Comprehensive Genetic Analysis of Complement and Coagulation Genes in Atypical Hemolytic Uremic Syndrome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Complement Factor B Antibody Cat
Complement Factor B Antibody Cat. No.: 16-846 Complement Factor B Antibody Immunohistochemistry of paraffin-embedded human mammary cancer using Immunohistochemistry of paraffin-embedded mouse lung using Complement Factor B Complement Factor B antibody (16-846) at dilution of 1:200 (40x lens). antibody (16-846) at dilution of 1:200 (40x lens). Immunofluorescence analysis of Raw264.7 cells using Complement Factor B Polyclonal Antibody (16-846) at dilution of 1:100 (40x lens). Blue: DAPI for nuclear staining. September 29, 2021 1 https://www.prosci-inc.com/complement-factor-b-antibody-16-846.html Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat Recombinant fusion protein containing a sequence corresponding to amino acids 80-420 IMMUNOGEN: of human Complement Factor B (NP_001701.2). TESTED APPLICATIONS: IF, IHC, IP, WB WB: ,1:500 - 1:2000 IHC: ,1:50 - 1:200 APPLICATIONS: IF: ,1:50 - 1:200 IP: ,1:20 - 1:50 POSITIVE CONTROL: 1) HT-29 2) K-562 3) 293T 4) A-549 5) HepG2 6) Mouse liver PREDICTED MOLECULAR Observed: 86kDa WEIGHT: Properties PURIFICATION: Affinity purification CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: PBS with 0.02% sodium azide, 50% glycerol, pH7.3. STORAGE CONDITIONS: Store at -20˚C. Avoid freeze / thaw cycles. Additional Info OFFICIAL SYMBOL: CFB September 29, 2021 2 https://www.prosci-inc.com/complement-factor-b-antibody-16-846.html Complement factor B, C3/C5 convertase, Glycine-rich beta glycoprotein, GBG, PBF2, ALTERNATE NAMES: Properdin factor B, Complement factor B Ba fragment, Complement factor B Bb fragment, CFB, BF, BFD GENE ID: 629 USER NOTE: Optimal dilutions for each application to be determined by the researcher. -
Review Article Complement System and Age-Related Macular Degeneration: Implications of Gene-Environment Interaction for Preventive and Personalized Medicine
Hindawi BioMed Research International Volume 2018, Article ID 7532507, 13 pages https://doi.org/10.1155/2018/7532507 Review Article Complement System and Age-Related Macular Degeneration: Implications of Gene-Environment Interaction for Preventive and Personalized Medicine Andrea Maugeri ,1 Martina Barchitta ,1 Maria Grazia Mazzone,2 Francesco Giuliano,2 and Antonella Agodi 1 1 Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofa 87, 95123 Catania, Italy 2SIFI SpA, Research and Development Department, Via Ercole Patti 36, 95025 Catania, Italy Correspondence should be addressed to Antonella Agodi; [email protected] Received 18 May 2018; Accepted 18 July 2018; Published 26 August 2018 Academic Editor: Sajib Chakraborty Copyright © 2018 Andrea Maugeri et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Age-related macular degeneration (AMD) is the most common cause of visual loss in developed countries, with a signifcant economic and social burden on public health. Although genome-wide and gene-candidate studies have been enabled to identify genetic variants in the complement system associated with AMD pathogenesis, the efect of gene-environment interaction is still under debate. In this review we provide an overview of the role of complement system and its genetic variants in AMD, summarizing the consequences of the interaction between genetic and environmental risk factors on AMD onset, progression, and therapeutic response. Finally, we discuss the perspectives of current evidence in the feld of genomics driven personalized medicine and public health. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Differential and Altered Spatial Distribution of Complement Expression in Age-Related Macular Degeneration
Physiology and Pharmacology Differential and Altered Spatial Distribution of Complement Expression in Age-Related Macular Degeneration John T. Demirs, Junzheng Yang, Maura A. Crowley, Michael Twarog, Omar Delgado, Yubin Qiu, Stephen Poor, Dennis S. Rice, Thaddeus P. Dryja,* Karen Anderson,** and Sha-Mei Liao Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States Correspondence: Sha-Mei Liao, 22 PURPOSE. Dysregulation of the alternative complement pathway is a major pathogenic Windsor Street, Cambridge, MA mechanism in age-related macular degeneration. We investigated whether locally synthe- 02139, USA; sized complement components contribute to AMD by profiling complement expression [email protected]. in postmortem eyes with and without AMD. Current affiliation: *Cogan Eye METHODS. AMD severity grade 1 to 4 was determined by analysis of postmortem acquired Pathology Laboratory, Massachusetts fundus images and hematoxylin and eosin stained histological sections. TaqMan (donor Eye and Ear, Boston, Massachusetts, eyes n = 39) and RNAscope/in situ hybridization (n = 10) were performed to detect United States. = ** Biogen, Cambridge, complement mRNA. Meso scale discovery assay and Western blot (n 31) were used to Massachusetts, United States. measure complement protein levels. Received: September 2, 2020 RESULTS. The levels of complement mRNA and protein expression were approximately Accepted: May 19, 2021 15- to 100-fold (P < 0.0001–0.001) higher in macular retinal pigment epithelium Published: June 23, 2021 (RPE)/choroid tissue than in neural retina, regardless of AMD grade status. Complement Citation: Demirs JT, Yang J, Crowley mRNA and protein levels were modestly elevated in vitreous and the macular neural MA, et al. -
Steffensen Et Al. Supplement 2A
Liver Wild-type Knockout 1 2 4 1 2 4 1 1 1 C C C C C C W W W K K K IMAGE:640919 expressed sequence AA960558 IMAGE:523974 RIKEN cDNA 1810004N01 gene IMAGE:1211217 eukaryotic translation initiation factor 4E binding protein 2 IMAGE:314741 beta-site APP cleaving enzyme IMAGE:1038420 silica-induced gene 41 IMAGE:1229655 soc-2 suppressor of clear homolog C. elegans IMAGE:1150065 Unknown IMAGE:1038486 RIKEN cDNA 2700038M07 gene IMAGE:524351 amyloid beta A4 precursor protein IMAGE:819912 thymus expressed acidic protein IMAGE:779426 RIKEN cDNA 5230400G24 gene IMAGE:945643 ESTs IMAGE:850544 Mpv17 transgene, kidney disease mutant IMAGE:537568 expressed sequence AA675315 IMAGE:1107584 yes-associated protein, 65 kDa IMAGE:961363 expressed sequence AU015422 IMAGE:775218 expressed sequence AI265322 IMAGE:792656 protein phosphatase 1B, magnesium dependent, beta isoform IMAGE:1038592 ESTs, Weakly similar to A43932 mucin 2 precursor, intestinal [H.sapiens] IMAGE:1224917 huntingtin interacting protein 2 IMAGE:751186 ESTs IMAGE:865151 Trk-fused gene IMAGE:523016 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 5 IMAGE:765039 FBJ osteosarcoma oncogene B IMAGE:1003995 expressed sequence AI844632 IMAGE:903863 RIKEN cDNA 1300006L01 gene IMAGE:934094 ESTs IMAGE:988962 expressed sequence C77245 IMAGE:1023308 ESTs, Weakly similar to S71512 hypothetical protein T2 - mouse [M.musculus] IMAGE:865317 eukaryotic translation initiation factor 3 IMAGE:720445 ribosomal protein S6 IMAGE:1005417 expressed sequence AU024550 -
Complement Component 2 Deficiency
Complement component 2 deficiency Description Complement component 2 deficiency is a disorder that causes the immune system to malfunction, resulting in a form of immunodeficiency. Immunodeficiencies are conditions in which the immune system is not able to protect the body effectively from foreign invaders such as bacteria and viruses. People with complement component 2 deficiency have a significantly increased risk of recurrent bacterial infections, specifically of the lungs (pneumonia), the membrane covering the brain and spinal cord (meningitis), and the blood (sepsis), which may be life-threatening. These infections most commonly occur in infancy and childhood and become less frequent in adolescence and adulthood. Complement component 2 deficiency is also associated with an increased risk of developing autoimmune disorders such as systemic lupus erythematosus (SLE) or vasculitis. Autoimmune disorders occur when the immune system malfunctions and attacks the body's tissues and organs. Between 10 and 20 percent of individuals with complement component 2 deficiency develop SLE. Females with complement component 2 deficiency are more likely to have SLE than affected males, but this is also true of SLE in the general population. The severity of complement component 2 deficiency varies widely. While some affected individuals experience recurrent infections and other immune system difficulties, others do not have any health problems related to the disorder. Frequency In Western countries, complement component 2 deficiency is estimated to affect 1 in 20, 000 individuals; its prevalence in other areas of the world is unknown. Causes Complement component 2 deficiency is caused by mutations in the C2 gene. This gene provides instructions for making the complement component 2 protein, which helps regulate a part of the body's immune response known as the complement system. -
