Botulinum Toxin a and Facial Lines: the Variable Concentration

Total Page:16

File Type:pdf, Size:1020Kb

Botulinum Toxin a and Facial Lines: the Variable Concentration Aesth. Plast. Surg. 25:73–84, 2001 DOI: 10.1007/s002660010100 © 2001 Springer-Verlag New York Inc. Botulinum Toxin A and Facial Lines: The Variable Concentration Claude Le Louarn 59 rue Spontini, 75116 Paris, France Abstract. Our improved understanding of the functional Migration Factors anatomy of the face and of the action of the botulinum toxin A leads us to determine a new injection procedure which conse- The main concern with the use of toxin A lies in the risk quently decreases the risk of eyebrow and eyelid ptosis, and of migration. Three injection sites are specifically asso- increases the toxin injection’s possibilities and efficiencies. ciated with the risk [6]. Variable toxin injection concentrations adapted to each injected An injection above the eyebrow into the corrugator area are used. Thanks to the new procedure in the upper face, muscle can cause eyelid ptosis. The migration distance toxin A action is quite close to an endoscopic surgical action. between the injection site and the levator palpebrae In addition, interesting results are achievable on the nose, upper muscle is 2 cm. part of the nasolabial fold, jawline and neck regions. Lastly, a An injection in the lateral part of the orbicularis oculi smoothing effect on the skin is obtained by the anticholinergic muscle, just below the eyebrow, can allow the toxin to action of the toxin A on the dermal receptors. migrate into the levator palpebrae muscle or into the extraocular muscles. Migration distance is 2 cm. Key words: Botulinum toxin A—Variable concentration— Injection in the upper part of the frontalis muscle can Injection technique migrate into the lower part of the frontalis muscle. As described in Fig. 5, lower frontalis muscle paralysis in- duces eyebrow ptosis. Migration distance is 2 cm. Two types of botulinum toxin A are used in this study, The migration is specially due to injection volume, the DYSPORT toxin distributed by BEAUFOUR-IPSEN injection orientation, and injection bleeding. laboratory (Each vial contains 500 Speywood units of toxin A), and the BOTOX toxin distributed by ALLER- Injection Volume GAN laboratory (Each vial contains 100 Allergan units of toxin A). When following the instructions of the Dysport package The toxin equivalence seems to be 3 to 4 Speywood insert, 500 units of Dysport are mixed with 2.5 ml of Allergan unit (Botox) [7]. A Dys- non-preserved saline: 20 units equals a volume of 0.1 ml 1 ס (units (Dysport port vial contains 25% to 40% more usable product than which is frequently larger than the volume of muscle to one Allergan vial. be injected. Obviously, the risk of side effects is high. To correct dystonia and spasm, injections must be re- In order to obtain a more precise effect, the contents of peated at a constant frequency to maintain the desired a vial are diluted in 0.7 ml of saline (nearly a quarter of effect [10]. This seems to be related to the high intensity the recommended quantity) thus the volume to inject will and frequency of nerve stimulation in such disorders. be smaller than the volume of the muscle injected (Fig. In the cosmetic field (facial lines) injection frequency 1). The risk of migration in the periorbital region is thus can be progressively decreased because of 2 factors: a drastically diminished. mild long-term muscle atrophy, and a change in facial For Botox toxin, 100 Allergan units are usually mixed animation patterns with a lower intensity and in the fre- with 4 ml of saline [4]. The proposed dilution is 100 quency muscle nervous stimulation [1,2]. Allergan units mixed with 1 ml of non-preserved saline. The following study describes the new possibilities of It is better to use a 0.5 ml diabetic syringe to inject the botulinum toxin A when using new injection tech- a high concentration solution of toxin A rather than a niques which limit its migration. 1 ml syringe. The 0.5 ml diabetic syringe is twice as 74 Varying Botulinum Toxin A Concentrations Fig. 1. Volume of 15 units of Dysport in case of dilution of the Fig. 2. The 0.5 ml insulin syringe with 50 units. vial with 2.5 ml, 1.25 ml, 0.62 ml of saline. use of the tip of the thumb and not of its base; lastly, the precise as the 1 ml, but also the 0.07 ml loss of solution unit number in each vial of Dysport or of Botox is subject per use between the syringe and the needle doesn’t exist to a variation of 20%. This unavoidable variation results with the smaller syringe. Indeed, the 0.5 ml diabetic sy- from the toxin manufacturing processes. A good injec- ringe has a 29 gauge needle directly inserted in the cavity tion technique