Conserved Quantities and the Moment Map
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Noether: the More Things Change, the More Stay the Same
Noether: The More Things Change, the More Stay the Same Grzegorz G luch∗ R¨udigerUrbanke EPFL EPFL Abstract Symmetries have proven to be important ingredients in the analysis of neural networks. So far their use has mostly been implicit or seemingly coincidental. We undertake a systematic study of the role that symmetry plays. In particular, we clarify how symmetry interacts with the learning algorithm. The key ingredient in our study is played by Noether's celebrated theorem which, informally speaking, states that symmetry leads to conserved quantities (e.g., conservation of energy or conservation of momentum). In the realm of neural networks under gradient descent, model symmetries imply restrictions on the gradient path. E.g., we show that symmetry of activation functions leads to boundedness of weight matrices, for the specific case of linear activations it leads to balance equations of consecutive layers, data augmentation leads to gradient paths that have \momentum"-type restrictions, and time symmetry leads to a version of the Neural Tangent Kernel. Symmetry alone does not specify the optimization path, but the more symmetries are contained in the model the more restrictions are imposed on the path. Since symmetry also implies over-parametrization, this in effect implies that some part of this over-parametrization is cancelled out by the existence of the conserved quantities. Symmetry can therefore be thought of as one further important tool in understanding the performance of neural networks under gradient descent. 1 Introduction There is a large body of work dedicated to understanding what makes neural networks (NNs) perform so well under versions of gradient descent (GD). -
Conservation of Total Momentum TM1
L3:1 Conservation of total momentum TM1 We will here prove that conservation of total momentum is a consequence Taylor: 268-269 of translational invariance. Consider N particles with positions given by . If we translate the whole system with some distance we get The potential energy must be una ected by the translation. (We move the "whole world", no relative position change.) Also, clearly all velocities are independent of the translation Let's consider to be in the x-direction, then Using Lagrange's equation, we can rewrite each derivative as I.e., total momentum is conserved! (Clearly there is nothing special about the x-direction.) L3:2 Generalized coordinates, velocities, momenta and forces Gen:1 Taylor: 241-242 With we have i.e., di erentiating w.r.t. gives us the momentum in -direction. generalized velocity In analogy we de✁ ne the generalized momentum and we say that and are conjugated variables. Note: Def. of gen. force We also de✁ ne the generalized force from Taylor 7.15 di ers from def in HUB I.9.17. such that generalized rate of change of force generalized momentum Note: (generalized coordinate) need not have dimension length (generalized velocity) velocity momentum (generalized momentum) (generalized force) force Example: For a system which rotates around the z-axis we have for V=0 s.t. The angular momentum is thus conjugated variable to length dimensionless length/time 1/time mass*length/time mass*(length)^2/time (torque) energy Cyclic coordinates = ignorable coordinates and Noether's theorem L3:3 Cyclic:1 We have de ned the generalized momentum Taylor: From EL we have 266-267 i.e. -
Arxiv:1311.6429V2 [Math.AG]
QUASI-HAMILTONIAN REDUCTION VIA CLASSICAL CHERN–SIMONS THEORY PAVEL SAFRONOV Abstract. This paper puts the theory of quasi-Hamiltonian reduction in the framework of shifted symplectic structures developed by Pantev, To¨en, Vaqui´eand Vezzosi. We compute the symplectic structures on mapping stacks and show how the AKSZ topological field theory defined by Calaque allows one to neatly package the constructions used in quasi- Hamiltonian reduction. Finally, we explain how a prequantization of character stacks can be obtained purely locally. 0. Introduction 0.1. This paper is an attempt to interpret computations of Alekseev, Malkin and Mein- renken [AMM97] in the framework of shifted symplectic structures [PTVV11]. Symplectic structures appeared as natural structures one encounters on phase spaces of classical mechanical systems. Classical mechanics is a one-dimensional classical field theory and when one goes up in the dimension shifted, or derived, symplectic structures appear. That is, given an n-dimensional classical field theory, the phase space attached to a d- dimensional closed manifold carries an (n−d−1)-shifted symplectic structure. For instance, if d = n − 1 one gets ordinary symplectic structures and for d = n, i.e. in the top dimension, one encounters (−1)-shifted symplectic spaces. These spaces can be more explicitly described as critical loci of action functionals. ∼ An n-shifted symplectic structure on a stack X is an isomorphism TX → LX [n] between the tangent complex and the shifted cotangent complex together with certain closedness conditions. Symplectic structures on stacks put severe restrictions on the geometry: for instance, a 0-shifted symplectic derived scheme is automatically smooth. -
