lie groups and Lie algebras (Fall 2019) 1. Terminology and notation 1.1. Lie groups. A Lie group is a group object in the category of manifolds: Definition 1.1. A Lie group is a group G, equipped with a manifold structure such that the group operations Mult: G × G ! G; (g1; g2) 7! g1g2 Inv: G ! G; g 7! g−1 are smooth. A morphism of Lie groups G; G0 is a morphism of groups φ: G ! G0 that is smooth. Remark 1.2. Using the implicit function theorem, one can show that smoothness of Inv is in fact automatic. (Exercise) 1 The first example of a Lie group is the general linear group GL(n; R) = fA 2 Matn(R)j det(A) 6= 0g of invertible n × n matrices. It is an open subset of Matn(R), hence a submanifold, and ∼ n2 the smoothness of group multiplication follows since the product map for Matn(R) = R is obviously smooth { in fact, it is a polynomial. Our second example is the orthogonal group > O(n) = fA 2 Matn(R)j A A = Ig: To see that it is a Lie group, it suffices to show Lemma 1.3. O(n) is an (embedded) submanifold of GL(n; R) ⊆ Matn(R). Proof. This may be proved by using the regular value theorem: If we consider A 7! A>A as a map to the space of symmetric n×n-matrices, then I is a regular value. We'll give a somewhat longer argument, by directly constructing submanifold charts near any given A 2 O(n): that is, local coordinate charts of Matn(R) around A in which O(n) looks like a subspace.
    [Show full text]
  • Differential Operators and Actions of Lie Algebroids
    Contemporary Mathematics DIFFERENTIAL OPERATORS AND ACTIONS OF LIE ALGEBROIDS Y. Kosmann-Schwarzbach and K. C. H. Mackenzie Abstract. We demonstrate that the notions of derivative representation of a Lie algebra on a vector bundle, of semi-linear representation of a Lie group on a vector bundle, and related concepts, may be understood in terms of representations of Lie algebroids and Lie groupoids, and we indicate how these notions extend to derivative representations of Lie algebroids and semi-linear representations of Lie groupoids in general. Introduction This paper deals with actions on vector bundles. The first part (Sections 1–3) deals with the infinitesimal actions of Lie algebras and Lie algebroids, while the second part (Sections 4 and 5) deals with the global actions of Lie groups and Lie groupoids. When passing from the case of actions on vector spaces to that of actions on vector bundles, the notions of linear endomorphism and linear isomorphism admit straightforward generalizations which, however, have rarely been spelled out in the literature. On the global level, it is clear that the analogue of a linear isomorphism is a vector bundle automorphism, not necessarily base-preserving. Such an auto- morphism gives rise to an isomorphism of the vector space of sections which has the additional property of semi-linearity, i.e., when a section is multiplied by a function on the base, the image of this section is multiplied by the given function composed with the inverse of the diffeomorphism of the base defined by the vector bundle automorphism. (This could be viewed as a morphism from the space of sections to itself, equipped with two module structures.) Actions of Lie groups on a vector bundle therefore give rise to representations in its space of sections by semi-linear isomorphisms.
    [Show full text]
  • Representations of Lie Groupoids and Infinite-Dimensional Lie Groups
    Linking Lie groupoid representations and representations of infinite-dimensional Lie groups Habib Amiri∗ and Alexander Schmeding† January 10, 2019 The present paper links the representation theory of Lie groupoids and infinite-dimensional Lie groups. We show that smooth representations of Lie groupoids give rise to smooth representations of associated Lie groups. The groups envisaged here are the bisection group and a group of groupoid self maps. Then representations of the Lie groupoids give rise to repre- sentations of the infinite-dimensional Lie groups on spaces of (compactly supported) bundle sections. Endowing the spaces of bundle sections with a fine Whitney type topology, the fine very strong topology, we even obtain continuous and smooth representations. It is known that in the topolog- ical category, this correspondence can be reversed for certain topological groupoids. We extend this result to the smooth category under weaker assumptions on the groupoids. Keywords: Lie groupoid, representation of groupoids, group of bisections, infinite- dimensional Lie group, smooth representation, semi-linear map, jet groupoid MSC2010: 22E66 (primary);22E65, 22A22, 58D15 (secondary) Contents Introduction and statement of results 2 1. Infinite-dimensional Lie groups from Lie groupoids 5 RepresentationsofLiegroupsandgroupoids . .. 8 arXiv:1805.03935v2 [math.GR] 8 Jan 2019 2. The group of semi-linear automorphisms 11 ∗University of Zanjan, Iran [email protected] †TU Berlin, Germany [email protected] 1 3. Linking representations of Lie groupoids and infinite-dimensional Lie groups 14 Representationsofthebisectiongroup . .. 14 Representationsofthe groupofself-mappings . .... 23 Functorialaspectsoftheconstruction . ... 27 A. Infinite-dimensional manifolds and manifolds of mappings 28 References 31 Introduction and statement of results Groupoids and their representations appear in a variety of mathematical areas.
