ESID Registry – Working Definitions for Clinical Diagnosis of PID

Total Page:16

File Type:pdf, Size:1020Kb

ESID Registry – Working Definitions for Clinical Diagnosis of PID ESID Registry – Working Definitions for Clinical Diagnosis of PID These criteria are only for patients with no genetic diagnosis*. *Exceptions: Atypical SCID, DiGeorge syndrome – a known genetic defect and confirmation of criteria is mandatory. Available entries (Please click on an entry to see the criteria.) Page Acquired angioedema .................................................................................................................................................................. 4 Agammaglobulinemia .................................................................................................................................................................. 4 Asplenia syndrome (Ivemark syndrome) ................................................................................................................................... 4 Ataxia telangiectasia (ATM) ......................................................................................................................................................... 4 Atypical Severe Combined Immunodeficiency (Atypical SCID) ............................................................................................... 5 Autoimmune lymphoproliferative syndrome (ALPS) ................................................................................................................ 5 APECED / APS1 with CMC - Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) .................. 5 Barth syndrome ............................................................................................................................................................................ 6 Bloom syndrome .......................................................................................................................................................................... 6 Cartilage hair hypoplasia (CHH) .................................................................................................................................................. 7 CD8 deficiency .............................................................................................................................................................................. 7 Chronic mucocutaneous candidiasis (CMC) ............................................................................................................................. 7 Complement component 1q deficiency (C1q deficiency) ......................................................................................................... 8 Complement component 1r deficiency (C1r deficiency) ........................................................................................................... 8 Complement component 1s deficiency (C1s deficiency) .......................................................................................................... 9 Complement component 2 deficiency ........................................................................................................................................ 9 Complement component 3 deficiency (C3) ................................................................................................................................ 9 Complement component 4 deficiency (C4A, C4B) .................................................................................................................... 9 Complement component 5 deficiency ...................................................................................................................................... 10 Complement component 6 deficiency ...................................................................................................................................... 10 Complement component 7 deficiency ...................................................................................................................................... 10 Complement component 8 deficiency (C8A, C8B, C8G) ......................................................................................................... 10 Complement component 9 deficiency ...................................................................................................................................... 11 CSR defects and HIGM syndrome ............................................................................................................................................. 11 Chediak Higashi syndrome (CHS) ............................................................................................................................................. 12 Chronic granulomatous disease (CGD) .................................................................................................................................... 12 Clericuzio-type poikiloderma with neutropenia syndrome ..................................................................................................... 12 COHEN syndrome ...................................................................................................................................................................... 13 Combined immunodeficiency (CID) .......................................................................................................................................... 13 ESID Registry - Working definitions for clinical diagnosis of IEI January 22, 2019 page 1 of 33 Common variable immunodeficiency disorders (CVID) .......................................................................................................... 13 Congenital neutropenia ............................................................................................................................................................. 14 Cyclic neutropenia ..................................................................................................................................................................... 14 Defects of TLR/NFkappa-B signalling ....................................................................................................................................... 14 Defects with susceptibility to mycobacterial infection (MSMD) ............................................................................................. 15 Deficiency of specific IgG (Specific antibody deficiency - SPAD) ......................................................................................... 15 DiGeorge syndrome ................................................................................................................................................................... 15 Dyskeratosis congenita ............................................................................................................................................................. 15 Early-onset inflammatory bowel disease ................................................................................................................................. 16 Early-onset multi-organ autoimmune disease ......................................................................................................................... 16 Epidermodysplasia verruciformis ............................................................................................................................................. 16 Factor B Deficiency .................................................................................................................................................................... 17 Factor D deficiency .................................................................................................................................................................... 17 Factor H Deficiency .................................................................................................................................................................... 17 Factor H Related Protein Deficiency ......................................................................................................................................... 17 Factor I Deficiency ...................................................................................................................................................................... 18 Ficolin 3 ....................................................................................................................................................................................... 18 Deficiency (FC3RN) .................................................................................................................................................................... 18 Familial hemophagocytic lymphohistiocytosis syndromes (FHLH) ...................................................................................... 18 FOXP3 deficiency (IPEX) ............................................................................................................................................................ 19 Glycogen storage disease type 1b (GS1b) ............................................................................................................................... 19 Griscelli syndrome type 2 .......................................................................................................................................................... 19 Hereditary Angioedema (C1inh) ................................................................................................................................................ 20 Herpetic encephalitis (HSE) ......................................................................................................................................................
