La Mathématisation De La Mécanique Relativiste Mémoire De M2 HPDS Sous La Direction De M. Christophe Eckes Et M. Amaury Thuil

Total Page:16

File Type:pdf, Size:1020Kb

La Mathématisation De La Mécanique Relativiste Mémoire De M2 HPDS Sous La Direction De M. Christophe Eckes Et M. Amaury Thuil La mathématisation de la mécanique relativiste Johann Colombano-Rut johann.colombano.rut@hotmail.fr Mémoire de M2 HPDS Sous la direction de M. Christophe Eckes et M. Amaury Thuillier Université Claude Bernard Lyon 1 2009 Réalisé en LATEX Remerciements J’adresse tous mes remerciements aux directeurs de ce mémoire M. Christophe Eckes et M. Amaury Thuillier pour leur disponibilité et leur support, et pour l’aide précieuse qu’ils m’ont apporté dans l’élaboration de ce travail. 2 Sommaire Introduction 4 I. La relativité restreinte et sa géométrisation 6 1. Cinématique classique et relativiste . .6 a) Relativité galiléenne . .6 Transformations de Galilée b) Relativité poincaréenne (1902-1905) . .9 c) Relativité einsteinienne (1905) . 12 Transformations de Lorentz d) Histoire et rôle secondaire de la théorie des groupes chez Einstein . 17 2. La géométrisation de la relativité restreinte (1907-1914) . 19 a) Göttingen, centre mondial des mathématiques de la fin du XIXe siècle . 19 b) La conférence de Cologne (1908) . 21 c) L’espace-temps de Minkowski . 22 Groupe de Galilée Groupe de Lorentz Interprétation hyperbolique d) Apports de cette géométrisation . 31 e) Nécessité de cette géométrisation . 32 Plus qu’un outil, un univers Une chrono-géométrie objective 3. L’axiomatisation . 36 a) Une théorie à principes . 37 b) L’axiomatisation de la physique (1900 -) . 37 c) L’axiomatisation de la relativité restreinte (1907 -) . 39 II. Relativité restreinte et programme d’Erlangen 43 1. Présentation du programme d’Erlangen (1871-1872) . 43 a) Unification des géométries . 44 b) La géométrie par les groupes de transformations . 46 c) Sous-groupes et géométries subordonnées . 47 2. Application de la théorie des groupes à la géométrie . 48 a) La géométrie projective . 49 b) La géométrie affine . 52 c) Les géométries affines euclidiennes et non-euclidiennes . 53 3. Application de la théorie des groupes à la relativité restreinte (1910-1914) . 56 a) L’espace de Minkowski et son groupe principal . 57 b) Schéma récapitulatif : Transformations affines en dimension 4 ................ 58 III. Conclusion 60 Bibliographie 61 Annexe 1 : Histoire des transformations de Lorentz 65 Annexe 2 : Discussion de priorité entre Einstein et Poincaré 69 Annexe 3 : L’ellipse de Steiner 72 3 Introduction « L’œuvre qui appartient en propre au génie consiste ici dans l’observation de la dépendance de certaines déterminantes partielles des phénomènes méca- niques. L’énonciation formelle et précise de cette dépendance fut au contraire l’ouvrage du travail circonspect qui élabora les différents concepts et les diffé- rents principes de la mécanique. Ce n’est que par la recherche de leurs sources historiques que l’on peut déterminer la véritable valeur et le sens de ces prin- cipes et de ces notions. » [Mach1], La mécanique, 1883, p243. Le développement de la mécanique est indissociable de celui des mathématiques. Le terme mécanique désigne à l’époque de Galilée à la fois la science du mouvement et la construction de machines (les arts mécaniques du moyen-âge). Son ouvrage Le meccaniche (1593) est même centré sur la statique, science de l’équilibre. La polysémie du terme mécanique est encore manifeste par le pluriel du titre de sa traduction française Les méchaniques de Galilée publiée en 1674 par le père Marin Mersenne (1588-1648). Dans l’Encyclopédie, ou dictionnaire raisonné des sciences, des arts et des métiers (1772) de Denis Diderot (1713-1784) et Jean le Rond D’Alembert (1717-1783), la Méchanique est définie comme « partie des mathéma- tiques mixtes, qui