A Remark on the Moment Map

Total Page:16

File Type:pdf, Size:1020Kb

A Remark on the Moment Map proceedings of the american mathematical society Volume 121, Number 4, August 1994 A REMARK ON THE MOMENT MAP H. AZAD (Communicated by Peter Li) Abstract. Following S. Lie, it is proposed that moment maps be constructed for degenerate forms and the utility of such maps is illustrated by computing the moment maps for torus actions on C" and U{n) actions on P"(C). The moment map is usually defined on manifolds with a given nondegener- ate 2-form. However, it can also be defined for manifolds with an invariant 2-form, degenerate or not, and in some sense this useful generalization was al- ready known to Lie. According to Weinstein [8, 2], Lie considered the following closely related situation. M is a manifold on which a Lie group G operates, and n isa (7-invariant 1-form. For X in the Lie algebra 3? of G let Xm be the cor- responding fundamental vector field, i.e., XM(x) = (d/dt)\t=oe'x • x (x e M). Lie proves that the map p: M -*&* defined by pix)iX) = r\x(XM(x)) (x e M) is G-equivariant, with G operating on &* by the coadjoint representation. Consider the map X : 9 -> C°°iM) defined by X(X) = r¡iXM). We have pix)iX) = X(X)(x) (x e M, X e &). Now for Z = XM the Lie derivative Lz n of r\ along Z is zero, and therefore 0 = Lz(n) = d(n(Z)) + iz(dr,) where iz is the interior product with Z [1]. Now co = dn is also G-invariant and ixM(w) = -d(X(X)). This leads to the following definition of the como- ment map, which, according to [4] was already known to Souriau [7]. Definition (Souriau). Let M be a manifold on which a Lie group G operates and co a (/-invariant 2-form. Then a comoment for the action of G on M is a linear map X : & — C°°(M) such that d(X(X)) = -iXll((o) for all X e%. The corresponding moment map is the map p : M —►&* defined by p(x)(X) = X(X)(x), where xeM,Xe^. Now our remark is the following proposition which simplifies many of the computations in the literature relating to the moment map. Proposition. Let G be a Lie group which operates on manifolds M and M, and let n : M —►M be a G-equivariant map. Assume that G preserves a 2-form co on M and that there is a comoment for the action of G on M with p the Received by the editors November 13, 1992. 1991 Mathematics Subject Classification. 22E70. ©1994 American Mathematical Society 0002-9939/94 $1.00 + 1.25 per page 1295 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 1296 H. AZAD corresponding moment map. Then pan is a moment map for (M, n*(co)),and if p is any other moment map for (M, n*(co)) then p- (pon) is a constant in the sense that for all x e M and X e S? we have p(x)(X)-(pon)(x)(X) = a(X) for some linear function a on 3?. Proof. Let the comoments for p and p be X and X, respectively. For leg we compare the functions n*(X(X)) and X(X). We have -d(n*(X(X))) = n*(d(X(X)))= **(*>„(«)) and -d(X(X)) = ix~(n* (co)). As n is G-equivariant we have n*(ixM(co)) = ix~(n*(co)). Therefore the functions X(X) and n*(X(X)) have the same dif- ferentials, so their difference is a constant, say a(X). Clearly a is a linear function on % . D Applications Let us now apply this remark to recover some computations involving the moment map. The first example serves to introduce some notation needed in the subsequent examples. (a) Let M be C" with co the standard symplectic form co= ^2 dxj Adyj, Zj = Xj + iyj (j = 1, ... , n) being the coordinates in C" . We have co = ¿¿(dzjAdzj) = iö5(||z||2) = ddc\\z\\2), where dc = (d -8)/2i. Let n = dc(\\ z ||2). So r\ is invariant under U(n), and the comoment for (C", co) is the contraction of n with the fundamental vector fields of U(n). (b) Consider the action of Sx on C with weight X ; that is, exp(/0) • z = exp(z'A0)z. The fundamental vector field here is X(z) = iXz, i.e., X(z) = iX(d/dz) - iX(d/dz). We have n = dc(zz) = (zdz - zdz)/2i and n(X)(z) = Xzz. So the moment map here is p(z) = Xzz . Therefore, for an action of Sx on C" of the form *"(*,,... ,zn) = iea>ezx,... ,ea"ezn) the moment map relative to ta = úfúfc(||z||2) is pizx, ... , z„) = Xx\zx\2+ --- + X„\z„\2. (c) Finally consider P"(C). Let G = C/(« + 1). There is, up to a constant, a unique G-invariant hermitian metric