Recommended publications
  • Newborn Screening for Severe Combined Immunodeficiency and T-Cell Lymphopenia in California, 2010−2017 George S
    Newborn Screening for Severe Combined Immunodeficiency and T-cell Lymphopenia in California, 2010–2017 George S. Amatuni, BS,a,b Robert J. Currier, PhD,a Joseph A. Church, MD,c Tracey Bishop,d Elena Grimbacher,e Alan Anh-Chuong Nguyen, MD,f Rajni Agarwal-Hashmi, MD,g Constantino P. Aznar, PhD,d Manish J. Butte, MD, PhD,h Morton J. Cowan, MD,a Morna J. Dorsey, MD, MMSc,a Christopher C. Dvorak, MD,a Neena Kapoor, MD,c Donald B. Kohn, MD,h M. Louise Markert, MD, PhD,i Theodore B. Moore, MD,h Stanley J. Naides, MD,j Stanley Sciortino, PhD, MPH,d Lisa Feuchtbaum, DrPH, MPH,d Rasoul A. Koupaei, PhD,d Jennifer M. Puck, MDa OBJECTIVES: Newborn screening for severe combined immunodeficiency (SCID) was instituted in abstract California in 2010. In the ensuing 6.5 years, 3 252 156 infants in the state had DNA from dried blood spots assayed for T-cell receptor excision circles (TRECs). Abnormal TREC results were followed-up with liquid blood testing for T-cell abnormalities. We report the performance of the SCID screening program and the outcomes of infants who were identified. METHODS: Data that were reviewed and analyzed included demographics, nursery summaries, TREC and lymphocyte flow-cytometry values, and available follow-up, including clinical and genetic diagnoses, treatments, and outcomes. RESULTS: Infants with clinically significant T-cell lymphopenia (TCL) were successfully identified at a rate of 1 in 15 300 births. Of these, 50 cases of SCID, or 1 in 65 000 births (95% confidence interval 1 in 51 000–1 in 90 000) were found.
    [Show full text]
  • The Case for Lupus Nephritis
    Journal of Clinical Medicine Review Expanding the Role of Complement Therapies: The Case for Lupus Nephritis Nicholas L. Li * , Daniel J. Birmingham and Brad H. Rovin Department of Internal Medicine, Division of Nephrology, The Ohio State University, Columbus, OH 43210, USA; [email protected] (D.J.B.); [email protected] (B.H.R.) * Correspondence: [email protected]; Tel.: +1-614-293-4997; Fax: +1-614-293-3073 Abstract: The complement system is an innate immune surveillance network that provides defense against microorganisms and clearance of immune complexes and cellular debris and bridges innate and adaptive immunity. In the context of autoimmune disease, activation and dysregulation of complement can lead to uncontrolled inflammation and organ damage, especially to the kidney. Systemic lupus erythematosus (SLE) is characterized by loss of tolerance, autoantibody production, and immune complex deposition in tissues including the kidney, with inflammatory consequences. Effective clearance of immune complexes and cellular waste by early complement components protects against the development of lupus nephritis, while uncontrolled activation of complement, especially the alternative pathway, promotes kidney damage in SLE. Therefore, complement plays a dual role in the pathogenesis of lupus nephritis. Improved understanding of the contribution of the various complement pathways to the development of kidney disease in SLE has created an opportunity to target the complement system with novel therapies to improve outcomes in lupus nephritis. In this review, we explore the interactions between complement and the kidney in SLE and their implications for the treatment of lupus nephritis. Keywords: lupus nephritis; complement; systemic lupus erythematosus; glomerulonephritis Citation: Li, N.L.; Birmingham, D.J.; Rovin, B.H.