limits problems 1 and 2. with no empty space. The performing syringe we found Variable Toxin Concentration for this use is the BD 4-100 Insulin microfine 8 mm 0.5 ml with 50 units (Fig. 2). The concentration of a motor end-plate near the injection point depends on each type of muscle. A flat and thin Injection Orientation muscle like the platysma muscle has a medium motor end-plate concentration, and, on the contrary, a short and Not only is the bevelled angle of the needle directed to thick corrugator muscle has a high concentration of mo- the desired target exactly like in Collagen injection tech- tor end-plates near the injection point. On this basis, we niques, but also any dangerous adjacent muscle direction describe 3 different toxin concentrations, high, medium of the injection is to be avoided. and low depending upon the action we look for. In case of corrugator muscle injection, the bevelled angle of the needle is directed opposite to the levator The high toxin concentration. 0.7 ml of saline are used palpebrae muscle. to dilute 500 units of Dysport or 1 ml of saline for 100 units of Botox. The action is strong and precise, on thick Bleeding Induced with Injection muscles of the peri orbital area: the corrugator muscle, the orbicularis oculi muscle pars orbitalis, the depressor A needle injection creates a micro-tissue trauma, micro- supercilii muscle and the lower part of the frontalis bleeding, sometimes an ecchymosis. This ecchymosis muscle. This high concentration diminishes the volume downward migration due to gravity, carries along the of injection and prevents migration. botulinum toxin. This risk is minimized with the help of the following procedure: Any injection on a vascular axis Medium concentration toxin. To obtain a medium con- such as the supraorbital bundle, should be avoided [3]; an centration toxin, two volumes of saline including adrena- appropriate digital pressure is realized when the needle is line is added to the volume of high concentrated toxin removed from the injection site. This action is mainly which is already in the syringe (Fig. 3). important in case of corrugator muscle injection, as well The action is clear and spread over a larger surface as in the case of frontal and orbicularis oculi muscles with the same number of units of toxin. The muscles such as previously described, and in any case of ecchy- concerned are the frontalis, the orbicularis oculi temporal mosis; adrenaline is added to the non-preserved saline and malar pars, the platysma and the chin muscles. with a dilution of 50 ␮ gr/per ml (like xylocaïne 1% The low concentration toxin. 3 volumes of saline includ- adrenaline). ing adrenaline are added to the volume of toxin already in the syringe. The action of the injection is partial and Injection Technique localised. It is useful for injecting spots in the vermillon border of the lip or in the orbicularis oculi pars orbitalis There are three causes of the injection imprecision that in the lower eyelid area. The variable concentration can can explain different results with the same patient and be adapted to each physician’s experience and to each the same technique at different injection sessions: a par- patient’s reaction. A patient with a long duration effect allax error vision due to an axis of vision which is not on the periorbital area and too short an effect on the perpendicular to the axis of the syringe; imprecision in frontal area, will benefit from a higher concentration of the digit pressure on the piston of the syringe due to the toxin injection in the frontal area at a further session. C. Le Louarn 75 Seven to 14 units of Dysport or 3 to 5 units of Botox are injected. The tip of the needle is on the arcus super- ciliaris bone, the bevelled opening oriented to the gla- bella area and not to the levator palpebrae muscle. The bony insertion of the muscle is injected, not its skin insertion. The injection of the medial part of the corru- gator muscle decreases the vertical glabella frown lines. Injection of the lateral part of the corrugator muscle. This injection is realized in case of non-sufficient action of the injection of the medial part of the corrugator muscle to decrease the glabella frown lines, or too low a location of the middle third of the eyebrow. This injec- tion produces the elevation of the middle third of the Fig. 3. The sterile cap of the syringe is filled with the same and eyebrow. The product is injected deeply, near the bone at volume solution of saline, plus adrenaline, used to dilute the the lateral extremity of the corrugator muscle, which toxin. The syringe is filled with the necessary amount and means at the lateral extremity of the bony arcus super- volume of toxin to weaken the target muscles.