on P" (C). This is the Fubini metric on P"(C) ; denote it by g. The fundamental form of g is the 2-form co defined by coiX, Y) = g(J(X), Y), J being the complex structure of P"(C). Let 7t : C"+x\ 0 —>P"(C) be the natural map. It is well known that the pullback of co is exact; namely, n*(co) = d(n), where n = i/c(log||z||2). We have already seen that a comoment for an exact form is the contraction of the fundamental vector fields with an invariant potential. Therefore, a moment map p for Cn+1 \ 0 is p(z)(X) = ¿clog(||z||2)(;r) = (l/\\z\\2)dc(\\z\\2)(X) (z e C"+x \0,Xe&). License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use A REMARKON THE MOMENT MAP 1297 The map p is G-equivariant as n is G-invariant. Moreover, as p(Xz) = p(z) the map p descends to a G-equivariant map p from P"(C) into &*. By the proposition p is a moment map for P" (relative to the Fubini metric). Ness [6] and Kirwan [5] first guess the formula for p and then verify that it is indeed a moment map. In a somewhat more general context, in Guillemin- Sternberg [3] there appears in §3 a complex line-bundle L over a compact Kahler manifold X so that if co is the fundamental form of X then n* (to) is an exact form with potential, say n ( n is a connection 1-form), and from their formulae it is clear that the momentum mapping corresponds to contracting the vector fields on L with n . We owe this remark to Professor J. J. Duistermaat. References 1. R. Abraham and J. Marsden, Foundations of mechanics, Addison-Wesley, Reading, MA, 1985. 2. A. M. Bloch and T. S. Ratiu, Convexity and integrability, Symplectic Geometry and Math- ematical Physics, Birkhäuser, Basel, 1991, pp. 48-79. 3. V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group represen- tations, Invent. Math. 67 (1982), 515-538. 4. P. Iglesias, Les SO(3)-variétés symplectiques et leur classification en dimension 4, Bull. Soc. Math. France 119 (1991), 371-369. 5. F. Kirwan, The cohomology of quotients in symplectic and algebraic geometry, Math Notes 31, Princeton Univ. Press, Princeton, NJ, 1985. 6. L. Ness, A stratification of the null-cone via the moment map, Amer. J. Math. 106 (1984), 1281-1329. 7. J. M. Souriau, Structure des systèmes dynamiques, Dunod, Paris, 1970. 8. A. Weinstein, Sophus Lie and symplectic geometry, Exposition. Math. 1 (1983), 95-98. Mathematisches Institut, Ruhr-Universität, Bochum, Germany Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use.
Recommended publications
  • Arxiv:1311.6429V2 [Math.AG]
    QUASI-HAMILTONIAN REDUCTION VIA CLASSICAL CHERN–SIMONS THEORY PAVEL SAFRONOV Abstract. This paper puts the theory of quasi-Hamiltonian reduction in the framework of shifted symplectic structures developed by Pantev, To¨en, Vaqui´eand Vezzosi. We compute the symplectic structures on mapping stacks and show how the AKSZ topological field theory defined by Calaque allows one to neatly package the constructions used in quasi- Hamiltonian reduction. Finally, we explain how a prequantization of character stacks can be obtained purely locally. 0. Introduction 0.1. This paper is an attempt to interpret computations of Alekseev, Malkin and Mein- renken [AMM97] in the framework of shifted symplectic structures [PTVV11]. Symplectic structures appeared as natural structures one encounters on phase spaces of classical mechanical systems. Classical mechanics is a one-dimensional classical field theory and when one goes up in the dimension shifted, or derived, symplectic structures appear. That is, given an n-dimensional classical field theory, the phase space attached to a d- dimensional closed manifold carries an (n−d−1)-shifted symplectic structure. For instance, if d = n − 1 one gets ordinary symplectic structures and for d = n, i.e. in the top dimension, one encounters (−1)-shifted symplectic spaces. These spaces can be more explicitly described as critical loci of action functionals. ∼ An n-shifted symplectic structure on a stack X is an isomorphism TX → LX [n] between the tangent complex and the shifted cotangent complex together with certain closedness conditions. Symplectic structures on stacks put severe restrictions on the geometry: for instance, a 0-shifted symplectic derived scheme is automatically smooth.