In Kidney Injury
antioxidants Review Regulation of Complement Activation by Heme Oxygenase-1 (HO-1) in Kidney Injury Maria G. Detsika 1,* and Elias A. Lianos 2,3 1 First Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M. Simou Laboratories, National & Kapodistrian University of Athens, Medical School, Evangelismos Hospital, 10675 Athens, Greece 2 Thorax Foundation, Research Center of Intensive Care and Emergency Thoracic Medicine, 10675 Athens, Greece; [email protected] 3 Veterans Affairs Medical Center and Virginia Tech, Carilion School of Medicine, 1970 Roanoke Blvd, Salem, VA 24153, USA * Correspondence: [email protected]; Tel.: +30-210-723552; Fax: +30-210-7239127 Abstract: Heme oxygenase is a cytoprotective enzyme with strong antioxidant and anti-apoptotic properties. Its cytoprotective role is mainly attributed to its enzymatic activity, which involves the degradation of heme to biliverdin with simultaneous release of carbon monoxide (CO). Recent studies uncovered a new cytoprotective role for heme oxygenase-1 (HO-1) by identifying a regulatory role on the complement control protein decay-accelerating factor. This is a key complement regulatory protein preventing dysregulation or overactivation of complement cascades that can cause kidney injury. Cell-specific targeting of HO-1 induction may, therefore, be a novel approach to attenuate complement-dependent forms of kidney disease. Keywords: heme; heme oxygenase-1 (HO-1); complement; kidney injury 1. Introduction Citation: Detsika, M.G.; Lianos, E.A. Although the role of heme, in various cellular processes, such as gene transcription Regulation of Complement and translation and cellular differentiation, proliferation, and apoptosis, has been known Activation by Heme Oxygenase-1 for decades, the role of the heme-degrading enzyme heme oxygenase-1 (HO-1) only gained (HO-1) in Kidney Injury. -
Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in -
ESID Registry – Working Definitions for Clinical Diagnosis of PID
ESID Registry – Working Definitions for Clinical Diagnosis of PID These criteria are only for patients with no genetic diagnosis*. *Exceptions: Atypical SCID, DiGeorge syndrome – a known genetic defect and confirmation of criteria is mandatory. Available entries (Please click on an entry to see the criteria.) Page Acquired angioedema .................................................................................................................................................................. 4 Agammaglobulinemia .................................................................................................................................................................. 4 Asplenia syndrome (Ivemark syndrome) ................................................................................................................................... 4 Ataxia telangiectasia (ATM) ......................................................................................................................................................... 4 Atypical Severe Combined Immunodeficiency (Atypical SCID) ............................................................................................... 5 Autoimmune lymphoproliferative syndrome (ALPS) ................................................................................................................ 5 APECED / APS1 with CMC - Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) .................. 5 Barth syndrome ........................................................................................................................................................................... -
Hypoxia Restrains the Expression of Complement Component 9 in Tumor