The Moment Map of a Lie Group Representation
transactions of the american mathematical society Volume 330, Number 1, March 1992 THE MOMENT MAP OF A LIE GROUP REPRESENTATION N. J. WILDBERGER Abstract. The classical moment map of symplectic geometry is used to canoni- cally associate to a unitary representation of a Lie group G a G-invariant subset of the dual of the Lie algebra. This correspondence is in some sense dual to geometric quantization. The nature and convexity of this subset is investigated for G compact semisimple. Introduction Since Kirillov's fundamental paper [7], orbit theory has played an important role in the representation theory of Lie groups. The general philosophy is that there should be some connection between irreducible unitary representations of a Lie group G and orbits of the group in the dual 9* of its Lie algebra &. This connection should be functorial; the usual operations of restriction, induction, taking direct sums and tensor products of representations should correspond to geometric relationships between the associated coadjoint orbits. Properties of a representation such as square-integrability, temperedness etc. should be related to geometric aspects of the associated orbit. Kirillov's original theory showed that if G was a connected simply con- nected nilpotent Lie group one could establish such a bijection between the set of coadjoint orbits and the set of equivalence classes of irreducible unitary representations G by associating to each orbit a certain induced representa- tion. Kostant [9] noticed the close similarity between this association and what physicists refer to as quantization of a classical mechanical system, and he and Souriau [11] independently generalized this procedure to what is called geomet- ric quantization. -
LECTURE 5 Let (M,Ω) Be a Connected Compact Symplectic Manifold, T A
SYMPLECTIC GEOMETRY: LECTURE 5 LIAT KESSLER Let (M; !) be a connected compact symplectic manifold, T a torus, T × M ! M a Hamiltonian action of T on M, and Φ: M ! t∗ the assoaciated moment map. Theorem 0.1 (The convexity theorem, Atiyah, Guillemin and Stern- berg, 1982). The image of Φ is a convex polytope. In this talk we will prove the convexity theorem. The proof given here is of Guillemin-Sternberg and is taken from [3]. We will then 1 discuss the case dim T = 2 dim M. Remark 0.1. We saw in Lecture 4 that for an Abelian group-action the equivariance condition amounts to the moment map being invariant; in case the group is a torus, the latter condition follows from Hamil- ξ ton's equation: dΦ = −ιξM ! for all ξ in the Lie algebra, see e.g., [4, Proposition 2.9]. 1. The local convexity theorem In the convexity theorem we consider torus actions on compact sym- plectic manifolds. However to understand moment maps locally, we will look at Hamiltonian torus actions on symplectic vector spaces. Example. T n = (S1)n acts on Cn by (a1; : : : ; an) · (z1; : : : ; zn) = (a1z1; : : : ; anzn): The symplectic form is n n X X ! = dxj ^ dyj = rjdrj ^ dθj j=1 j=1 iθj where zj = xj +iyj = rje . With a standard basis of the Lie algebra of T n, the action is generated by the vector fields @ for j = 1; : : : ; n and @θj n n the moment map is a map Φ = (Φ1;:::; Φn): C ! R . Hamilton's @ equation becomes dΦj = −ι( )!. -
Gradient Flow of the Norm Squared of a Moment Map
Gradient flow of the norm squared of a moment map Autor(en): Lerman, Eugene Objekttyp: Article Zeitschrift: L'Enseignement Mathématique Band (Jahr): 51 (2005) Heft 1-2: L'enseignement mathématique PDF erstellt am: 04.10.2021 Persistenter Link: http://doi.org/10.5169/seals-3590 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch L'Enseignement Mathématique, t. 51 (2005), p. 117-127 GRADIENT FLOW OF THE NORM SQUARED OF A MOMENT MAP by Eugene Lerman*) Abstract. We present a proof due to Duistermaat that the gradient flow of the norm squared of the moment map defines a deformation retract of the appropriate piece of the manifold onto the zero level set of the moment map. -
Symplectic Topology, Geometry and Gauge Theory Lisa Jeffrey