    [Show full text]
  • Are Complement Deficiencies Really Rare?
    G Model MIMM-4432; No. of Pages 8 ARTICLE IN PRESS Molecular Immunology xxx (2014) xxx–xxx Contents lists available at ScienceDirect Molecular Immunology j ournal homepage: www.elsevier.com/locate/molimm Review Are complement deficiencies really rare? Overview on prevalence, ଝ clinical importance and modern diagnostic approach a,∗ b Anete Sevciovic Grumach , Michael Kirschfink a Faculty of Medicine ABC, Santo Andre, SP, Brazil b Institute of Immunology, University of Heidelberg, Heidelberg, Germany a r a t b i c s t l e i n f o r a c t Article history: Complement deficiencies comprise between 1 and 10% of all primary immunodeficiencies (PIDs) accord- Received 29 May 2014 ing to national and supranational registries. They are still considered rare and even of less clinical Received in revised form 18 June 2014 importance. This not only reflects (as in all PIDs) a great lack of awareness among clinicians and gen- Accepted 23 June 2014 eral practitioners but is also due to the fact that only few centers worldwide provide a comprehensive Available online xxx laboratory complement analysis. To enable early identification, our aim is to present warning signs for complement deficiencies and recommendations for diagnostic approach. The genetic deficiency of any Keywords: early component of the classical pathway (C1q, C1r/s, C2, C4) is often associated with autoimmune dis- Complement deficiencies eases whereas individuals, deficient of properdin or of the terminal pathway components (C5 to C9), are Warning signs Prevalence highly susceptible to meningococcal disease. Deficiency of C1 Inhibitor (hereditary angioedema, HAE) Meningitis results in episodic angioedema, which in a considerable number of patients with identical symptoms Infections also occurs in factor XII mutations.
    [Show full text]
  • Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
    Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck.
    [Show full text]
  • Current Perspectives on Primary Immunodeficiency Diseases
    Clinical & Developmental Immunology, June–December 2006; 13(2–4): 223–259 Current perspectives on primary immunodeficiency diseases ARVIND KUMAR, SUZANNE S. TEUBER, & M. ERIC GERSHWIN Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, University of California at Davis School of Medicine, Davis, CA, USA Abstract Since the original description of X-linked agammaglobulinemia in 1952, the number of independent primary immunodeficiency diseases (PIDs) has expanded to more than 100 entities. By definition, a PID is a genetically determined disorder resulting in enhanced susceptibility to infectious disease. Despite the heritable nature of these diseases, some PIDs are clinically manifested only after prerequisite environmental exposures but they often have associated malignant, allergic, or autoimmune manifestations. PIDs must be distinguished from secondary or acquired immunodeficiencies, which are far more common. In this review, we will place these immunodeficiencies in the context of both clinical and laboratory presentations as well as highlight the known genetic basis. Keywords: Primary immunodeficiency disease, primary immunodeficiency, immunodeficiencies, autoimmune Introduction into a uniform nomenclature (Chapel et al. 2003). The International Union of Immunological Societies Acquired immunodeficiencies may be due to malnu- (IUIS) has subsequently convened an international trition, immunosuppressive or radiation therapies, infections (human immunodeficiency virus, severe committee of experts every two to three years to revise sepsis), malignancies, metabolic disease (diabetes this classification based on new PIDs and further mellitus, uremia, liver disease), loss of leukocytes or understanding of the molecular basis. A recent IUIS immunoglobulins (Igs) via the gastrointestinal tract, committee met in 2003 in Sintra, Portugal with its kidneys, or burned skin, collagen vascular disease such findings published in 2004 in the Journal of Allergy and as systemic lupus erythematosis, splenectomy, and Clinical Immunology (Chapel et al.
