The Structure and Movement of Clarinet Playing D.M.A

Total Page:16

File Type:pdf, Size:1020Kb

The Structure and Movement of Clarinet Playing D.M.A The Structure and Movement of Clarinet Playing D.M.A. DOCUMENT Presented in Partial Fulfilment of the Requirements for the Degree Doctor of Musical Arts in the Graduate School of The Ohio State University By Sheri Lynn Rolf, M.D. Graduate Program in Music The Ohio State University 2018 D.M.A. Document Committee: Dr. Caroline A. Hartig, Chair Dr. David Hedgecoth Professor Katherine Borst Jones Dr. Scott McCoy Copyrighted by Sheri Lynn Rolf, M.D. 2018 Abstract The clarinet is a complex instrument that blends wood, metal, and air to create some of the world’s most beautiful sounds. Its most intricate component, however, is the human who is playing it. While the clarinet has 24 tone holes and 17 or 18 keys, the human body has 205 bones, around 700 muscles, and nearly 45 miles of nerves. A seemingly endless number of exercises and etudes are available to improve technique, but almost no one comments on how to best use the body in order to utilize these studies to maximum effect while preventing injury. The purpose of this study is to elucidate the interactions of the clarinet with the body of the person playing it. Emphasis will be placed upon the musculoskeletal system, recognizing that playing the clarinet is an activity that ultimately involves the entire body. Aspects of the skeletal system as they relate to playing the clarinet will be described, beginning with the axial skeleton. The extremities and their musculoskeletal relationships to the clarinet will then be discussed. The muscles responsible for the fine coordinated movements required for successful performance on the clarinet will be described. With this information in mind, methods of maximizing the use and coordination of the body while playing the instrument will be presented. It will be shown that efficient use of the body not only contributes to ease of playing the clarinet but also minimizes the risk of injury. ii Acknowledgments A mere “Thank You” seems insufficient to express the gratitude I would like to express to those who have participated in my odyssey. My Committee members at The Ohio State University School of Music deserve special recognition. Dr. Caroline Hartig, Dr. David Hedgecoth, Professor Katherine Borst Jones, and Dr. Scott McCoy have all been sources of support and encouragement. Dr. Hartig, as my teacher and advisor, merits special recognition for the role that she has played during my study at OSU. Not only has she guided me to a higher level of clarinetistry, she has also led me through a seemingly endless labyrinth of paperwork, academic requirements, and deadlines. Thank you, Dr. Hartig! A special word of thanks is extended to Professor Dale Beaver for introducing me to the Alexander Technique. This is a program that should be included in every school of music. Thank you, Dale for teaching me the real meanings of balance and poise. To Dr. William H. Saunders and Dr. David E. Schuller who served as my mentors during my residency in Otolaryngology-Head and Neck Surgery at The Ohio State University, thank you for setting such high standards. I am especially thankful for all the patients who have granted me the privilege of participating in their care. Most of all, I want to thank my husband, Bradley J. Finn. As my soul mate, he has been my GPS for this journey. For his love, his encouragement, and his profound understanding of what music and playing the clarinet mean to me, I am eternally grateful. Brad, I love you! iii Vita 1971.............................. Campbell County High School 1975.............................. B.M. Applied Clarinet, University of Louisville 1978.............................. B.S. Biological Sciences, Northern Kentucky State University 1981.............................. M.D. University of Louisville 2014.............................. M.M. Clarinet Performance, University of Montana Publications Kern, J. A., Milbrandt, T. A., Rolf, S., & Tribble, C. G. (1997). Resection of multiple mediastinal paragangliomas with cardiopulmonary bypass. The Annals Of Thoracic Surgery, 64(6), 1824-1826. Rolf, S.L. Confessions of a horse clinic junkie. (1998) American Cowboy, 66-67. Rolf, S.L. The legend of Tack Crawford’s saddle. (2003) Montana Magazine, 177, 85-87. Rolf, S. L., Kratz, R. C., Tanner, G. R., & Crissman, J. (1980). Primary lymphoma of the thyroid and Hashimoto’s thyroiditis. The Journal Of The Kentucky Medical Association, 78(5), 263-266. Rolf, S. L., Reed, S. M., Melnick, W., & Andrews, F. M. (1987). Auditory brain stem response testing in anesthetized horses. American Journal Of Veterinary Research, 48(6), 910-914. Fields of Study Major Field: Music iv Table of Contents Abstract .......................................................................................................................... ii Acknowledgments......................................................................................................... iii Vita ................................................................................................................................ iv Publications ................................................................................................................... iv Fields of Study .............................................................................................................. iv Table of Contents ........................................................................................................... v List of Figures ............................................................................................................. viii Chapter 1: Introduction .................................................................................................. 