Recommended publications
  • The Muscular System Views
    1 PRE-LAB EXERCISES Before coming to lab, get familiar with a few muscle groups we’ll be exploring during lab. Using Visible Body’s Human Anatomy Atlas, go to the Views section. Under Systems, scroll down to the Muscular System views. Select the view Expression and find the following muscles. When you select a muscle, note the book icon in the content box. Selecting this icon allows you to read the muscle’s definition. 1. Occipitofrontalis (epicranius) 2. Orbicularis oculi 3. Orbicularis oris 4. Nasalis 5. Zygomaticus major Return to Muscular System views, select the view Head Rotation and find the following muscles. 1. Sternocleidomastoid 2. Scalene group (anterior, middle, posterior) 2 IN-LAB EXERCISES Use the following modules to guide your exploration of the head and neck region of the muscular system. As you explore the modules, locate the muscles on any charts, models, or specimen available. Please note that these muscles act on the head and neck – those that are located in the neck but act on the back are in a separate section. When reviewing the action of a muscle, it will be helpful to think about where the muscle is located and where the insertion is. Muscle physiology requires that a muscle will “pull” instead of “push” during contraction, and the insertion is the part that will move. Imagine that the muscle is “pulling” on the bone or tissue it is attached to at the insertion. Access 3D views and animated muscle actions in Visible Body’s Human Anatomy Atlas, which will be especially helpful to visualize muscle actions.
    [Show full text]
  • EDS Awareness in the TMJ Patient
    EDS Awareness in the TMJ Patient TMJ and CCI with the EDS Patient “The 50/50” Myofascial Pain Syndrome EDNF, Baltimore, MD August 14,15, 2015 Generation, Diagnosis and Treatment of Head Pain of Musculoskeletal Origin Head pain generated by: • Temporomandibular joint dysfunction • Cervicocranial Instability • Mandibular deviation • Deflection of the Pharyngeal Constrictor Structures Parameters & Observations . The Myofascial Pain Syndrome (MPS) is a description of pain tracking in 200 Ehlers-Danlos patients. Of the 200 patients, 195 were afflicted with this pain referral syndrome pattern. The MPS is in direct association and correlation to Temporomandibular Joint dysfunction and Cervico- Cranial Instability syndromes. Both syndromes are virtually and always correlated. Evaluation of this syndrome was completed after testing was done to rule out complex or life threatening conditions. The Temporomandibular Joint TMJ Dysfunction Symptoms: Deceptively Simple, with Complex Origins 1) Mouth opening, closing with deviation of mandibular condyles. -Menisci that maybe subluxated causing mandibular elevation. -Jaw locking “open” or “closed”. -Inability to “chew”. 2) “Headaches”/”Muscles spasms” (due to decreased vertical height)generated in the temporalis muscle, cheeks areas, under the angle of the jaw. 3) Osseous distortion Pain can be generated in the cheeks, floor of the orbits and/or sinuses due to osseous distortion associated with “bruxism”. TMJ dysfunction cont. (Any of the following motions may produce pain) Pain With: . Limited opening(closed lock): . Less than 33 mm of rotation in either or both joints . Translation- or lack of . Deviations – motion of the mandible to the affected side or none when both joints are affected . Over joint pain with or without motion around or .
    [Show full text]
  • The Articulatory System Chapter 6 Speech Science/ COMD 6305 UTD/ Callier Center William F. Katz, Ph.D
    The articulatory system Chapter 6 Speech Science/ COMD 6305 UTD/ Callier Center William F. Katz, Ph.D. STRUCTURE/FUNCTION VOCAL TRACT CLASSIFICATION OF CONSONANTS AND VOWELS MORE ON RESONANCE ACOUSTIC ANALYSIS/ SPECTROGRAMS SUPRSEGMENTALS, COARTICULATION 1 Midsagittal dissection From Kent, 1997 2 Oral Cavity 3 Oral Structures – continued • Moistened by saliva • Lined by mucosa • Saliva affected by meds 4 Tonsils • PALATINE* (laterally – seen in oral periph • LINGUAL (inf.- root of tongue) • ADENOIDS (sup.) [= pharyngeal] • Palatine, lingual tonsils are larger in children • *removed in tonsillectomy 5 Adenoid Facies • Enlargement from infection may cause problems (adenoid facies) • Can cause problems with nasal sounds or voicing • Adenoidectomy; also tonsillectomy (for palatine tonsils) 6 Adenoid faces (example) 7 Oral structures - frenulum Important component of oral periphery exam Lingual frenomy – for ankyloglossia “tongue-tie” Some doctors will snip for infants, but often will loosen by itself 8 Hard Palate Much variability in palate shape and height Very high vault 9 Teeth 10 Dentition - details Primary (deciduous, milk teeth) Secondary (permanent) n=20: n=32: ◦ 2 incisor ◦ 4 incisor ◦ 1 canine ◦ 2 canine ◦ 2 molar ◦ 4 premolar (bicuspid) Just for “fun” – baby ◦ 6 molar teeth pushing in! NOTE: x 2 for upper and lower 11 Types of malocclusion • Angle’s classification: • I, II, III • Also, individual teeth can be misaligned (e.g. labioversion) Also “Neutrocclusion/ distocclusion/mesiocclusion” 12 Dental Occlusion –continued Other terminology 13 Mandible Action • Primary movements are elevation and depression • Also…. protrusion/retraction • Lateral grinding motion 14 Muscles of Jaw Elevation Like alligators, we are much stronger at jaw elevation (closing to head) than depression 15 Jaw Muscles ELEVATORS DEPRESSORS •Temporalis ✓ •Mylohyoid ✓ •Masseter ✓ •Geniohyoid✓ •Internal (medial) Pterygoid ✓ •Anterior belly of the digastric (- Kent) •Masseter and IP part of “mandibular sling” •External (lateral) pterygoid(?)-- also protrudes and rocks side to side.