Symplectic Topology, Geometry and Gauge Theory Lisa Jeffrey 1 Symplectic geometry has its roots in classical mechanics. A prototype for a symplectic manifold is the phase space which parametrizes the position q and momentum p of a classical particle. If the Hamiltonian (kinetic + potential en- ergy) is p2 H = + V (q) 2 then the motion of the particle is described by Hamilton’s equations dq ∂H = = p dt ∂p dp ∂H ∂V = − = − dt ∂q ∂q 2 In mathematical terms, a symplectic manifold is a manifold M endowed with a 2-form ω which is: • closed: dω = 0 (integral of ω over a 2-dimensional subman- ifold which is the boundary of a 3-manifold is 0) • nondegenerate (at any x ∈ M ω gives a map ∗ from the tangent space TxM to its dual Tx M; nondegeneracy means this map is invertible) If M = R2 is the phase space equipped with the Hamiltonian H then the symplectic form ω = dq ∧ dp transforms the 1-form ∂H ∂H dH = dp + dq ∂p ∂q to the vector field ∂H ∂H X = (− , ) H ∂q ∂p 3 The flow associated to XH is the flow satisfying Hamilton’s equations. Darboux’s theorem says that near any point of M there are local coordinates x1, . , xn, y1, . , yn such that Xn ω = dxi ∧ dyi. i=1 (Note that symplectic structures only exist on even-dimensional manifolds) Thus there are no local invariants that distin- guish between symplectic structures: at a local level all symplectic forms are identical. In contrast, Riemannian metrics g have local invariants, the curvature tensors R(g), such that if R(g1) =6 R(g2) then there is no smooth map that pulls back g1 to g2. -
Hamiltonian Manifolds and Moment Map
Hamiltonian manifolds and moment map. Nicole BERLINE and Mich`eleVERGNE July 4, 2011 Contents 1 Setup of Hamiltonian manifolds 5 1.1 Tangent and normal vector bundle . 5 1.2 Calculus on differential forms . 6 1.2.1 de Rham differential . 6 1.2.2 Contraction by vector fields . 8 1.2.3 Lie derivative with respect to a vector field. Cartan's Homotopy Formula . 8 1.3 Action of a Lie group on a manifold . 9 1.4 Symplectic manifold. Hamiltonian action . 10 1.4.1 Symplectic vector space . 10 1.4.2 Symplectic form. Darboux coordinates . 11 1.4.3 Hamiltonian vector field . 12 1.4.4 Moment map. Hamiltonian manifold . 13 2 Examples of Hamiltonian manifolds 15 2.1 Cotangent bundle . 15 2.2 Symplectic and Hermitian vector spaces . 16 2.3 Complex projective space . 17 2.4 Coadjoint orbits . 20 3 Reduced spaces 21 3.1 Fiber bundles . 21 3.1.1 Fibration . 21 3.1.2 Actions of compact Lie groups, linearization. 22 3.1.3 Free action of a Lie group . 23 1 3.1.4 Principal bundles. Basic differential forms . 24 3.2 Pre-Hamiltonian manifold . 26 3.2.1 Examples of pre-Hamiltonian manifolds . 26 3.2.2 Consequences of Hamilton equation. Homogeneous man- ifolds and coadjoint orbits . 27 3.3 Hamiltonian reduction . 29 4 Duistermaat-Heckman measure 31 4.1 Poincar´eLemma . 31 4.2 Pre-Hamiltonian structures on P × g∗. 33 4.3 Push-forward of the Liouville measure. 35 4.4 Push-forward of the Liouville measure and volume of the re- duced space . -
On the Status of Conservation Laws in Physics: Implications for Semiclassical Gravity
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Philsci-Archive On the Status of Conservation Laws in Physics: Implications for Semiclassical Gravity Tim Maudlin Department of Philosophy, New York University, New York, USA. Elias Okon Instituto de Investigaciones Filosóficas, Universidad Nacional Autónoma de México, Mexico City, Mexico. Daniel Sudarsky Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico. We start by surveying the history of the idea of a fundamental conservation law and briefly examine the role conservation laws play in different classical contexts. In such contexts we find conservation laws to be useful, but often not essential. Next we consider the quantum setting, where the conceptual problems of the standard formalism obstruct a rigorous analysis of the issue. We then analyze the fate of energy conservation within the various viable paths to address such conceptual problems; in all cases we find no satisfactory way to define a (useful) notion of energy that is generically conserved. Finally, we focus on the implications of this for the semiclassical gravity program and conclude that Einstein’s equations cannot be said to always hold. 1 Introduction It is often the case that a principle considered essential at some stage in the development of physics continues to be perceived as such well after the philosophical reasons for giving it a sacred character are removed from our best understanding of the physical world. This seems to be the case in regard to the status of certain conservation laws, and in particular about conservation of energy. -
The Moment Map and Equivariant Cohqmology