1 Chapter 2: The Skeletal System ..................................................................................... 5 The Axial Skeleton .................................................................................................... 5 The Spine ................................................................................................................... 6 The Thoracic Spine and Rib Cage ........................................................................... 16 The Lumbar Spine ................................................................................................... 19 The Sacrum and Coccyx .......................................................................................... 22 The Skull .................................................................................................................. 25 The Mandible ........................................................................................................... 30 The Hyoid ................................................................................................................ 32 The Upper Extremities ............................................................................................. 33 The Shoulder Complex ............................................................................................ 34 The Wrist and Hand ................................................................................................. 43 The Pelvis ................................................................................................................ 52 Chapter 3: The Muscular System ................................................................................. 58 Muscle Structure and Function ................................................................................ 58 Muscles of the Embouchure .................................................................................... 61 The Muscles of Mastication ..................................................................................... 65 The Tongue .............................................................................................................. 68 Muscles of the Palate and Pharynx .......................................................................... 71 Suprahyoid and Infrahyoid Muscles ........................................................................ 73 Muscles of the Neck ................................................................................................ 75 v Muscles of the Shoulder .......................................................................................... 79 Muscles of the Elbow .............................................................................................. 81 Muscles of the Wrist and Hand ................................................................................ 84 The Thorax and the Muscles of Respiration ............................................................ 89 Chapter 4: Posture ...................................................................................................... 101 The Alexander Technique ...................................................................................... 114 Feldenkrais Method ............................................................................................... 115 Pilates ..................................................................................................................... 116 Yoga ....................................................................................................................... 116 Rolfing ................................................................................................................... 117 Body Mapping ....................................................................................................... 117 Posture of the Head and Neck ...............................................................................
Recommended publications
  • Copyrighted Material
    C01 10/31/2017 11:23:53 Page 1 1 1 The Normal Anatomy of the Neck David Bainbridge Introduction component’ of the neck is a common site of pathology, and the diverse forms of neck The neck is a common derived characteristic disease reflect the sometimes complex and of land vertebrates, not shared by their aquatic conflicting regional variations and functional ancestors. In fish, the thoracic fin girdle, the constraints so evident in this region [2]. precursor of the scapula, coracoid and clavi- Unlike the abdomen and thorax, there is no cle, is frequently fused to the caudal aspect of coelomic cavity in the neck, yet its ventral part the skull. In contrast, as vertebrates emerged is taken up by a relatively small ‘visceral on to the dry land, the forelimb separated from compartment’, containing the larynx, trachea, the head and the intervening vertebrae speci- oesophagus and many important vessels, alised to form a relatively mobile region – the nerves and endocrine glands. However, I neck – to allow the head to be freely steered in will not review these structures, as they do many directions. not represent an extension of the equine ‘back’ With the exception of the tail, the neck in the same way that the more dorsal locomo- remains the most mobile region of the spinal tor region does. column in modern-day horses. It permits a wide range of sagittal plane flexion and exten- sion to allow alternating periods of grazing Cervical Vertebrae 3–7 and predator surveillance, as well as frontal plane flexion to allow the horizon to be scan- Almost all mammals, including the horse, ned, and rotational movement to allow possess seven cervical vertebrae, C1 to C7 nuisance insects to be flicked off.