    [Show full text]
  • On Moment Maps and Jacobi Manifolds
    On Moment Maps and Jacobi Manifolds Alexander Leguizam´onRobayo Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Matem´aticas Bogot´aD.C., Colombia 2021 On Moment Maps and Jacobi Manifolds Alexander Leguizam´onRobayo Tesis o trabajo de grado presentada(o) como requisito parcial para optar al t´ıtulode: Magister en Ciencias Matem´aticas Directores: Ph.D. Daniele Sepe Ph.D. Nicol´asMart´ınezAlba L´ıneade Investigaci´on: Geometr´ıaDiferencial Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Matem´aticas Bogot´aD.C., Colombia 2021 A mis padres y mi hermana That is the first thing I know for sure: If the questions don't make sense, neither will the answers. Kurt Vonnegut, The Sirens of Titan Agradecimientos Primeramente, quisiera agradecer a mis supervisores Daniele Sepe y Nicol´asMartinez, por el apoyo durante este proyecto. Quisiera agradecerle a Nicol´aspor introducirme al mundo de la geometr´ıade Poisson y sus gen- eralizaciones. El curso de variedades de Nicol´asfue una fuerte base para iniciar con el estudio de este trabajo. Esto sin contar el apoyo de Nicol´asal motivarme a participar en distintos eventos y charlas y por siempre ser curioso respecto a los posibles resultados y aplicaciones de la geometr´ıa de Poisson. Estoy agradecido con Daniele por su paciencia para resolver mis dudas sin importar lo b´asicas que pudieran ser. El curso de geometr´ıasimplectica me ayud´omucho a aclarar dudas y tener una visi´onm´asaterrizada a la hora de aplicar conceptos del curso. Tambi´enpor la constante retroal- imentaci´on,esto me permiti´ocomprender la diferencia entre entender un concepto matem´atico superficialmente y realmente entenderlo a fondo, sabiendo mostrar todas las sutilezas que hay detr´asde un razonamiento riguroso.
    [Show full text]
  • Notes on Lie Groups
    Notes on Lie Groups Eugene Lerman February 15, 2012 Contents 1 Lecture 1 4 1.1 Lie Groups . 4 1.2 Lie Algebras . 6 2 Lecture 2 7 2.1 Left Invariant Vector Fields . 7 3 Lecture 3 11 3.1 Lie Group Homomorphisms . 11 3.2 Lie Subgroups and Lie Subalgebras . 12 4 Lecture 4 15 4.1 Topological Groups . 15 5 Lecture 5 18 5.1 Simply Connected Lie Groups . 18 6 Lecture 6 21 6.1 The Exponential Map . 21 7 Lecture 7 24 7.1 Naturality of exp . 24 8 Lecture 8 26 8.1 Ad, ad and exp . 26 9 Lecture 9 29 9.1 Normal Lie Subgroups . 29 9.2 The Closed Subgroup Theorem I . 30 1 10 Lecture 10 31 10.1 The Closed Subgroup Theorem II . 31 11 Lecture 11 34 11.1 Applications of the Closed Subgroup Theorem . 34 12 Lecture 12 37 12.1 Group Actions and Induced Vector Fields . 37 13 Lecture 13 40 13.1 More on Group Actions and Principal Bundles I . 40 14 Lecture 14 43 14.1 Principal Bundles II . 43 15 Lecture 15 45 15.1 Transitive Actions . 45 16 Lecture 16 49 16.1 Fiber Bundles . 49 16.2 Prerequisites from Homotopy Theory . 50 17 Lecture 17 52 17.1 Deformation Retracts of Classical Lie Groups . 52 18 Lecture 18 56 18.1 Compact Connected Abelian Groups . 56 19 Lecture 19 58 19.1 Representations of Lie Groups . 58 20 Lecture 20 61 20.1 Schur's Lemma . 61 n 20.2 Irreducible Representations of T .