    [Show full text]
  • Upper Lid Orbicularis Oculi Muscle Strip and Sequential Brow Suspension with Autologous Fascia Lata Is Beneficial for Selected P
    Eye (2009) 23, 1549–1553 & 2009 Macmillan Publishers Limited All rights reserved 0950-222X/09 $32.00 www.nature.com/eye Upper lid orbicularis B Patil and AJE Foss CLINICAL STUDY oculi muscle strip and sequential brow suspension with autologous fascia lata is beneficial for selected patients with essential blepharospasm Abstract Introduction Purpose Severe cases of blepharospasm Patients with severe blepharospasm, whose resistant to botulinum toxin represent a symptoms are not controlled by botulinum challenging clinical problem. Over the toxin injections, are a difficult management last 10 years, we have adopted a staged problem for whom a number of surgical options surgical management of these cases have been tried. with an initial upper lid orbicularis Two operations, in particular, have been tried; myectomy (combined with myectomy the orbicularis myectomy (or strip) and brow of procerus and corrugator supercilius as suspension. The choice of the procedure appropriate) and then 4–6 months later classically depends upon the clinical a brow suspension with autologous fascia presentation, with all types being offered the Department of lata. The aim of this study was to orbicularis myectomy except for the apraxic (also Ophthalmology, assess the outcome of this staged surgical called the pre-tarsal) type. The proposed Queen’s Medical Centre, approach. aetiology of the apraxic type is considered to Nottingham University, Materials and methods A questionnaire differ and to represent a failure of eyelid opening Nottingham, UK was sent to all patients who had undergone and is clinically characterized by the eyebrows Correspondence: AJE Foss, the procedure and the clinical records going up and not down with the spasms.
    [Show full text]
  • Making Faces
    Making Faces Chris Landreth CSC2529, Session 4 31 January 2011 AU1,2 (Frontalis): 2 AU4 (Corrugator): 1 AU5 (Levitor Palpabrae): 3 AU6,44 (Orbicularis Oculi): 6 How AU9 (Alaeque Nasi Labius Superioris): 1 AU10 (Labius Superioris): 3 many AU12 (Zygomatic Major): 3 letters in AU14 (Buccinator): 3 AU15 (Triangularis): 3 this AU16 (Labius Inferioris): 1 alphabet? AU17 (Mentalis): 1 AU18 (Incisivus): 1 AU20 (Risorius/Platysma): 3 AU22,23 (Orbicularis Oris): 6 AU26 (Jaw): 4 _________________________________________________ TOTAL: 41 AU’s Putting the letters together into words: Expressions The six fundamental expressions: 1. Anger 2. Sadness 3. Disgust 4. Surprise 5. Fear 6. Happiness The six fundamental expressions: 1. Anger 2. Sadness 3. Disgust 4. Surprise 5. Fear 6. Happiness A Few Words of Anger Glaring: A Few Words of Anger Glaring: Slight creases in the middle brow (Currogator) Eyelids are slightly raised (Levitor Palpabrae) Lips are clenched backward (Buccinator) Slight downturn in lip corners (Triangularis) A Few Words of Anger Miffed: A Few Words of Anger Miffed: Classic, angry ‘v-shaped’ eyebrows (Currogator) Nasolabial fold deepens, Upper lip is squared off (A.N. Labius Superioris) Lower lip raises into a pout, Dimpling in the chin (Mentalis) A Few Words of Anger Pissed off: A Few Words of Anger Pissed off: Brow raises slightly (Frontalis) Sharper Nasolabial Fold, Raised upper lip (A.N. Labius Superioris) Lower lip juts out (Orb. Oris, Lower Lip out) A Few Words of Anger Very Pissed off: A Few Words of Anger Very Pissed off: Slight squinting (Orb. Oculi) Bared upper teeth (Orb. Oris, Upper Lip Out) Squared lower lip corners, Sharp tendon creases in her neck (Risorius/Platysma) A Few Words of Anger Consumed in Rage: A Few Words of Anger Consumed in Rage: Intense, asymmetrical squinting (Orb.