    [Show full text]
  • Basic Biomechanics
    Posture analysis • A quick evaluation of structure and function • Doctor views patient from behind (P-A) and from the side (lateral) • References points of patient’s anatomy relative to plumb (a position of balance) 9/3/2013 1 Posture analysis • Lateral View – Knees (anterior, posterior, plumb, genu recurvatum) – Trochanter (anterior, posterior, plumb) – Pelvis (anterior, posterior, neutral pelvic tilt) – Lumbar lordosis (hypo-, hyper-, normal) – Mid-axillary line (anterior, posterior, plumb) – Thoracic kyphosis (hyp-, hyper- normal) – Acromion (anterior, posterior, plumb) – Scapulae (protracted, retracted, normal) – Cervical lordosis (hypo-, hyper-, normal) – External auditory meatus (anterior, posterior, plumb) – Occiput (extended, neutral, flexed) 9/3/2013 2 Posture analysis • Posterior – Anterior View – Feet (pronation, supination, normal) – Achilles tendon (bowed in/out, normal) – Knees (genu valga/vera, normal - internal/external rotation) – Popliteal crease heights (low, high, level) – Trochanter heights (low, high, level) – Iliac crest heights (low on the right/left, normal) – Lumbar scoliosis (right/left, or no signs of) – Thoracic scoliosis (right/left, or no signs of) – Shoulder level (low on the right/left, or normal) – Cervical scoliosis (right/left, or no signs of) – Cervical position (rotation, tilt, neutral) – Mastoid (low on the right/left, or normal) 9/3/2013 3 …..poor postures 9/3/2013 4 Functional Anatomy of the Spine • The vertebral curvatures – Cervical Curve • Anterior convex curve (lordosis) develop in infancy
    [Show full text]
  • Applied Anatomy of the Hip RICARDO A
    Applied Anatomy of the Hip RICARDO A. FERNANDEZ, MHS, PT, OCS, CSCS • Northwestern University The hip joint is more than just a ball-and- bones fuse in adults to form the easily recog- socket joint. It supports the weight of the nized “hip” bone. The pelvis, meaning bowl head, arms, and trunk, and it is the primary in Latin, is composed of three structures: the joint that distributes the forces between the innominates, the sacrum, and the coccyx pelvis and lower extremities.1 This joint is (Figure 1). formed from the articu- The ilium has a large flare, or iliac crest, Key PointsPoints lation of the proximal superiorly, with the easily palpable anterior femur with the innomi- superior iliac spine (ASIS) anterior with the The hip joint is structurally composed of nate at the acetabulum. anterior inferior iliac spine (AIIS) just inferior strong ligamentous and capsular compo- The joint is considered to it. Posteriorly, the crest of the ilium ends nents. important because it to form the posterior superior iliac spine can affect the spine and (PSIS). With respect to surface anatomy, Postural alignment of the bones and joints pelvis proximally and the PSIS is often marked as a dimple in the of the hip plays a role in determining the femur and patella skin. Clinicians attempting to identify pelvic functional gait patterns and forces associ- distally. The biomechan- or hip subluxations, leg-length discrepancies, ated with various supporting structures. ics of this joint are often or postural faults during examinations use There is a relationship between the hip misunderstood, and the these landmarks.
    [Show full text]
  • Leonard Bernstein's MASS
    27 Season 2014-2015 Thursday, April 30, at 8:00 Friday, May 1, at 8:00 The Philadelphia Orchestra Saturday, May 2, at 8:00 Sunday, May 3, at 2:00 Leonard Bernstein’s MASS: A Theatre Piece for Singers, Players, and Dancers* Conducted by Yannick Nézet-Séguin Texts from the liturgy of the Roman Mass Additional texts by Stephen Schwartz and Leonard Bernstein For a list of performing and creative artists please turn to page 30. *First complete Philadelphia Orchestra performances This program runs approximately 1 hour, 50 minutes, and will be performed without an intermission. These performances are made possible in part by the generous support of the William Penn Foundation and the Andrew W. Mellon Foundation. Additional support has been provided by the Presser Foundation. 28 I. Devotions before Mass 1. Antiphon: Kyrie eleison 2. Hymn and Psalm: “A Simple Song” 3. Responsory: Alleluia II. First Introit (Rondo) 1. Prefatory Prayers 2. Thrice-Triple Canon: Dominus vobiscum III. Second Introit 1. In nomine Patris 2. Prayer for the Congregation (Chorale: “Almighty Father”) 3. Epiphany IV. Confession 1. Confiteor 2. Trope: “I Don’t Know” 3. Trope: “Easy” V. Meditation No. 1 VI. Gloria 1. Gloria tibi 2. Gloria in excelsis 3. Trope: “Half of the People” 4. Trope: “Thank You” VII. Mediation No. 2 VIII. Epistle: “The Word of the Lord” IX. Gospel-Sermon: “God Said” X. Credo 1. Credo in unum Deum 2. Trope: “Non Credo” 3. Trope: “Hurry” 4. Trope: “World without End” 5. Trope: “I Believe in God” XI. Meditation No. 3 (De profundis, part 1) XII.