considère le mouvement et les forces motrices, leur nature, leurs lois et leurs effets dans les machines »(p10 :222). Nous ne nous intéresserons bien sûr pas à la mécanique des machines, mais à la mécanique dite "classique", qui s’exprime depuis Isaac Newton (1643-1727), c’est-à-dire après la science du mouvement du XVIIème siècle, dans un cadre rigide et immuable, fondé sur des notions de temps et d’espace indépendantes et absolues, et en particulier sur l’existence d’un système de référence au repos absolu. Cet espace et ce temps universels sont identiques pour tous les observateurs, et c’est en leur sein que furent décrites les lois de la statique concernant les corps en équilibre, plus généralement de la cinématique pour les corps en mouvement et de toute la physique contemporaine de Newton. Après trois siècles d’évolution cumulée 1, la mécanique voit l’élargissement du domaine de validité du principe de relativité, qui passe de la mécanique seule à toutes les lois de la physique, dont l’électromagnétisme, et lui attribue un rôle unificateur. Le cadre de la physique évolue alors de façon significative, perdant tout caractère absolu : l’espace unique, fondamentalement immobile, sous le nom d’éther n’est plus nécessaire et ce nouveau cadre modifie considérablement la structure des lois physiques, c’est la cinématique relativiste. Il est accompagné d’une géométrisation et d’une mathématisation remarquables auxquelles participent plusieurs mathématiciens comme Henri Poincaré (1854-1912). De la notion de fonction formalisant les relations entre grandeurs physiques, aux structures algébriques et géo- métriques caractérisant des régularités dans les lois de la nature, en passant par les équations différentielles formalisant des lois de comportement des grandeurs physiques, l’historien montre un lien étroit entre le déve- loppement de la physique et des mathématiques. Tout comme les théorèmes mathématiques, les lois physiques peuvent-elles être soumises à un ordre logique, et reposer sur une axiomatique ? Après plusieurs tentatives d’axiomatisation de la mécanique, celle de la physique est un programme de recherche souligné par le sixième problème de David Hilbert (1862-1943), partiellement établi avec l’axiomatisation de la relativité restreinte et générale. Nous nous intéresserons à la première de ces deux théories physiques, et nous analyserons, depuis l’article fon- dateur d’Albert Einstein Sur l’électrodynamique des corps en mouvement (1905), les apports mathématiques d’Hermann Minkowski (1864-1909) en géométrie, de Félix Klein (1849-1925) en théorie des groupes, ainsi que l’héritage de ces différents aspects de la "mathématisation" de la théorie de la relativité restreinte. Nous désignerons par le terme de mathématisation le développement formel de la théorie physique de la relativité, centré sur l’expression mathématique des transformations (changements de variables entre repères mathéma- tiques) qu’elle met en jeu, des propriétés géométriques et algébriques (structurelles) de ces transformations et de l’espace dans lequel elles sont exprimées, ainsi que de l’axiomatisation de cette théorie. Cette mathématisation est-elle un processus pratique mais non essentiel à l’expression des lois physiques, ou bien est-elle révélatrice d’un lien profond avec les lois de la nature ? Nous observerons les points de vue des mathématiciens et physiciens de l’époque sur la nature de ce lien, tantôt purement fictif, comme dans le conven- tionnalisme de Poincaré, ou objectif, comme dans l’harmonie préetablie de Minkowski. Nous n’avons pas pour ambition de présenter une philosophie générale du lien entre physique et mathéma- 1. Nous nous autorisons un saut historique important car il serait chimérique de vouloir résumer de façon à la fois concise et exhaustive l’histoire de la mécanique classique, et ses relations avec les mathématiques durant ces trois siècles, qui sortent largement de notre périodisation. 