    [Show full text]
  • FACE and SCALP, MUSCLES of FACIAL EXPRESSION, and PAROTID GLAND (Grant's Dissector [16Th Ed.] Pp
    FACE AND SCALP, MUSCLES OF FACIAL EXPRESSION, AND PAROTID GLAND (Grant's Dissector [16th Ed.] pp. 244-252; 254-256; 252-254) TODAY’S GOALS: 1. Identify the parotid gland and parotid duct 2. Identify the 5 terminal branches of the facial nerve (CN VII) emerging from the parotid gland 3. Identify muscles of facial expression 4. Identify principal cutaneous branches of the trigeminal nerve (CN V) 5. Identify the 5 layers of the scalp 6. Identify the facial nerve, retromandibular vein, and external carotid artery within the parotid gland 7. Identify the auriculotemporal nerve and superficial temporal vessels DISSECTION NOTES: General comments: Productive and effective study of the remaining lab sessions on regions of the head requires your attention to and study of the osteology of the skull. The opening pages of this section in Grant’s Dissector contains images and labels of the skull and parts thereof. Utilize atlases as additional resources to learn the osteology. Couple viewing of these images with an actual skull in hand (available in the lab) to achieve mastery of this material. Incorporate the relevant osteology to a synthesis of the area being covered. This lab session introduces you to the face and scalp, the major cutaneous nerves (branches of the trigeminal nerve [CN V]) that supply the skin of the face and scalp, and important muscles of facial expression. Some helpful overview comments to consider as you begin this study include: • The skin of the face is quite thin and mobile except where it is firmly attached to the nose and
    [Show full text]
  • Blepharoplasty
    Blepharoplasty Bobby Tajudeen Brow position • medial brow as having its medial origin at the level of a vertical line drawn to the nasal alar-facial junction • lateral extent of the brow should reach a point on a line drawn from the nasal alar-facial junction through the lateral canthus of the eye • brow should arch superiorly, well above the supraorbital rim, with the highest point lying at the lateral limbus • Less arched in men • midpupillary line and the inferior brow border should be approximately 2.5 cm. The distance from the superior border of the brow to the anterior hairline should be 5 cm Eyelid aesthetics • The highest point of the upper eyelid is at the medial limbus, and the lowest point of the lower eyelid is at the lateral limbus. • Sharp canthal angles should exist, especially at the lateral canthus. • The upper eyelid orbicularis muscle should be smooth and flat, and the upper eyelid crease should be crisp. The upper lid crease should lie between 8 and 12 mm from the lid margin in the Caucasian patient. • The upper lid margin should cover 1 to 2 mm of the superior limbus, and the lower lid margin should lie at the inferior limbus or 1 mm below the inferior limbus • The lower eyelid should closely appose the globe without any drooping of the lid away from the globe (ectropion) or in toward the globe (entropion) Lid laxity and excess • A pinch test helps determine the degree of excess lid skin that is present. The snap test helps determine the degree of lower lid laxity and is useful in preoperative planning Evaluation •
    [Show full text]
  • The Structure and Movement of Clarinet Playing D.M.A
    The Structure and Movement of Clarinet Playing D.M.A. DOCUMENT Presented in Partial Fulfilment of the Requirements for the Degree Doctor of Musical Arts in the Graduate School of The Ohio State University By Sheri Lynn Rolf, M.D. Graduate Program in Music The Ohio State University 2018 D.M.A. Document Committee: Dr. Caroline A. Hartig, Chair Dr. David Hedgecoth Professor Katherine Borst Jones Dr. Scott McCoy Copyrighted by Sheri Lynn Rolf, M.D. 2018 Abstract The clarinet is a complex instrument that blends wood, metal, and air to create some of the world’s most beautiful sounds. Its most intricate component, however, is the human who is playing it. While the clarinet has 24 tone holes and 17 or 18 keys, the human body has 205 bones, around 700 muscles, and nearly 45 miles of nerves. A seemingly endless number of exercises and etudes are available to improve technique, but almost no one comments on how to best use the body in order to utilize these studies to maximum effect while preventing injury. The purpose of this study is to elucidate the interactions of the clarinet with the body of the person playing it. Emphasis will be placed upon the musculoskeletal system, recognizing that playing the clarinet is an activity that ultimately involves the entire body. Aspects of the skeletal system as they relate to playing the clarinet will be described, beginning with the axial skeleton. The extremities and their musculoskeletal relationships to the clarinet will then be discussed. The muscles responsible for the fine coordinated movements required for successful performance on the clarinet will be described.