    [Show full text]
  • Head & Neck Surgery Course
    Head & Neck Surgery Course Parapharyngeal space: surgical anatomy Dr Pierfrancesco PELLICCIA Pr Benjamin LALLEMANT Service ORL et CMF CHU de Nîmes CH de Arles Introduction • Potential deep neck space • Shaped as an inverted pyramid • Base of the pyramid: skull base • Apex of the pyramid: greater cornu of the hyoid bone Introduction • 2 compartments – Prestyloid – Poststyloid Anatomy: boundaries • Superior: small portion of temporal bone • Inferior: junction of the posterior belly of the digastric and the hyoid bone Anatomy: boundaries Anatomy: boundaries • Posterior: deep fascia and paravertebral muscle • Anterior: pterygomandibular raphe and medial pterygoid muscle fascia Anatomy: boundaries • Medial: pharynx (pharyngobasilar fascia, pharyngeal wall, buccopharyngeal fascia) • Lateral: superficial layer of deep fascia • Medial pterygoid muscle fascia • Mandibular ramus • Retromandibular portion of the deep lobe of the parotid gland • Posterior belly of digastric muscle • 2 ligaments – Sphenomandibular ligament – Stylomandibular ligament Aponeurosis and ligaments Aponeurosis and ligaments • Stylopharyngeal aponeurosis: separates parapharyngeal spaces to two compartments: – Prestyloid – Poststyloid • Cloison sagittale: separates parapharyngeal and retropharyngeal space Aponeurosis and ligaments Stylopharyngeal aponeurosis Muscles stylohyoidien Stylopharyngeal , And styloglossus muscles Prestyloid compartment Contents: – Retromandibular portion of the deep lobe of the parotid gland – Minor or ectopic salivary gland – CN V branch to tensor
    [Show full text]
  • Isolated Trapezoid Fractures a Case Report with Compilation of the Literature
    Bulletin of the NYU Hospital for Joint Diseases 2008;66(1):57-60 57 Isolated Trapezoid Fractures A Case Report with Compilation of the Literature Konrad I. Gruson, M.D., Kevin M. Kaplan, M.D., and Nader Paksima, D.O., M.P.H. Abstract as an axial load5,6 or bending stress7 transmitted indirectly Isolated fractures of the trapezoid bone have been rarely to the trapezoid through the second metacarpal. We present reported in the literature, the mechanism of injury being a case of an acute, isolated trapezoid fracture that resulted an axial or bending load transmitted through the second from direct trauma to the distal carpus and that was treated metacarpal. We report a case of an isolated, nondisplaced nonoperatively. Additionally, strategies for diagnosis and trapezoid fracture that was sustained by direct trauma treatment, as well as a synthesis of the published results and subsequently treated successfully in a short-arm cast. for both isolated and concomitant trapezoid fractures, are Diagnostic and treatment strategies for isolated fractures presented. of the trapezoid bone are reviewed as well as the results of operative and nonoperative treatment. Case Report A 25-year-old right-hand dominant male presented to the ractures of the carpus most commonly involve the emergency room (ER) complaining of isolated right-wrist scaphoid,1 with typical physical examination findings pain and swelling of 1 day’s duration. The patient stated Fof “snuffbox” tenderness. This presentation is fre- that a heavy metal door at work had closed onto the back quently the result of the patient falling onto an outstretched of his wrist causing an immediate onset of swelling and hand.
    [Show full text]
  • Instruments of the Orchestra
    INSTRUMENTS OF THE ORCHESTRA String Family WHAT: Wooden, hollow-bodied instruments strung with metal strings across a bridge. WHERE: Find this family in the front of the orchestra and along the right side. HOW: Sound is produced by a vibrating string that is bowed with a bow made of horse tail hair. The air then resonates in the hollow body. Other playing techniques include pizzicato (plucking the strings), col legno (playing with the wooden part of the bow), and double-stopping (bowing two strings at once). WHY: Composers use these instruments for their singing quality and depth of sound. HOW MANY: There are four sizes of stringed instruments: violin, viola, cello and bass. A total of forty-four are used in full orchestras. The string family is the largest family in the orchestra, accounting for over half of the total number of musicians on stage. The string instruments all have carved, hollow, wooden bodies with four strings running from top to bottom. The instruments have basically the same shape but vary in size, from the smaller VIOLINS and VIOLAS, which are played by being held firmly under the chin and either bowed or plucked, to the larger CELLOS and BASSES, which stand on the floor, supported by a long rod called an end pin. The cello is always played in a seated position, while the bass is so large that a musician must stand or sit on a very high stool in order to play it. These stringed instruments developed from an older instrument called the viol, which had six strings.