    [Show full text]
  • Polar Actions on Hermitian and Quaternion-Kähler Symmetric Spaces
    Polar Actions on Hermitian and Quaternion-K¨ahlerSymmetric Spaces Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Universit¨atzu K¨oln vorgelegt von Samuel Tebege aus Addis Abeba Hundt-Druck GmbH, K¨oln 2007 Berichterstatter: Prof. Dr. Gudlaugur Thorbergsson Prof. Dr. Uwe Semmelmann Tag der m¨undlichen Pr¨ufung: 13. Dezember 2006 Abstract We analyze polar actions on Hermitian and quaternion-K¨ahler symmetric spaces. For complex integrable polar actions on Hermitian symmetric spaces of com- pact type we prove a reduction theorem and several corollaries concerning the geometry of these actions. The results are independent of the classification of polar actions on Hermitian symmetric spaces. In the second part we prove that polar actions on Wolf spaces are quaternion-coisotropic and that isometric actions on these spaces admit an orbit of special type, analogous to the exis- tence of a complex orbit for an isometric action on a compact homogeneous simply-connected K¨ahler manifold. Contents Zusammenfassung i Introduction v 1 Polar actions 1 1.1 Introduction and examples . 1 1.2 Basic properties . 2 2 Polar actions on Hermitian symmetric spaces 5 2.1 Introduction . 5 2.1.1 Hermitian symmetric spaces as generalized flag manifolds 5 2.1.2 Torus actions and toric varieties . 6 2.1.3 The symplectic geometry of Hermitian symmetric spaces . 8 2.2 The Reduction Theorem . 11 2.3 Applications of the Reduction Theorem . 18 2.3.1 A hyperpolarity criterion . 18 2.3.2 The rank one case . 19 2.3.3 Hermitian symmetric spaces of maximal rank .
    [Show full text]
  • The Orbit Space of a Proper Groupoid
    The Orbit Space of a Proper Groupoid Miguel Rodr´ıguez-Olmos EPFL, Switzerland Joint work with Oana Dragulete (EPFL) Rui Loja Fernandes (IST) Tudor S. Ratiu (EPFL) Miguel Rodr´ıguez-Olmos (EPFL) The Orbit Space of a Proper Groupoid 1 / 24 If the action is free, M/G is a smooth manifold in the quotient topology. If the action is not free, M/G is a locally semi-algebraic space endowed with a canonical Whitney stratification. This correspond to a particular case of a groupoid: The action groupoid: G × M ⇒ M and M/G is precisely the orbit space of this action groupoid. Motivation Let G be a Lie group, M a smooth manifold and G × M → M a proper smooth action. Miguel Rodr´ıguez-Olmos (EPFL) The Orbit Space of a Proper Groupoid 2 / 24 If the action is not free, M/G is a locally semi-algebraic space endowed with a canonical Whitney stratification. This correspond to a particular case of a groupoid: The action groupoid: G × M ⇒ M and M/G is precisely the orbit space of this action groupoid. Motivation Let G be a Lie group, M a smooth manifold and G × M → M a proper smooth action. If the action is free, M/G is a smooth manifold in the quotient topology. Miguel Rodr´ıguez-Olmos (EPFL) The Orbit Space of a Proper Groupoid 2 / 24 This correspond to a particular case of a groupoid: The action groupoid: G × M ⇒ M and M/G is precisely the orbit space of this action groupoid. Motivation Let G be a Lie group, M a smooth manifold and G × M → M a proper smooth action.
    [Show full text]