MJ4&Y383/84 $3.00 + .w I( 1984 Pergamon Press Ltd THE MOMENT MAP AND EQUIVARIANT COHQMOLOGY M. F. ATIYAH and R. BOTT (Received20 December1982) $1. INTRODUCTION THE PURPOSEof this note is to present a de Rham version of the localization theorems of equivariant cohomology, and to point out their relation to a recent result of Duistermaat and Heckman and also to a quite independent result of Witten. To a large extent all the material that we use has been around for some time, although equivariant cohomology is not perhaps familiar to analysts. Our contribution is therefore mainly an expository one linking together various points of view. The paper of Duistermaat and Heckman [ 1 l] which was our initial stimulus concerns the moment mapf:M+R’ for the action of a torus T’ on a compact symplectic manifold M. Their theorem asserts that the push-forward byfof the symplectic (or Liouville) measure on A4 is a piece-wise polynomial measure on R’. An equivalent version is that the Fourier transform of this measure (which is the integral over A4 of e-i(c,fi) is exactly given by stationary phase approximation. For example when I = 1 (so that T’is the circle S) and the fixed points of the action are isolated points P, we have the exact formula , where (u is the symplectic 2-form on M and the e(P) are certain integers attached to the infinitesimal action of S at P. This principle, that stationary-phase is exact when the “Hamiltonian”fcomes from a circle action, is such an attractive result that it seemed to us to deserve further study. -
Hamiltonian Actions of Unipotent Groups on Compact K\" Ahler
Épijournal de Géométrie Algébrique epiga.episciences.org Volume 2 (2018), Article Nr. 10 Hamiltonian actions of unipotent groups on compact Kähler manifolds Daniel Greb and Christian Miebach Abstract. We study meromorphic actions of unipotent complex Lie groups on compact Kähler manifolds using moment map techniques. We introduce natural stability conditions and show that sets of semistable points are Zariski-open and admit geometric quotients that carry compactifiable Kähler structures obtained by symplectic reduction. The relation of our complex-analytic theory to the work of Doran–Kirwan regarding the Geometric Invariant Theory of unipotent group actions on projective varieties is discussed in detail. Keywords. Unipotent algebraic groups; automorphisms of compact Kähler manifolds; Kähler metrics on fibre bundles and homogeneous spaces; moment maps; symplectic reduction; Geomet- ric Invariant Theory 2010 Mathematics Subject Classification. 32M05; 32M10; 32Q15; 14L24; 14L30; 37J15; 53D20 [Français] Titre. Actions hamiltoniennes des groupes unipotents sur les variétés kählériennes com- pactes Résumé. Nous étudions les actions méromorphes de groupes de Lie complexes unipotents sur les variétés kählériennes compactes en utilisant des techniques de type application moment. Nous introduisons des conditions de stabilité naturelles et nous montrons que l’ensemble des points semi-stables forme un ouvert de Zariski et admet des quotients géométriques munis de structures kählériennes compactifiables obtenues par réduction symplectique. Le parallèle entre notre théorie analytique complexe et les travaux de Doran–Kirwan concernant la Théorie Géométrique des Invariants des actions de groupes unipotents sur les variétés projectives est discuté en détails. arXiv:1805.02551v2 [math.CV] 8 Nov 2018 Received by the Editors on May 8, 2018, and in final form on September 6, 2018. -
Moment Maps, Cobordisms, and Hamiltonian Group Actions Mathematical Surveys and Monographs Volume 98
http://dx.doi.org/10.1090/surv/098 Moment Maps, Cobordisms, and Hamiltonian Group Actions Mathematical Surveys and Monographs Volume 98 Moment Maps, Cobordisms, and Hamiltonian Group Actions Victor Guillemin Viktor Ginzburg Yael Karshon American Mathematical Society EDITORIAL COMMITTEE Peter S. Landweber Tudor Stefan Ratiu Michael P. Loss, Chair J. T. Stafford 2000 Mathematics Subject Classification. Primary 53Dxx, 57Rxx, 55N91, 57S15. ABSTRACT. The book contains a systematic treatment of numerous symplectic geometry questions in the context of cobordisms of Hamiltonian group actions. The topics analyzed in the book in clude abstract moment maps, symplectic reduction, the Duistermaat-Heckman formula, geometric quantization, and the quantization commutes with reduction theorem. Ten appendices cover a broad range of related subjects: proper actions of compact Lie groups, equivariant cohomology, the Atiyah-Bott-Berline-Vergne localization theorem, the Kawasaki Riemann-Roch formula, and a variety of other results. The book can be used by researchers and graduate students working in symplectic geometry and its applications. Library of Congress Cataloging-in-Publication Data Guillemin, V., 1937- Moment maps, cobordisms, and Hamiltonian group actions / Victor Guillemin, Viktor Ginz- burg, Yael Karshon. p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 98) Includes bibliographical references and index. ISBN 0-8218-0502-9 (alk. paper) 1. Symplectic geometry. 2. Cobordism theory. 3. Geometric quantization. I. Karshon, Yael, 1964- II. Ginzburg, Viktor L., 1962- III. Title. IV. Mathematical surveys and monographs ; no. 98. QA665.G85 2002 516.3/6-dc21 2002074590 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research.