    [Show full text]
  • Upper Limb Fractures in Rugby in Huddersfield 1986- 1 990
    Br J Sp Med 1991; 25(3) From the Clinic Br J Sports Med: first published as 10.1136/bjsm.25.3.139 on 1 September 1991. Downloaded from Upper limb fractures in rugby in Huddersfield 1986- 1 990 K.S. Eyres FRCS', A. Abdel-Salam FRCS2 and J. Cleary FRCS3 Research Registrar, Department of Human Metabolism and Clinical Biochemistry, University of Sheffield, Sheffield, UK 2 Orthopaedic Registrar, Huddersfield Royal Infirmary, Huddersfield, UK 3 Orthopaedic Consultant, Huddersfield Royal Infirmary, Huddersfield, UK Most injuries sustained by rugby players affect the soft Case 1 tissues, and fracture is relatively uncommon. Whereas the lower limb is most affected in footballers, the upper limb A 24-year-old full-back fractured his left clavicle in a tends to be injured in rugby players. Thirty consecutive scrummage in 1988 (Figure 1). Six months later, he fractures and ten dislocations affecting the upper limb, sustained a direct blow to the left shoulder. Radio- sustained by 35 rugby players, are reported. graphs showed a fracture to the greater tuberosity of the left humerus (Figure 2). He was treated with a Keywords: Rugby injury, hamate fracture, sports injury collar and cuff and was able to return to matchplay after 2 months. Nine months later he fell onto his left hand after a tackle. Radiographs showed a sagittal Most injuries sustained in rugby matches are to the fracture of the body of the hamate and a fracture of soft tissues. Fractures are relatively uncommon, the base of the fourth metacarpal (Figure 3). He was estimated to account for only 4% of injuries in adult treated conservatively with plaster immobilization, matches and for 5% of injuries in school matches'.
    [Show full text]
  • Osteoid Osteoma of the Trapezoid Bone
    '-DIDUL)1DMG0D]KDU Case Report Osteoid Osteoma of the Trapezoid Bone Dawood Jafari MD1)DULG1DMG0D]KDU0'1 Abstract Osteoid osteoma is a benign, bone-forming tumor that rarely involves the carpal bones. We report a case of osteoid osteoma of the trap- H]RLGFDUSDOERQHZLWKH[WHQVLRQWRWKHDGMDFHQWVHFRQGPHWDFDUSDOERQH&KURQLFZULVWSDLQDQGORFDOWHQGHUQHVVZHUHWKHPDMRUFOLQLFDO signs and symptoms. In chronic wrist pain osteoid osteoma and the possibility of extension to the adjacent bones should be considered. Keywords: &DUSDOERQHPHWDFDUSDORVWHRLGRVWHRPDWUDSH]RLG Cite the article as: Jafari D, Najd Mazhar F. Osteoid Osteoma of the Trapezoid Bone. Arch Iran Med. 2012; 15(12): 777 – 779. Introduction RSV\WKURXJKDGRUVDODSSURDFK:HXVHGDVPDOOGULOOELWDQG¿QH osteotome to remove the involved area, which included the adjacent steoid osteoma is a benign bone tumor that rarely localizes articular surface of the trapezoid. The biopsy specimen had a highly to the carpal bones.1,2 Wrist pain usually is the main com- vascular reddish nidus embedded in normal bone (Figure 5). We no- O plaint and because it rarely involves the carpal bone, diag- ticed that the articular surface of the second metacarpal was eroded nosis is often delayed. It has been reported in the scaphoid and lu- and softened (Figure 6). Following curettage, we sent the specimen nate areas; however, the trapezoid is an exceedingly rare location from the base of the second metacarpal in a separate container for for osteoid osteoma. Bifocal involvement of adjacent carpal bones pathologic analysis. The results of the histologic examinations of has been reported previously but to the best of our knowledge ex- both biopsy specimens indicated osteoid osteoma (Figure 7). Since tension of osteoid osteoma through the joint to adjacent bone has we had only one nidus at the CT scan and involvement of both trap- not been mentioned in the literature.