    [Show full text]
  • European Society for Immunodeficiencies (ESID)
    Journal of Clinical Immunology https://doi.org/10.1007/s10875-020-00754-1 ORIGINAL ARTICLE European Society for Immunodeficiencies (ESID) and European Reference Network on Rare Primary Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN RITA) Complement Guideline: Deficiencies, Diagnosis, and Management Nicholas Brodszki1 & Ashley Frazer-Abel2 & Anete S. Grumach3 & Michael Kirschfink4 & Jiri Litzman5 & Elena Perez6 & Mikko R. J. Seppänen7 & Kathleen E. Sullivan8 & Stephen Jolles9 Received: 5 June 2019 /Accepted: 20 January 2020 # The Author(s) 2020 Abstract This guideline aims to describe the complement system and the functions of the constituent pathways, with particular focus on primary immunodeficiencies (PIDs) and their diagnosis and management. The complement system is a crucial part of the innate immune system, with multiple membrane-bound and soluble components. There are three distinct enzymatic cascade pathways within the complement system, the classical, alternative and lectin pathways, which converge with the cleavage of central C3. Complement deficiencies account for ~5% of PIDs. The clinical consequences of inherited defects in the complement system are protean and include increased susceptibility to infection, autoimmune diseases (e.g., systemic lupus erythematosus), age-related macular degeneration, renal disorders (e.g., atypical hemolytic uremic syndrome) and angioedema. Modern complement analysis allows an in-depth insight into the functional and molecular basis of nearly all complement deficiencies. However, therapeutic options remain relatively limited for the majority of complement deficiencies with the exception of hereditary angioedema and inhibition of an overactivated complement system in regulation defects. Current management strategies for complement disor- ders associated with infection include education, family testing, vaccinations, antibiotics and emergency planning. Keywords Complement .
    [Show full text]
  • Comprehensive Genetic Analysis of Complement and Coagulation Genes in Atypical Hemolytic Uremic Syndrome
    BASIC RESEARCH www.jasn.org Comprehensive Genetic Analysis of Complement and Coagulation Genes in Atypical Hemolytic Uremic Syndrome † † † ‡ † Fengxiao Bu,* Tara Maga,* Nicole C. Meyer, Kai Wang, Christie P. Thomas, § † † Carla M. Nester, § and Richard J. H. Smith* § *Interdisciplinary PhD Program in Genetics, †Molecular Otolaryngology and Renal Research Laboratories, ‡Department of Biostatistics, College of Public Health, and §Rare Renal Disease Clinic, Departments of Pediatrics and Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa ABSTRACT Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy caused by uncontrolled activation of the alternative pathway of complement at the cell surface level that leads to microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney failure. In approximately one half of affected patients, pathogenic loss-of-function variants in regulators of complement or gain-of-function variants in effectors of complement are identified, clearly implicating complement in aHUS. However, there are strong lines of evidence supporting the presence of additional genetic contributions to this disease. To identify novel aHUS-associated genes, we completed a comprehensive screen of the complement and coagulation pathways in 36 patients with sporadic aHUS using targeted genomic enrichment and mas- sively parallel sequencing. After variant calling, quality control, and hard filtering, we identified 84 reported or novel nonsynonymous variants, 22 of which have been previously associated with disease. Using computational prediction methods, 20 of the remaining 62 variants were predicted to be dele- terious. Consistent with published data, nearly one half of these 42 variants (19; 45%) were found in genes implicated in the pathogenesis of aHUS. Several genes in the coagulation pathway were also identified as important in the pathogenesis of aHUS.