    [Show full text]
  • Infinitesimally Tight Lagrangian Orbits 2
    INFINITESIMALLY TIGHT LAGRANGIAN ORBITS ELIZABETH GASPARIM, LUIZ A. B. SAN MARTIN, FABRICIO VALENCIA Abstract. We describe isotropic orbits for the restricted action of a subgroup of a Lie group acting on a symplectic manifold by Hamiltonian symplectomorphisms and admitting an Ad*- equivariant moment map. We obtain examples of Lagrangian orbits of complex flag manifolds, of cotangent bundles of orthogonal Lie groups, and of products of flags. We introduce the notion of infinitesimally tight and study the intersection theory of such Lagrangian orbits, giving many examples. Contents 1. Introduction 1 2. Isotropic orbits 3 3. Orthogonal Lie groups 5 4. Complex flag manifolds 6 5. Products of flags 11 5.1. Shifted diagonals as Lagrangians 13 6. Infinitesimally tight immersions 15 Appendix A. KKS symplectic form on orthogonal groups 18 Appendix B. Open questions 20 Acknowledgments 21 References 21 1. Introduction Let (M,ω) be a connected symplectic manifold, G a Lie group with Lie algebra g, and L a Lie subgroup of G. Assume that there exists a Hamiltonian action of G on M which admits an Ad∗-equivariant moment map µ : M g∗. The purpose of this paper is to study arXiv:1903.03717v2 [math.SG] 4 Aug 2020 those orbits Lx with x M that are Lagrangian→ submanifolds of (M,ω), or more generally, isotropic submanifolds. We∈ also discuss some essential features of the intersection theory of such Lagrangian orbits, namely the concepts of locally tight and infinitesimally tight Lagrangians. The famous Arnold–Givental conjecture, proved in many cases, predicts that the number of intersection points of a Lagrangian and its image ϕ( ) by the flow of a Hamiltonian vector L L field can be estimated from below by the sum of its Z2 Betti numbers: ϕ( ) b ( ; Z ).
    [Show full text]
  • The Moment Map of a Lie Group Representation
    transactions of the american mathematical society Volume 330, Number 1, March 1992 THE MOMENT MAP OF A LIE GROUP REPRESENTATION N. J. WILDBERGER Abstract. The classical moment map of symplectic geometry is used to canoni- cally associate to a unitary representation of a Lie group G a G-invariant subset of the dual of the Lie algebra. This correspondence is in some sense dual to geometric quantization. The nature and convexity of this subset is investigated for G compact semisimple. Introduction Since Kirillov's fundamental paper [7], orbit theory has played an important role in the representation theory of Lie groups. The general philosophy is that there should be some connection between irreducible unitary representations of a Lie group G and orbits of the group in the dual 9* of its Lie algebra &. This connection should be functorial; the usual operations of restriction, induction, taking direct sums and tensor products of representations should correspond to geometric relationships between the associated coadjoint orbits. Properties of a representation such as square-integrability, temperedness etc. should be related to geometric aspects of the associated orbit. Kirillov's original theory showed that if G was a connected simply con- nected nilpotent Lie group one could establish such a bijection between the set of coadjoint orbits and the set of equivalence classes of irreducible unitary representations G by associating to each orbit a certain induced representa- tion. Kostant [9] noticed the close similarity between this association and what physicists refer to as quantization of a classical mechanical system, and he and Souriau [11] independently generalized this procedure to what is called geomet- ric quantization.
    [Show full text]
  • LECTURE 5 Let (M,Ω) Be a Connected Compact Symplectic Manifold, T A
    SYMPLECTIC GEOMETRY: LECTURE 5 LIAT KESSLER Let (M; !) be a connected compact symplectic manifold, T a torus, T × M ! M a Hamiltonian action of T on M, and Φ: M ! t∗ the assoaciated moment map. Theorem 0.1 (The convexity theorem, Atiyah, Guillemin and Stern- berg, 1982). The image of Φ is a convex polytope. In this talk we will prove the convexity theorem. The proof given here is of Guillemin-Sternberg and is taken from [3]. We will then 1 discuss the case dim T = 2 dim M. Remark 0.1. We saw in Lecture 4 that for an Abelian group-action the equivariance condition amounts to the moment map being invariant; in case the group is a torus, the latter condition follows from Hamil- ξ ton's equation: dΦ = −ιξM ! for all ξ in the Lie algebra, see e.g., [4, Proposition 2.9]. 1. The local convexity theorem In the convexity theorem we consider torus actions on compact sym- plectic manifolds. However to understand moment maps locally, we will look at Hamiltonian torus actions on symplectic vector spaces. Example. T n = (S1)n acts on Cn by (a1; : : : ; an) · (z1; : : : ; zn) = (a1z1; : : : ; anzn): The symplectic form is n n X X ! = dxj ^ dyj = rjdrj ^ dθj j=1 j=1 iθj where zj = xj +iyj = rje . With a standard basis of the Lie algebra of T n, the action is generated by the vector fields @ for j = 1; : : : ; n and @θj n n the moment map is a map Φ = (Φ1;:::; Φn): C ! R . Hamilton's @ equation becomes dΦj = −ι( )!.