Li et al. Cell Death Discovery (2018) 4:63 DOI 10.1038/s41420-018-0064-3 Cell Death Discovery ARTICLE Open Access Hypoxia restrains the expression of complement component 9 in tumor- associated macrophages promoting non- smallcelllungcancerprogression Lei Li1, Hong Yang1,2,3, Yan Li1, Xiao-Dong Li1,3, Ting-Ting Zeng1,Su-XiaLin4,Ying-HuiZhu1 and Xin-Yuan Guan 1,5 Abstract The tumor microenvironment, including stroma cells, signaling molecules, and the extracellular matrix, critically regulates the growth and survival of cancer cells. Dissecting the active molecules in tumor microenvironment may uncover the key factors that can impact cancer progression. Human NSCLC tumor tissue-conditioned medium (TCM) and adjacent nontumor tissue-conditioned medium (NCM) were used to treat two NSCLC cells LSC1 and LAC1, respectively. Cell growth and foci formation assays were applied to assess the effects of TCM and NCM on cancer cells. The active factors were identified by protein mass spectrometry. Cell growth and foci formation assays showed that 8 of 26 NCM and none of TCM could effectively lead to tumor cell lysis, which was known as tumoricidal activity. And then protein mass spectrometry analysis and functional verifications confirmed that complement component 9 (C9) played a crucial role in the complement-dependent cytotoxicity (CDC)-mediated tumoricidal activity in vitro. Furthermore, immunofluorescent staining revealed that C9 specifically expressed in most alveolar macrophages (AMs) 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; in adjacent lung tissues and a small fraction of tumor-associated macrophages (TAMs) in NSCLC tissues. Most importantly, the percentage of C9-positive cells in AMs or TAMs was responsible for the tumoricidal activity of NCM and TCM. -
Human C2 / Complement Component 2 Recombinant Protein (His Tag)
9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 37-1079: Human C2 / Complement Component 2 Recombinant Protein (His Tag) Reactivity : Human Alternative Name : ARMD14 Protein, CO2 Protein, Description Source : HEK293 Cells Complement component C2 is part of the classical complement pathway which plays a major role in innate immunity against infection. C2 is a glycoprotein synthesized in liver hepatocytes and several other cell types in extrahepatic tissues. This pathway is triggered by a multimolecular complex C1, and subsequently the single-chain form of C2 is cleaved into two chains referred to C2a and C2b by activated C1. The second component of complement (C2) is a multi-domain serine protease that provides catalytic activity for the C3 and C5 convertases of the classical and lectin pathways of human complement. C4b and C2 was investigated by surface plasmon resonance. C2a containing a serine protease domain combines with complement component C4b to form the C3 convertase C4b2a which is responsible for C3 activation, and leads to the stimulation of adaptive immune responses via Lectin pathway. C2 bound to C4b is cleaved by classical (C1s) or lectin (MASP2) proteases to produce C4bC2a. C2 has the same serine protease domain as C4bC2a but in an inactive zymogen-like conformation, requiring cofactor-induced conformational change for activity. Deficiency of C2 (C2D) is the most common genetic deficiency of the complement system, and two types of C2D have been recognized in the context of specific MHC haplotypes. C2D in human is reported to increase susceptibility to infection, and is associated with certain autoimmune diseases, such as rheumatological disorders. -
The Effect of Bee Venom Peptides Melittin, Tertiapin, and Apamin On
H OH metabolites OH Article The Effect of Bee Venom Peptides Melittin, Tertiapin, and Apamin on the Human Erythrocytes Ghosts: A Preliminary Study 1, 2, 1 3 Agata Swiatły-Błaszkiewicz´ y, Lucyna Mrówczy ´nska y, Eliza Matuszewska , Jan Lubawy , Arkadiusz Urba ´nski 3 , Zenon J. Kokot 1, Grzegorz Rosi ´nski 3 and Jan Matysiak 1,* 1 Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; [email protected] (A.S.-B.);´ [email protected] (E.M.); [email protected] (Z.J.K.) 2 Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland; [email protected] 3 Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland; [email protected] (J.L.); [email protected] (A.U.); [email protected] (G.R.) * Correspondence: [email protected] These two authors contributed equally to this work. y Received: 11 April 2020; Accepted: 11 May 2020; Published: 13 May 2020 Abstract: Red blood cells (RBCs) are the most abundant cells in the human blood that have been extensively studied under morphology, ultrastructure, biochemical and molecular functions. Therefore, RBCs are excellent cell models in the study of biologically active compounds like drugs and toxins on the structure and function of the cell membrane. The aim of the present study was to explore erythrocyte ghost’s proteome to identify changes occurring under the influence of three bee venom peptides-melittin, tertiapin, and apamin. We conducted preliminary experiments on the erythrocyte ghosts incubated with these peptides at their non-hemolytic concentrations.