    [Show full text]
  • Chin Ptosis: Classification, Anatomy, and Correction/Garfein, Zide 3
    Chin Ptosis: Classification, Anatomy, and Correction Evan S. Garfein, M.D.,1 and Barry M. Zide, D.M.D., M.D.1 ABSTRACT For years, the notion of chin ptosis was somehow integrated with the concept of witch’s chin. That was a mistake on many levels because chin droop has four major causes, all different and with some overlap. With this article, the surgeon can quickly diagnose which type and which therapeutic modality would work best. In some cases the problem is a simple fix, in others the droop can only be stabilized, and in the final two, definite corrective procedures are available. Of note, in certain situations two types of chin ptosis may overlap because both the patient and the surgeon may each contribute to the problems. For example, in dynamic ptosis, a droop that occurs with smile in the unoperated patient can be exacerbated and further produced by certain surgical methods also. This paper classifies the variations of the problems and explains the anatomy with the final emphasis on long-term surgical correction, well described herein. This article is the ninth on this subject and a review of them all would be helpful (greatly) for understanding the enigmas of the lower face. KEYWORDS: Lip incompetence, chin ptosis, witch’s chin, chin droop, mentalis muscle All chin ptosis patients are not alike. The abnormal anatomy, diagnosis, and management of the proper diagnosis of the type of chin ptosis places the four types of chin ptosis, as well as how to manage patient into one of four categories, which will deter- dynamic ptosis in the presence of other problems— mine who can and who cannot be helped and by which surgeon-caused or not.
    [Show full text]
  • Atlas of the Facial Nerve and Related Structures
    Rhoton Yoshioka Atlas of the Facial Nerve Unique Atlas Opens Window and Related Structures Into Facial Nerve Anatomy… Atlas of the Facial Nerve and Related Structures and Related Nerve Facial of the Atlas “His meticulous methods of anatomical dissection and microsurgical techniques helped transform the primitive specialty of neurosurgery into the magnificent surgical discipline that it is today.”— Nobutaka Yoshioka American Association of Neurological Surgeons. Albert L. Rhoton, Jr. Nobutaka Yoshioka, MD, PhD and Albert L. Rhoton, Jr., MD have created an anatomical atlas of astounding precision. An unparalleled teaching tool, this atlas opens a unique window into the anatomical intricacies of complex facial nerves and related structures. An internationally renowned author, educator, brain anatomist, and neurosurgeon, Dr. Rhoton is regarded by colleagues as one of the fathers of modern microscopic neurosurgery. Dr. Yoshioka, an esteemed craniofacial reconstructive surgeon in Japan, mastered this precise dissection technique while undertaking a fellowship at Dr. Rhoton’s microanatomy lab, writing in the preface that within such precision images lies potential for surgical innovation. Special Features • Exquisite color photographs, prepared from carefully dissected latex injected cadavers, reveal anatomy layer by layer with remarkable detail and clarity • An added highlight, 3-D versions of these extraordinary images, are available online in the Thieme MediaCenter • Major sections include intracranial region and skull, upper facial and midfacial region, and lower facial and posterolateral neck region Organized by region, each layered dissection elucidates specific nerves and structures with pinpoint accuracy, providing the clinician with in-depth anatomical insights. Precise clinical explanations accompany each photograph. In tandem, the images and text provide an excellent foundation for understanding the nerves and structures impacted by neurosurgical-related pathologies as well as other conditions and injuries.