    [Show full text]
  • Gradient Flow of the Norm Squared of a Moment Map
    Gradient flow of the norm squared of a moment map Autor(en): Lerman, Eugene Objekttyp: Article Zeitschrift: L'Enseignement Mathématique Band (Jahr): 51 (2005) Heft 1-2: L'enseignement mathématique PDF erstellt am: 04.10.2021 Persistenter Link: http://doi.org/10.5169/seals-3590 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch L'Enseignement Mathématique, t. 51 (2005), p. 117-127 GRADIENT FLOW OF THE NORM SQUARED OF A MOMENT MAP by Eugene Lerman*) Abstract. We present a proof due to Duistermaat that the gradient flow of the norm squared of the moment map defines a deformation retract of the appropriate piece of the manifold onto the zero level set of the moment map.
    [Show full text]
  • Symplectic Topology, Geometry and Gauge Theory Lisa Jeffrey
    Symplectic Topology, Geometry and Gauge Theory Lisa Jeffrey 1 Symplectic geometry has its roots in classical mechanics. A prototype for a symplectic manifold is the phase space which parametrizes the position q and momentum p of a classical particle. If the Hamiltonian (kinetic + potential en- ergy) is p2 H = + V (q) 2 then the motion of the particle is described by Hamilton’s equations dq ∂H = = p dt ∂p dp ∂H ∂V = − = − dt ∂q ∂q 2 In mathematical terms, a symplectic manifold is a manifold M endowed with a 2-form ω which is: • closed: dω = 0 (integral of ω over a 2-dimensional subman- ifold which is the boundary of a 3-manifold is 0) • nondegenerate (at any x ∈ M ω gives a map ∗ from the tangent space TxM to its dual Tx M; nondegeneracy means this map is invertible) If M = R2 is the phase space equipped with the Hamiltonian H then the symplectic form ω = dq ∧ dp transforms the 1-form ∂H ∂H dH = dp + dq ∂p ∂q to the vector field ∂H ∂H X = (− , ) H ∂q ∂p 3 The flow associated to XH is the flow satisfying Hamilton’s equations. Darboux’s theorem says that near any point of M there are local coordinates x1, . , xn, y1, . , yn such that Xn ω = dxi ∧ dyi. i=1 (Note that symplectic structures only exist on even-dimensional manifolds) Thus there are no local invariants that distin- guish between symplectic structures: at a local level all symplectic forms are identical. In contrast, Riemannian metrics g have local invariants, the curvature tensors R(g), such that if R(g1) =6 R(g2) then there is no smooth map that pulls back g1 to g2.
    [Show full text]
  • Hamiltonian Manifolds and Moment Map
    Hamiltonian manifolds and moment map. Nicole BERLINE and Mich`eleVERGNE July 4, 2011 Contents 1 Setup of Hamiltonian manifolds 5 1.1 Tangent and normal vector bundle . 5 1.2 Calculus on differential forms . 6 1.2.1 de Rham differential . 6 1.2.2 Contraction by vector fields . 8 1.2.3 Lie derivative with respect to a vector field. Cartan's Homotopy Formula . 8 1.3 Action of a Lie group on a manifold . 9 1.4 Symplectic manifold. Hamiltonian action . 10 1.4.1 Symplectic vector space . 10 1.4.2 Symplectic form. Darboux coordinates . 11 1.4.3 Hamiltonian vector field . 12 1.4.4 Moment map. Hamiltonian manifold . 13 2 Examples of Hamiltonian manifolds 15 2.1 Cotangent bundle . 15 2.2 Symplectic and Hermitian vector spaces . 16 2.3 Complex projective space . 17 2.4 Coadjoint orbits . 20 3 Reduced spaces 21 3.1 Fiber bundles . 21 3.1.1 Fibration . 21 3.1.2 Actions of compact Lie groups, linearization. 22 3.1.3 Free action of a Lie group . 23 1 3.1.4 Principal bundles. Basic differential forms . 24 3.2 Pre-Hamiltonian manifold . 26 3.2.1 Examples of pre-Hamiltonian manifolds . 26 3.2.2 Consequences of Hamilton equation. Homogeneous man- ifolds and coadjoint orbits . 27 3.3 Hamiltonian reduction . 29 4 Duistermaat-Heckman measure 31 4.1 Poincar´eLemma . 31 4.2 Pre-Hamiltonian structures on P × g∗. 33 4.3 Push-forward of the Liouville measure. 35 4.4 Push-forward of the Liouville measure and volume of the re- duced space .