4 tiques, mais nous nous contenterons d’exposer, au prix d’une présentation technique d’outils mathématiques indispensables, des éléments de connaissance représentant, selon nous, l’un des meilleurs exemples des interac- tions complexes entre ces deux disciplines. Notre étude historique, questionnant le rôle des mathématiques dans la théorie de la relativité restreinte, com- mencera autour de la formulation du principe de relativité par Poincaré en 1902, en passant par l’article d’Ein- stein de 1905, le formalisme de Minkowski dans son article Espace et temps (1909), jusqu’à la reformulation de Klein en 1910 2. Cette dernière reformulation, dans le cadre de la théorie des groupes, nécessitera de préciser rapidement l’histoire interne du concept de groupe, prenant place tout au long du XIXème siècle 3. Nous tenterons d’éclairer l’appari- tion de ce concept mathématique dans la physique relativiste, en établissant les raisons de son rôle secondaire dans l’article d’Einstein de 1905. Ces réflexions spécifiques sur l’histoire du concept de groupe introduiront tou- tefois notre étude du programme d’Erlangen de Klein, qui repose essentiellement sur ses articles Sur la géométrie dite non euclidienne (1871) et Considérations comparatives sur les recherches géométriques modernes (1872), programme de recherche central dans la reformulation mathématique de la relativité restreinte. Cette étude historique se doublera d’une analyse épistémologique du principe de relativité chez Poincaré et Einstein, puis des concepts d’espace (d’espace-temps chez Minkowski), et sur la nature de la géométrie, ces points éclairant particulièrement les relations complexes et dynamiques entre la physique et les mathématiques. En particulier, nous verrons que le statut épistémologique du principe de relativité est fortement lié à sa for- malisation en un cadre géométrique structurel de la théorie physique. De plus, des considérations telles que la quadridimensionnalité de l’espace-temps jouèrent un rôle important dans le déplacement de l’intérêt des physiciens, de l’étude des mouvements
Recommended publications
  • Arxiv:2106.01162V1 [Math.HO] 27 May 2021 Shine Conference in Kashiwa” 1 and Contain a Number of New Perspectives and Ob- Servations on Monstrous Moonshine
    Kashiwa Lectures on New Approaches to the Monster John McKay1 edited and annotated by Yang-Hui He2;3;4;5 1 CICMA & Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec, H3G 1M8, Canada 2 London Institute for Mathematical Sciences, Royal Institution of Great Britain, 21 Albemarle Street, Mayfair, London W1S 4BS, UK; 3 Merton College, University of Oxford, OX14JD, UK; 4 Department of Mathematics, City, University of London, EC1V 0HB, UK; 5 School of Physics, NanKai University, Tianjin, 300071, P.R. China mckay@encs.concordia.ca hey@maths.ox.ac.uk Abstract These notes stem from lectures given by the first author (JM) at the 2008 \Moon- arXiv:2106.01162v1 [math.HO] 27 May 2021 shine Conference in Kashiwa" 1 and contain a number of new perspectives and ob- servations on Monstrous Moonshine. Because many new points have not appeared anywhere in print, it is thought expedient to update, annotate and clarify them (as footnotes), an editorial task which the second author (YHH) is more than delighted to undertake. We hope the various puzzles and correspondences, delivered in a personal and casual manner, will serve as diversions intriguing to the community. 1Organized by the Institute for the Physics and Mathematics of the Universe (IPMU) under the support of the Graduate School of Mathematical Sciences, the University of Tokyo. 1 Contents 1 Introduction 3 1.1 Resources . 3 1.2 Talk Outline . 5 1.3 Where to Start ? . 6 2 Monstrous Moonshine 9 2.1 Primes in the Monster's Order . 10 2.2 Balance .