    [Show full text]
  • Blueprint Genetics Severe Combined Immunodeficiency Panel
    Severe Combined Immunodeficiency Panel Test code: IM0101 Is a 80 gene panel that includes assessment of non-coding variants. Is ideal for patients with a clinical suspicion of combined immunodeficiencies. The genes on this panel are included in the Primary Immunodeficiency Panel. About Severe Combined Immunodeficiency Severe combined immunedeficiencies (SCIDs) are a group of primary immunodeficiencies characterized by specific mutations in genes of T and B-lymphocyte systems and leading to little or no immune response. Different subtypes of SCIDs are characterized and subdivided by the presence of circulating T and B cells. T cells are absent or markedly decreased in the most types, but levels of B cells vary. In addition, both of these disease subgroups (T-B+ and T-B-) can occur with or without NK cells. Patients with SCID are susceptible to recurrent infections that can be fatal. The worldwide prevalence of SCID is estimated to be at least 1:100,000 births, while some genetically more homogenous populations may show markedly increased numbers. Mutations in IL2RG are the most common reason for SCIDs, explaining approximately 50% of all cases and close to 100% of X-linked cases. Availability 4 weeks Gene Set Description Genes in the Severe Combined Immunodeficiency Panel and their clinical significance Gene Associated phenotypes Inheritance ClinVar HGMD ADA Severe combined immunodeficiency due to adenosine deaminase AR 49 93 deficiency AK2 Reticular dysgenesis AR 14 17 ATM Breast cancer, Ataxia-Telangiectasia AD/AR 1047 1109 BCL11B Immunodeficiency
    [Show full text]
  • A Case Report of Neonatal Omenn Syndrome Presenting As Striking Erythroderma
    Open Access Journal of Pediatrics & Child Health Care Case Report A Case Report of Neonatal Omenn Syndrome Presenting as Striking Erythroderma Duan XY1, Zhao QQ2 and Wei H2* 1Department of Neonatology, Children′s Hospital of Abstract Chongqing Medical University, China Background: Omenn Syndrome (OS) is a kind of Serious Combined 2Department of Neonatology, Children′s Hospital of Immunodeficiency Disease (SCID). A variety of genetic defects responsible for Chongqing Medical University, China lymphocyte or thymic development can give rise to OS, of which the Recombinase- *Corresponding author: Wei H, Medical Doctor, Activating Genes (RAG1 and RAG2) being the best characterised. It is often Department of Neonatology, Children’s Hospital of misdiagnosed and progressively deteriorated due to the limit knowledge in early Chongqing Medical University, Chongqing Medical life of children. University, Postal Address: No.136, Zhong Shan 2nd Case Presentation: We present herein a typical case of Omenn syndrome Road, Yuzhong District, Chongqing, 400014, China that initially manifested as diffuse erythroderma in a 2-day-old newborn. Received: May 13, 2020; Accepted: June 05, 2020; Conclusions: The age of Omenn syndrome onset was earlier. Typical clinical Published: June 12, 2020 features include erythroderma and immune dysfunction. Immunodeficiency must be considered in every case of neonatal erythroderma and immunological evaluation should be performed as soon as possible. Genetic study confirms the diagnose. We found two novel mutations in RAG1 could cause Omenn syndrome. Keywords: Neonate; Omenn syndrome; SCID; Erythroderma Introduction crying and sucking force are good, bowel movement and urination are as usual. The child was the 4th fetus and the 2nd birth, cesarean Omenn Syndrome (OS) is a form of Severe Combined delivery due to “giant”, birth weight was 3575g, apgar score was Immunodeficiency Disease (SCID) characterized by erythroderma, normal, formula milk feeding, no history of blood transfusion, and hepatosplenomegaly, lymphadenopathy, and alopecia.
    [Show full text]
  • Hypoxia Restrains the Expression of Complement Component 9 in Tumor
    Li et al. Cell Death Discovery (2018) 4:63 DOI 10.1038/s41420-018-0064-3 Cell Death Discovery ARTICLE Open Access Hypoxia restrains the expression of complement component 9 in tumor- associated macrophages promoting non- smallcelllungcancerprogression Lei Li1, Hong Yang1,2,3, Yan Li1, Xiao-Dong Li1,3, Ting-Ting Zeng1,Su-XiaLin4,Ying-HuiZhu1 and Xin-Yuan Guan 1,5 Abstract The tumor microenvironment, including stroma cells, signaling molecules, and the extracellular matrix, critically regulates the growth and survival of cancer cells. Dissecting the active molecules in tumor microenvironment may uncover the key factors that can impact cancer progression. Human NSCLC tumor tissue-conditioned medium (TCM) and adjacent nontumor tissue-conditioned medium (NCM) were used to treat two NSCLC cells LSC1 and LAC1, respectively. Cell growth and foci formation assays were applied to assess the effects of TCM and NCM on cancer cells. The active factors were identified by protein mass spectrometry. Cell growth and foci formation assays showed that 8 of 26 NCM and none of TCM could effectively lead to tumor cell lysis, which was known as tumoricidal activity. And then protein mass spectrometry analysis and functional verifications confirmed that complement component 9 (C9) played a crucial role in the complement-dependent cytotoxicity (CDC)-mediated tumoricidal activity in vitro. Furthermore, immunofluorescent staining revealed that C9 specifically expressed in most alveolar macrophages (AMs) 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; in adjacent lung tissues and a small fraction of tumor-associated macrophages (TAMs) in NSCLC tissues. Most importantly, the percentage of C9-positive cells in AMs or TAMs was responsible for the tumoricidal activity of NCM and TCM.