    [Show full text]
  • The Moment Map and Equivariant Cohqmology
    MJ4&Y383/84 $3.00 + .w I( 1984 Pergamon Press Ltd THE MOMENT MAP AND EQUIVARIANT COHQMOLOGY M. F. ATIYAH and R. BOTT (Received20 December1982) $1. INTRODUCTION THE PURPOSEof this note is to present a de Rham version of the localization theorems of equivariant cohomology, and to point out their relation to a recent result of Duistermaat and Heckman and also to a quite independent result of Witten. To a large extent all the material that we use has been around for some time, although equivariant cohomology is not perhaps familiar to analysts. Our contribution is therefore mainly an expository one linking together various points of view. The paper of Duistermaat and Heckman [ 1 l] which was our initial stimulus concerns the moment mapf:M+R’ for the action of a torus T’ on a compact symplectic manifold M. Their theorem asserts that the push-forward byfof the symplectic (or Liouville) measure on A4 is a piece-wise polynomial measure on R’. An equivalent version is that the Fourier transform of this measure (which is the integral over A4 of e-i(c,fi) is exactly given by stationary phase approximation. For example when I = 1 (so that T’is the circle S) and the fixed points of the action are isolated points P, we have the exact formula , where (u is the symplectic 2-form on M and the e(P) are certain integers attached to the infinitesimal action of S at P. This principle, that stationary-phase is exact when the “Hamiltonian”fcomes from a circle action, is such an attractive result that it seemed to us to deserve further study.
    [Show full text]
  • Hamiltonian Actions of Unipotent Groups on Compact K\" Ahler
    Épijournal de Géométrie Algébrique epiga.episciences.org Volume 2 (2018), Article Nr. 10 Hamiltonian actions of unipotent groups on compact Kähler manifolds Daniel Greb and Christian Miebach Abstract. We study meromorphic actions of unipotent complex Lie groups on compact Kähler manifolds using moment map techniques. We introduce natural stability conditions and show that sets of semistable points are Zariski-open and admit geometric quotients that carry compactifiable Kähler structures obtained by symplectic reduction. The relation of our complex-analytic theory to the work of Doran–Kirwan regarding the Geometric Invariant Theory of unipotent group actions on projective varieties is discussed in detail. Keywords. Unipotent algebraic groups; automorphisms of compact Kähler manifolds; Kähler metrics on fibre bundles and homogeneous spaces; moment maps; symplectic reduction; Geomet- ric Invariant Theory 2010 Mathematics Subject Classification. 32M05; 32M10; 32Q15; 14L24; 14L30; 37J15; 53D20 [Français] Titre. Actions hamiltoniennes des groupes unipotents sur les variétés kählériennes com- pactes Résumé. Nous étudions les actions méromorphes de groupes de Lie complexes unipotents sur les variétés kählériennes compactes en utilisant des techniques de type application moment. Nous introduisons des conditions de stabilité naturelles et nous montrons que l’ensemble des points semi-stables forme un ouvert de Zariski et admet des quotients géométriques munis de structures kählériennes compactifiables obtenues par réduction symplectique. Le parallèle entre notre théorie analytique complexe et les travaux de Doran–Kirwan concernant la Théorie Géométrique des Invariants des actions de groupes unipotents sur les variétés projectives est discuté en détails. arXiv:1805.02551v2 [math.CV] 8 Nov 2018 Received by the Editors on May 8, 2018, and in final form on September 6, 2018.