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Arxiv:1402.4957V3 [Math.HO] 12 Sep 2014 .INTRODUCTION I
    Cauchy’s almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow Uriel Frisch UNS, CNRS, OCA, Lab. Lagrange, B.P. 4229, 06304 Nice Cedex 4, France Barbara Villone INAF, Osservatorio Astrofisico di Torino, Via Osservatorio, 20, 10025 Pino Torinese, Italy (Dated: September 16, 2014) Two prized papers, one by Augustin Cauchy in 1815, presented to the French Academy and the other by Hermann Hankel in 1861, presented to G¨ottingen University, contain major discover- ies on vorticity dynamics whose impact is now quickly increasing. Cauchy found a Lagrangian formulation of 3D ideal incompressible flow in terms of three invariants that generalize to three dimensions the now well-known law of conservation of vorticity along fluid particle trajectories for two-dimensional flow. This has very recently been used to prove analyticity in time of fluid particle trajectories for 3D incompressible Euler flow and can be extended to compressible flow, in particular to cosmological dark matter. Hankel showed that Cauchy’s formulation gives a very simple Lagrangian derivation of the Helmholtz vorticity-flux invariants and, in the middle of the proof, derived an intermediate result which is the conservation of the circulation of the velocity around a closed contour moving with the fluid. This circulation theorem was to be rediscovered independently by William Thomson (Kelvin) in 1869. Cauchy’s invariants were only occasionally cited in the 19th century — besides Hankel, foremost by George Stokes and Maurice L´evy — and even less so in the 20th until they were rediscovered via Emmy Noether’s theorem in the late 1960, but reattributed to Cauchy only at the end of the 20th century by Russian scientists.
    [Show full text]
  • ~2 Q ! / Date an EXPOSITION on the KRONECKER-WEBER THEOREM
    An exposition on the Kronecker-Weber theorem Item Type Thesis Authors Baggett, Jason A. Download date 24/09/2021 09:05:39 Link to Item http://hdl.handle.net/11122/11349 AN EXPOSITION ON THE KRONECKER-WEBER THEOREM By Jason A. Baggett RECOMMENDED: Advisory Committee Chair Chair, Department of Mathematics APPROVED: Dean, College of Natural §sztfmce and Mathematics ; < r Dean of the Graduate School ~2 Q_! / Date AN EXPOSITION ON THE KRONECKER-WEBER THEOREM A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Jason A. Baggett, B.S. Fairbanks, Alaska May 2011 iii Abstract The Kronecker-Weber Theorem is a classification result from Algebraic Number Theory. Theorem (Kronecker-Weber). Every finite, abelian extension Qof is contained in a cyclo- tomic field. This result was originally proven by Leopold Kronecker in 1853. However, his proof had some gaps that were later filled by Heinrich Martin Weber in 1886 and David Hilbert in 1896. Hilbert's strategy for the proof eventually led to the creation of the field of mathematics called Class Field Theory, which is the study of finite, abelian extensions of arbitrary fields and is still an area of active research. Not only is the Kronecker-Weber Theorem surprising, its proof is truly amazing. The idea of the proof is that for a finite, Galois extension K of Q, there is a connection be­ tween the Galois group Gal(K/Q) and how primes of Z split in a certain subring R of K corresponding to Z in Q.
    [Show full text]
  • Takagi's Class Field Theory
    RIMS Kôkyûroku Bessatsu B25 (2011), 125160 Takagis Class Field Theory ‐ From where? and to where? ‐ By * Katsuya MIYAKE §1. Introduction After the publication of his doctoral thesis [T‐1903] in 1903, Teiji Takagi (1875‐ 1960) had not published any academic papers until1914 when World War I started. In the year he began his own investigation on class field theory. The reason was to stay in the front line of mathematics still after the cessation of scientific exchange between Japan and Europe owing to World War I; see [T‐1942, Appendix I Reminiscences and Perspectives, pp.195196] or the quotation below from the English translation [T‐1973, p.360] by Iyanaga. The last important scientific message he received at the time from Europe should be Fueters paper [Fu‐1914] which contained a remarkable result on Kroneckers Ju‐ gendtraum (Kroneckers dream in his young days): Kroneckers Jugendtraum The roots of an Abelian equation over an imagi‐ nary quadratic field k are contained in an extension field of k generated by the singular moduli of elliptic functions with complex multiplication in k and values of such elliptic functions at division points of their periods. (See Subsections 3.2 and 3.3 in Section 3.) K. Fueter treated Abelian extensions of k of odd degrees. Theorem 1.1 (Fueter). Every abelian extension of an imaginary quadratic num‐ ber field k with an odd degree is contained in an extension of k generated by suitable roots of unity and the singular moduli of elliptic functions with complex multiplication in k. Received March 31, 2010. Revised in final form February 17, 2011.