    [Show full text]
  • Radiohamate Impingement After Proximal Row Carpectomy ‘Radiohamate Impingement PRC’
    Acta Orthop. Belg., 2020, 86 e-supplement 1, 19-21 CASE REPORT Radiohamate impingement after proximal row carpectomy ‘Radiohamate impingement PRC’ Pieter Caekebeke, Luc De Smet From the Department of Orthopaedics UZ Leuven, Pellenberg, Belgium Radiocarpal impingement after PRC is a well-known from 0% to 18% (5). Radiocarpal and pisiform complication due to impingement of the radial styloid impingement have been described after PRC. The against the radial carpal bones. A less common first is probably due to the proximalization of the impingement syndrome is that of the pisiforme. distal row with impingement of the trapezium/ We describe a radiohamate impingement and its trapezoid against the radial styloid process. The diagnosis and treatment. Based on a case we saw treatment is a radial styloid process resection for at our practice. Diagnosis is bases on standard radiographs and SPECT-CT. The treatment is the first and a pisiformectomy for the latter (3,5). No initially conservative. Surgery is necessary when other impingement syndromes have been described. conservative treatment fails and consists of resectie We present a case of radiohamate impingement of the proximal pole of the hamate. syndrome after proximal row carpectomy. Keywords: Radiohamate ; impingement ; proximal row CASE REPORT carpectomy. A 53-year-old mechanic contacted us 1 year after a work-accident with localized radiocarpal INTRODUCTION pain and swelling. Radiographs showed a stage Proximal row carpectomy (PRC) is a well- two SLAC wrist. (Fig. 1) A PRC with synovectomy established motion-preserving salvage procedure was performed. The following 3 years were for degenerative disorders of the proximal carpal uneventful with no to minimal pain complaints.
    [Show full text]
  • Clarinet Quarter-Tone Fingering Chart
    Clarinet Quarter-Tone Fingering Chart 1st Edition rev.1 2017 Jason Alder www.jasonalder.com ii Author’s Note This clarinet quarter-tone fingering chart developed as a continuation of my initial work of one for bass clarinet, which grew from my extensive playing of contemporary music and study of South-Indian Karnatic music. My focus had been primarily on bass clarinet, so the development of this chart for soprano clarinet didn’t come to realization until some years later as my own need for it arose, occurring simultaneously with a decision to rework the initial bass clarinet chart into a second edition. The first edition for clarinet therefore follows the same conventions as the second edition bass clarinet fingering chart. This first revision revisits a few quarter-tone fingerings around the “break” after I discovered some better ones to use. Jason Alder London, 2017 iii Guide to the Fingering Chart This fingering chart was made using a Buffet R13 clarinet, and thus the fingerings notated are based on the Boehm system. Because some differences may exist between different manufacturers, it is important to note how this system correlates to your own instrument. In some fingerings I have used the Left Hand Ab//Eb key, which not all instruments have. I’ve included this only when its use is an option, but have omitted the outline when it’s not. Many notes, particularly quarter-tones and altissimo notes, can have different fingerings. I have notated what I found to be best in tune for me, with less regard for ease and fluidity of playing.
    [Show full text]
  • Preliminary Results Clarinet, Flute, Horn, Soprano Singer, Trumpet
    Performing Arts Aerosol Study Round one preliminary results Clarinet, Flute, Horn, Soprano Singer, Trumpet Study Chairs James Weaver - NFHS Director of Mark Spede – CBDNA President, Performing Arts and Sports Director of Bands, Clemson University Lead Funders Contributing Organizations Supporting Organizations American School Band Directors Association (ASBDA) International Music Council American String Teachers Association (ASTA) International Society for Music Education Arts Education in Maryland Schools (AEMS) League of American Orchestras Association Européenne des Conservatoires/Académies de Louisiana Music Educators Association Musique et Musikhochschulen (AEC) (LMEA) Buffet et Crampon MidWest Clinic Bundesverband der deutschen Minority Band Directors National Association Musikinstrumentenhersteller e.V Music Industries Association Chicago Children's Choir Musical America Worldwide Children's Chorus of Washington National Dance Education Organization Chorus America (NDEO) Confederation of European Music Industries (CAFIM) National Flute Association (NFA) Drum Corps International (DCI) National Guild for Community Arts Education Educational Theatre Association (EdTA) National Music Council of the US European Choral Association - Europa Cantat Percussive Arts Society (PAS) HBCU National Band Directors' Consortium Save the Music Foundation High School Directors National Association (HSBDNA) WGI Sport of the Arts International Conductors Guild Lead Researchers Dr. Shelly Miller Dr. Jelena Srebric University of Colorado Boulder University
    [Show full text]