    [Show full text]
  • Fundamental Vector Fields on Type Fibres of Jet Prolongations of Tensor Bundles
    Mathematica Slovaca Demeter Krupka Fundamental vector fields on type fibres of jet prolongations of tensor bundles Mathematica Slovaca, Vol. 29 (1979), No. 2, 159--167 Persistent URL: http://dml.cz/dmlcz/136207 Terms of use: © Mathematical Institute of the Slovak Academy of Sciences, 1979 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz Moth. Slovaca 29,1979, No. 2,159—167 FUNDAMENTAL VECTOR FIELDS ON TYPE FIBRES OF JET PROLONGATIONS OF TENSOR BUNDLES DEMETER KRUPKA 1. Introduction. In this paper the problem of constructing the fundamental vector fields [9] on the type fibres of the jet prolongations of tensor bundles is considered. This is one of the most important problems of the theory of invariant Lagrangian structures [3], [4], [7]. The well-known direct method of finding these vector fields follows from their definition, and is based on the formulas for the action of the structure group of tensor bundles on their type fibres. Examples [4] show, however, that the corresponding computations are rather complicated and in the cases of higher jet prolongations practically non-realizable. In this paper we determine the fundamen­ tal vector fields by a simple differentiation procedure which makes use of their relation to the jet prolongations of the so called induced vector fields on tensor bundles [2], [5], [6].
    [Show full text]
  • Moment Maps, Cobordisms, and Hamiltonian Group Actions Mathematical Surveys and Monographs Volume 98
    http://dx.doi.org/10.1090/surv/098 Moment Maps, Cobordisms, and Hamiltonian Group Actions Mathematical Surveys and Monographs Volume 98 Moment Maps, Cobordisms, and Hamiltonian Group Actions Victor Guillemin Viktor Ginzburg Yael Karshon American Mathematical Society EDITORIAL COMMITTEE Peter S. Landweber Tudor Stefan Ratiu Michael P. Loss, Chair J. T. Stafford 2000 Mathematics Subject Classification. Primary 53Dxx, 57Rxx, 55N91, 57S15. ABSTRACT. The book contains a systematic treatment of numerous symplectic geometry questions in the context of cobordisms of Hamiltonian group actions. The topics analyzed in the book in­ clude abstract moment maps, symplectic reduction, the Duistermaat-Heckman formula, geometric quantization, and the quantization commutes with reduction theorem. Ten appendices cover a broad range of related subjects: proper actions of compact Lie groups, equivariant cohomology, the Atiyah-Bott-Berline-Vergne localization theorem, the Kawasaki Riemann-Roch formula, and a variety of other results. The book can be used by researchers and graduate students working in symplectic geometry and its applications. Library of Congress Cataloging-in-Publication Data Guillemin, V., 1937- Moment maps, cobordisms, and Hamiltonian group actions / Victor Guillemin, Viktor Ginz- burg, Yael Karshon. p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 98) Includes bibliographical references and index. ISBN 0-8218-0502-9 (alk. paper) 1. Symplectic geometry. 2. Cobordism theory. 3. Geometric quantization. I. Karshon, Yael, 1964- II. Ginzburg, Viktor L., 1962- III. Title. IV. Mathematical surveys and monographs ; no. 98. QA665.G85 2002 516.3/6-dc21 2002074590 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research.
    [Show full text]
  • Notes on Differential Geometry
    Notes on Differential Geometry Domenico Giulini University of Freiburg Department of Physics Hermann-Herder-Strasse 3 D-79104 Freiburg, Germany May 12, 2003 Abstract These notes present various concepts in differential geometry from the el- egant and unifying point of view of principal bundles and their associated vector bundles. 1 Contents 1 The principal bundle 3 1.1 Sections in P . 3 1.2 Fundamental vector fields and vertical subspaces . 4 1.3 Bundle automorphisms and gauge transformations . 4 ¢¡¤£¢¥§¦©¨ ¥¨ 1.4 Lifts from to . 5 ¥§¦©¨ 1.4.1 Push-forward lift to . 6 1.4.2 Lifts by global sections . 6 1.5 Connections . 7 1.6 Parallel transportation in P . 7 2 Associated vector bundles 8 2.1 Definition . 8 2.2 Densitized representations . 9 2.3 Gauge transformations . 9 2.3.1 `Constant' gauge transformations do not exist . 9 2.4 Parallel transportation in E . 10 2.5 Sections in E . 10 2.6 Derivatives of sections in . 11 3 Derivatives 12 3.1 The covariant derivative . 12 3.2 The Lie derivative . 14 4 Curvature and torsion 17 4.1 Curvature . 17 4.2 Torsion . 18 4.3 Relating covariant and Lie derivatives . 19 5 Building new from old principal bundles 19 5.1 Splicing . 19 5.2 Reduction . 21 5.3 Extension . 22 A Construction of principal bundles 22 Notation: Throughout we consistently use hats and overbars on symbols as follows: hats for `raised' (i.e. lifted) maps of the base or `raised' sections (equivariant functions on total space), overbars for `projected' maps or local representatives of sections.
    [Show full text]