    [Show full text]
  • The Mamas & the Papas of the Math X-Files & Episodic Epitomizing Epithets & a Bit More #77 of Gottschalk's Gestalt
    The Mamas & The Papas of The Math X-Files & Episodic Epitomizing Epithets & A Bit More #77 of Gottschalk’s Gestalts A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk Infinite Vistas Press PVD RI 2002 GG77-1 (38) „ 2002 Walter Gottschalk 500 Angell St #414 Providence RI 02906 permission is granted without charge to reproduce & distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited GG77-2 • the mother of abstract algebra Amalie ‘Emmy’ Noether 1882 - 1935 German - American • the father of accounting • the father of double-entry bookkeeping • the first mathematician of whom there exists an authentic portrait Luca Pacioli 1445-1514 Italian • the father of acoustics Marin Mersenne 1588 - 1648 French GG77-3 • the father of algebra Diophantus of Alexandria 200? - 284? CE Greek or Abu Ja’far Muhammad ibn Musa al-Khwarizmi ca 780 - ca 850 CE Persian, born in Baghdad or François Viète 1540 - 1603 French • the father of algebraic invariant theory • the father of matrix algebra • the father of octonions Arthur Cayley 1821 - 1895 English • the king of algebraic invariant theory Paul Albert Gordan 1837 - 1912 German GG77-4 • the father of algebraic topology • the father of dynamical systems • the father of the theory of analytic functions of several complex variables • the greatest French mathematician in the second half of the nineteenth century Jules Henri Poincaré 1854 - 1912 French • the father of American mathematics Eliakim Hastings
    [Show full text]
  • Mathematicians Timeline
    Rikitar¯oFujisawa Otto Hesse Kunihiko Kodaira Friedrich Shottky Viktor Bunyakovsky Pavel Aleksandrov Hermann Schwarz Mikhail Ostrogradsky Alexey Krylov Heinrich Martin Weber Nikolai Lobachevsky David Hilbert Paul Bachmann Felix Klein Rudolf Lipschitz Gottlob Frege G Perelman Elwin Bruno Christoffel Max Noether Sergei Novikov Heinrich Eduard Heine Paul Bernays Richard Dedekind Yuri Manin Carl Borchardt Ivan Lappo-Danilevskii Georg F B Riemann Emmy Noether Vladimir Arnold Sergey Bernstein Gotthold Eisenstein Edmund Landau Issai Schur Leoplod Kronecker Paul Halmos Hermann Minkowski Hermann von Helmholtz Paul Erd}os Rikitar¯oFujisawa Otto Hesse Kunihiko Kodaira Vladimir Steklov Karl Weierstrass Kurt G¨odel Friedrich Shottky Viktor Bunyakovsky Pavel Aleksandrov Andrei Markov Ernst Eduard Kummer Alexander Grothendieck Hermann Schwarz Mikhail Ostrogradsky Alexey Krylov Sofia Kovalevskya Andrey Kolmogorov Moritz Stern Friedrich Hirzebruch Heinrich Martin Weber Nikolai Lobachevsky David Hilbert Georg Cantor Carl Goldschmidt Ferdinand von Lindemann Paul Bachmann Felix Klein Pafnuti Chebyshev Oscar Zariski Carl Gustav Jacobi F Georg Frobenius Peter Lax Rudolf Lipschitz Gottlob Frege G Perelman Solomon Lefschetz Julius Pl¨ucker Hermann Weyl Elwin Bruno Christoffel Max Noether Sergei Novikov Karl von Staudt Eugene Wigner Martin Ohm Emil Artin Heinrich Eduard Heine Paul Bernays Richard Dedekind Yuri Manin 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 Carl Borchardt Ivan Lappo-Danilevskii Georg F B Riemann Emmy Noether Vladimir Arnold August Ferdinand
    [Show full text]
  • Johan Gielis Riccione 2012