    [Show full text]
  • Appendix B: Muscles of the Speech Production Mechanism
    Appendix B: Muscles of the Speech Production Mechanism I. MUSCLES OF RESPIRATION A. MUSCLES OF INHALATION (muscles that enlarge the thoracic cavity) 1. Diaphragm Attachments: The diaphragm originates in a number of places: the lower tip of the sternum; the first 3 or 4 lumbar vertebrae and the lower borders and inner surfaces of the cartilages of ribs 7 - 12. All fibers insert into a central tendon (aponeurosis of the diaphragm). Function: Contraction of the diaphragm draws the central tendon down and forward, which enlarges the thoracic cavity vertically. It can also elevate to some extent the lower ribs. The diaphragm separates the thoracic and the abdominal cavities. 2. External Intercostals Attachments: The external intercostals run from the lip on the lower border of each rib inferiorly and medially to the upper border of the rib immediately below. Function: These muscles may have several functions. They serve to strengthen the thoracic wall so that it doesn't bulge between the ribs. They provide a checking action to counteract relaxation pressure. Because of the direction of attachment of their fibers, the external intercostals can raise the thoracic cage for inhalation. 3. Pectoralis Major Attachments: This muscle attaches on the anterior surface of the medial half of the clavicle, the sternum and costal cartilages 1-6 or 7. All fibers come together and insert at the greater tubercle of the humerus. Function: Pectoralis major is primarily an abductor of the arm. It can, however, serve as a supplemental (or compensatory) muscle of inhalation, raising the rib cage and sternum. (In other words, breathing by raising and lowering the arms!) It is mentioned here chiefly because it is encountered in the dissection.
    [Show full text]
  • MBB Lab 5: Anatomy of the Face and Ear
    MBB Lab 5: Anatomy of the Face and Ear PowerPoint Handout Review ”The Basics” and ”The Details” for the following cranial nerves in the Cranial Nerve PowerPoint Handout. • Mandibular division trigeminal (CN V3) • Facial nerve (CN VII) Slide Title Slide Number Slide Title Slide Number Blood Supply to Neck, Face, and Scalp: External Carotid Artery Slide3 Parotid Gland Slide 22 Scalp: Layers Slide4 Scalp and Face: Sensory Innervation Slide 23 Scalp: Blood Supply Slide 5 Scalp and Face: Sensory Innervation (Continued) Slide 24 Regions of the Ear Slide 6 Temporomandibular joint Slide 25 External Ear Slide 7 Temporal and Infratemporal Fossae: Introduction Slide 26 Temporal and Infratemporal Fossae: Muscles of Tympanic Membrane Slide 8 Slide 27 Mastication Tympanic Membrane (Continued) Slide 9 Temporal and Infratemporal Fossae: Muscles of Sensory Innervation: Auricle, EAC, and Tympanic Membrane Slide 10 Slide 28 Mastication (Continued) Middle Ear Cavity Slide 11 Summary of Muscles of Mastication Actions Slide 29 Middle Ear Cavity (Continued) Slide 12 Infratemporal Fossae: Mandibular Nerve Slide 30 Mastoid Antrum Slide 13 Inferior Alveolar Nerve Block Slide 31 Eustachian (Pharyngotympanic or Auditory) Tube Slide 14 Palatine Nerve Block Slide 32 Otitis Media Slide 15 Infratemporal Fossae: Maxillary Artery & Pterygoid Plexus Auditory Ossicles Slide 16 Slide 33 Chorda Tympani Nerve and Middle Ear Slide 17 Infratemporal Fossa: Maxillary Artery Slide 34 Superficial Facial Muscles: Muscles of Facial Expression Slide 18 Infratemporal Fossa: Pterygoid Plexus Slide 35 Superficial Facial Muscles: Muscles of Facial Expression Slide 19 Infratemporal Fossa: Otic Ganglion Slide 36 (Continued) Superficial Facial Muscles: Innervation Slide 20 Infratemporal Fossa: Chorda Tympani Nerve Slide 37 Superficial Facial Muscles: Innervation (Continued) Slide 21 Blood Supply to Neck, Face, and Scalp: External Carotid Artery The common carotid artery branches into the internal and external carotid arteries at the level of the superior edge of the thyroid cartilage.
    [Show full text]