    [Show full text]
  • Interactions Between Activated Platelets and the Complement System
    REVIEW published: 10 July 2019 doi: 10.3389/fimmu.2019.01590 The Human Platelet as an Innate Immune Cell: Interactions Between Activated Platelets and the Complement System Oskar Eriksson 1, Camilla Mohlin 2, Bo Nilsson 1 and Kristina N. Ekdahl 1,2* 1 Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden, 2 Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden Platelets play an essential role in maintaining homeostasis in the circulatory system after an injury by forming a platelet thrombus, but they also occupy a central node in the intravascular innate immune system. This concept is supported by their extensive interactions with immune cells and the cascade systems of the blood. In this review we discuss the close relationship between platelets and the complement system and the role of these interactions during thromboinflammation. Platelets are protected Edited by: from complement-mediated damage by soluble and membrane-expressed complement Benoît Ho-Tin-Noé, regulators, but they bind several complement components on their surfaces and Institut National de la Santé et de la Recherche Médicale trigger complement activation in the fluid phase. Furthermore, localized complement (INSERM), France activation may enhance the procoagulant responses of platelets through the generation Reviewed by: of procoagulant microparticles by insertion of sublytic amounts of C5b9 into the platelet Craig Norman Morrell, University of Rochester, United States membrane. We also highlight the role of post-translational protein modifications in Viviana P. Ferreira, regulating the complement system and the critical role of platelets in driving these University of Toledo, United States reactions. In particular, modification of disulfide bonds by thiol isomerases and protein Kerstin Jurk, Johannes Gutenberg University phosphorylation by extracellular kinases have emerged as important mechanisms to Mainz, Germany fine-tune complement activity in the platelet microenvironment.
    [Show full text]
  • Gastrointestinal Manifestations in Children with Primary Immunodeficiency Diseases
    Egypt J Pediatr Allergy Immunol 2017; 15(1):3-8. Review article Gastrointestinal manifestations in children with primary immunodeficiency diseases Shereen M. Reda Professor of Pediatrics, Ain Shams University, Cairo, Egypt Introduction versus-host-disease and veno-occlusive disease post Primary immunodeficiency (PID) diseases are a hematopoietic stem cell transplantation in certain heterogeneous group of rare genetic disorders that PID diseases2,3. affect the development and function of immune This review focuses on the characteristic chronic cells. To date, more than 150 defects have been GI manifestations that are commonly encountered identified and the number is growing. These in some PID diseases (Table 1). disorders are broadly classified into defects affecting the humoral (B cell) immunity, defects of Severe Combined Immunodeficiency (SCID) the cellular (T cell) immunity or both T cell and B SCID is a heterogeneous group of molecular defects cell, neutrophil and macrophage defects, and in both T- cell and B-cell number and function. defects in the innate immunity. The hallmark According to the presence or absence of T cells, B clinical feature is recurrent and/or severe infections. cells and natural killer (NK) cells, this group is However, some type of immune defect may present broadly classified as T-B+NK+, T-B+NK-, T-B- with autoimmune manifestations, and increased risk NK+, and T-B-NK-3. To date, more than 15 genetic of malignancy in association with their underlying mutations result in the SCID phenotype. The mode immunodeficiency1. of inheritance of these mutations is autosomal In PID diseases, the gastrointestinal (GI) tract is recessive (AR) except the defect in the common the second target organ affected after the respiratory gamma chain which is X-linked and is considered tract.
    [Show full text]