    1 Kunihiko Kodaira * Tokyo, Kofu, Mark Kac * Krzemieniec, California, Alan Mathison Turing * Londres, Wilmslow, Subrahmanyan Chandrasekhar * Lahore, Chicago, Mark Aronovich Naimark * Odessa, Moscu,´ Lev Pontryagin * Moscu,´ R. E. A. C. Paley * Banff, Mark Krein * Kiev, Odessa, Aleksandr Osipovich Gelfond * 1934 San Petersburgo, Moscu,´ Kurt Godel¨ * Brno, Princeton, Andrei Nikolaevich Tikhonov * Gzhatska, Charles Ehresmann * Estrasburgo, Amiens, John von Neumann * Budapest, Washington, William Vallance Douglas Hodge * Edimburgo, Cambridge, Andrey Nikolaevich Kolmogorov * Tambov, Moscu,´ Julio Rey Pastor * Logrono,˜ Buenos Aires, Srinivasa A. Ramanujan * Erode, Kumbakonam, Hermann Klaus Hugo Weyl * Elmshorn, Zurich, John Maynard Keynes * Cambridge, Firle, Joseph Henry Maclagen Wedderburn * 1907 1905 Forfar, Princeton, Lipot´ Fejer´ * Pecs,´ Budapest, Sergi Natanovich Bernstein * 1916 Odessa, Moscu,´ Guido Fubini * Venecia, Nueva York, Max Wilhelm Dehn * Hamburgo, Black Mountain, Edmund Georg Hermann Landau * Berl´ın, Berl´ın, Erhard Schmidt * Dorpat, Berl´ın, Paul Antoine Aristide Montel * Niza, Par´ıs, Henri Leon´ Lebesgue * 1902 Beauvais, Par´ıs, Bertrand Arthur William Russell * Ravenscroft, Penrhyndeudraeth, Felix´ Edouard´ Justin Emile´ Borel * Saint Affrique, Par´ıs, John Charles Fields * 1924 Hamilton, Toronto, Heinrich Martin Weber * Lipman Bers * 1893 Heidelberg, Estrasburgo, Riga, New Rochelle, David Hilbert * 1903 1888 1893 1900 Konigsberg,¨ Gotinga, Ivar Otto
    [Show full text]
  • Richard Dedekind - Wikipedia, the Free Encyclopedia 1/6/14 3:36 PM Richard Dedekind from Wikipedia, the Free Encyclopedia
    Richard Dedekind - Wikipedia, the free encyclopedia 1/6/14 3:36 PM Richard Dedekind From Wikipedia, the free encyclopedia Julius Wilhelm Richard Dedekind (October 6, Richard Dedekind 1831 – February 12, 1916) was a German mathematician who made important contributions to abstract algebra (particularly ring theory), algebraic number theory and the foundations of the real Richard Dedekind, c. 1870 numbers. Born October 6, 1831 Braunschweig, Duchy of Brunswick Contents Died February 12, 1916 (aged 84) Braunschweig, German Empire 1 Life Nationality German 2 Work 3 See also Fields Mathematician 4 Notes Philosopher of mathematics 5 Bibliography Doctoral Carl Friedrich Gauss 6 Further reading advisor 7 External links Known for Abstract algebra Algebraic number theory Real numbers Life http://en.wikipedia.org/wiki/Richard_Dedekind Page 1 of 9 Richard Dedekind - Wikipedia, the free encyclopedia 1/6/14 3:36 PM Dedekind's father was Julius Levin Ulrich Dedekind, an administrator at Collegium Carolinum in Braunschweig. Dedekind had three older siblings. As an adult, he never employed the names Julius Wilhelm. He was born, lived most of his life, and died in Braunschweig (often called "Brunswick" in English). He first attended the Collegium Carolinum in 1848 before moving to the University of Göttingen in 1850. There, Dedekind studied number theory under Moritz Stern. Gauss was still teaching, although mostly at an elementary level, and Dedekind became his last student. Dedekind received his doctorate in 1852, for a thesis titled Über die Theorie der Eulerschen Integrale ("On the Theory of Eulerian integrals"). This thesis did not display the talent evident in Dedekind's subsequent publications.
