Symmetry, Integrability and Geometry: Methods and Applications SIGMA 12 (2016), 115, 20 pages Un-Reduction of Systems of Second-Order Ordinary Differential Equations ´ ~ ´ Eduardo GARCIA-TORANO ANDRES y and Tom MESTDAG z y Departamento de Matem´atica, Universidad Nacional del Sur, CONICET, Av. Alem 1253, 8000 Bah´ıaBlanca, Argentina E-mail:
[email protected] z Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B{2020 Antwerpen, Belgium E-mail:
[email protected] Received August 12, 2016, in final form November 29, 2016; Published online December 07, 2016 http://dx.doi.org/10.3842/SIGMA.2016.115 Abstract. In this paper we consider an alternative approach to \un-reduction". This is the process where one associates to a Lagrangian system on a manifold a dynamical system on a principal bundle over that manifold, in such a way that solutions project. We show that, when written in terms of second-order ordinary differential equations (SODEs), one may associate to the first system a (what we have called) \primary un-reduced SODE", and we explain how all other un-reduced SODEs relate to it. We give examples that show that the considered procedure exceeds the realm of Lagrangian systems and that relate our results to those in the literature. Key words: reduction; symmetry; principal connection; second-order ordinary differential equations; Lagrangian system 2010 Mathematics Subject Classification: 34A26; 37J15; 70H33; 70G65 1 Introduction One of the much-discussed aspects of Lagrangian systems with a symmetry group is their re- duction to the so-called Lagrange{Poincar´eequations [6] (but see also [9] for an approach using Lie algebroids, or [13] for an approach that is relevant for this paper).