    [Show full text]
  • Jarník's Notes of the Lecture Course Allgemeine Idealtheorie by B. L
    Jarník’s Notes of the Lecture Course Allgemeine Idealtheorie by B. L. van der Waerden (Göttingen 1927/1928) Monographs and Textbooks in Algebra at the Turn of the 20th Century In: Jindřich Bečvář (author); Martina Bečvářová (author): Jarník’s Notes of the Lecture Course Allgemeine Idealtheorie by B. L. van der Waerden (Göttingen 1927/1928). (English). Praha: Matfyzpress, 2020. pp. 61–110. Persistent URL: http://dml.cz/dmlcz/404381 Terms of use: Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz 61 MONOGRAPHS AND TEXTBOOKS IN ALGEBRA at the turn of the 20th century 1 Introduction Algebra as a mathematical discipline was initially concerned with equation solving. It originated in ancient Egypt and Mesopotamia four thousand years ago, and somewhat later also in ancient China and India. At that time, equations in the present sense, i.e., formal expressions based on a certain, perhaps very primitive notation, did not exist yet. The ancient arithmeticians were able to solve word problems leading to equations or their systems by means of meticulously memorized procedures, which can be nowadays aptly designated as algorithms. They have successfully tackled a number of problems, which often correspond to present-day problems of school mathematics, sometimes being much more difficult. Their methods of calculation largely correspond to our procedures used for solving equations or their systems.
    [Show full text]
  • The Fundamental Theorem for Finite Abelian Groups: a Brief History and Proof
    THE FUNDAMENTAL THEOREM FOR FINITE ABELIAN GROUPS: A BRIEF HISTORY AND PROOF. ANTHONY PIRO Abstract. The purpose of this project was to investigate the origins and history of Finite Abelian Group Theory. We will also provide a proof to the Fundamental Theorem of Finite Abelian Groups. The beginnings of Finite Abelian Group Theory can be traced back to the 18th century and followed through to the early 20th century. In this work, we will discuss many well-known mathematicians, such as Lagrange and Gauss, and their connections to finite abelian group theory. This work will also provide an in-depth proof to the Fundamental Theorem of Finite Abelian Groups. This theorem is a structure theorem, which provides a structure that all finite abelian groups share. The proof to the Fundamental Theorem of Finite Abelian Groups relies on four main results. Throughout the proof, we will discuss the shared structure of finite abelian groups and develop a process to attain this structure. 1. Brief History of Group Theory The development of finite abelian group theory occurred mostly over a hundred year pe- riod beginning in the late 18th century. During this time, mathematics saw a return of the axiomatic way of thinking, an increase in rigor across the field, and a greater degree of ab- straction in mathematics. Many of the early properties of groups were discovered by happen stance as they were stumbled upon during studies of di↵erent mathematical disciplines. We will discuss several mathematicians and there contributions to finite abelian group theory. It is important to note that many of the following results were not presented in a group theoretic context, but these results relate directly to finite abelian groups theory.
    [Show full text]
  • Arxiv:1807.08416V3
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 200 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were written down. Since [431] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context” we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The number of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable” theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For litera- ture on general mathematics, see [158, 154, 26, 190, 204, 478, 330, 114], for history [179, 484, 304, 62, 43, 170, 306, 296, 535, 95, 477, 68, 208, 275], for popular, beautiful or elegant things [10, 406, 163, 149, 15, 518, 519, 41, 166, 155, 198, 352, 475, 240, 163, 2, 104, 121, 105, 389]. For comprehensive overviews in large parts of mathematics, [63, 138, 139, 47, 458] or predictions on developments [44]. For reflections about mathematics in general [120, 358, 42, 242, 350, 87, 435]. Encyclopedic source examples are [153, 547, 516, 88, 157, 127, 182, 156, 93, 489].
    [Show full text]