Osteoblastoma of the Trapezoid Bone and Triquetral Bone: Report of Two Cases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Isolated Trapezoid Fractures a Case Report with Compilation of the Literature
Bulletin of the NYU Hospital for Joint Diseases 2008;66(1):57-60 57 Isolated Trapezoid Fractures A Case Report with Compilation of the Literature Konrad I. Gruson, M.D., Kevin M. Kaplan, M.D., and Nader Paksima, D.O., M.P.H. Abstract as an axial load5,6 or bending stress7 transmitted indirectly Isolated fractures of the trapezoid bone have been rarely to the trapezoid through the second metacarpal. We present reported in the literature, the mechanism of injury being a case of an acute, isolated trapezoid fracture that resulted an axial or bending load transmitted through the second from direct trauma to the distal carpus and that was treated metacarpal. We report a case of an isolated, nondisplaced nonoperatively. Additionally, strategies for diagnosis and trapezoid fracture that was sustained by direct trauma treatment, as well as a synthesis of the published results and subsequently treated successfully in a short-arm cast. for both isolated and concomitant trapezoid fractures, are Diagnostic and treatment strategies for isolated fractures presented. of the trapezoid bone are reviewed as well as the results of operative and nonoperative treatment. Case Report A 25-year-old right-hand dominant male presented to the ractures of the carpus most commonly involve the emergency room (ER) complaining of isolated right-wrist scaphoid,1 with typical physical examination findings pain and swelling of 1 day’s duration. The patient stated Fof “snuffbox” tenderness. This presentation is fre- that a heavy metal door at work had closed onto the back quently the result of the patient falling onto an outstretched of his wrist causing an immediate onset of swelling and hand. -
Osteoid Osteoma of the Trapezoid Bone
'-DIDUL)1DMG0D]KDU Case Report Osteoid Osteoma of the Trapezoid Bone Dawood Jafari MD1)DULG1DMG0D]KDU0'1 Abstract Osteoid osteoma is a benign, bone-forming tumor that rarely involves the carpal bones. We report a case of osteoid osteoma of the trap- H]RLGFDUSDOERQHZLWKH[WHQVLRQWRWKHDGMDFHQWVHFRQGPHWDFDUSDOERQH&KURQLFZULVWSDLQDQGORFDOWHQGHUQHVVZHUHWKHPDMRUFOLQLFDO signs and symptoms. In chronic wrist pain osteoid osteoma and the possibility of extension to the adjacent bones should be considered. Keywords: &DUSDOERQHPHWDFDUSDORVWHRLGRVWHRPDWUDSH]RLG Cite the article as: Jafari D, Najd Mazhar F. Osteoid Osteoma of the Trapezoid Bone. Arch Iran Med. 2012; 15(12): 777 – 779. Introduction RSV\WKURXJKDGRUVDODSSURDFK:HXVHGDVPDOOGULOOELWDQG¿QH osteotome to remove the involved area, which included the adjacent steoid osteoma is a benign bone tumor that rarely localizes articular surface of the trapezoid. The biopsy specimen had a highly to the carpal bones.1,2 Wrist pain usually is the main com- vascular reddish nidus embedded in normal bone (Figure 5). We no- O plaint and because it rarely involves the carpal bone, diag- ticed that the articular surface of the second metacarpal was eroded nosis is often delayed. It has been reported in the scaphoid and lu- and softened (Figure 6). Following curettage, we sent the specimen nate areas; however, the trapezoid is an exceedingly rare location from the base of the second metacarpal in a separate container for for osteoid osteoma. Bifocal involvement of adjacent carpal bones pathologic analysis. The results of the histologic examinations of has been reported previously but to the best of our knowledge ex- both biopsy specimens indicated osteoid osteoma (Figure 7). Since tension of osteoid osteoma through the joint to adjacent bone has we had only one nidus at the CT scan and involvement of both trap- not been mentioned in the literature. -
A Rare Combination of Two Uncommon Fractures of the Carpal Bones
12 Maart 1960 S.A. TYDSKRIF VIR GE 'EESKUNDE 221 whether a low tracheotomy would have produced better 5. There must be no evidence of any pulmonary com figures. I performed a low tracheotomy on the first bulbo plication indicating broncbial obstruction and atelectasis. spinal case to be treated by Lassen's method in the 1956 The difficulty in detubation which ometimes arises in Cape Town polio epidemic and I must confess the tendency infants \ ho have had a tracheotomy for any length of time of the tube to' slip down the right bronchus required constant is a familiar problem. In the first in tance a laryngo opyand watching. The right-angled tube designed by Crampton bronchoscopy hould be carried out to a certain whether Smith eliminates this hazard, however, and with it I think there is any tenosis or whether granulations are present in this objection to a below-isthmus tracheotomy falls away. the trachea. When such granulations have been encountered If tracheotomy is being performed with a view to inter they have, in my experience, in ariably been found to be mittent-positive-pressure respiration it is necessary to excise a prolapsing into the trachea from the margins of the toma window from the anterior tracheal wall. This should be oval and not arising within the trachea itself. I have found that the in shape with its greatest diameter in the axis of the trachea. most effective way of dealing with these is to remove them If the tracheotomy is for an obstructive lesion or for tracheo under endotracheal anaesthesia with aHartman's granulation-. -
Carpal Fractures
CURRENT CONCEPTS Carpal Fractures Nina Suh, MD, Eugene T. Ek, MBBS, PhD, Scott W. Wolfe, MD CME INFORMATION AND DISCLOSURES The Review Section of JHS will contain at least 3 clinically relevant articles selected by the Provider Information can be found at http://www.assh.org/Pages/ContactUs.aspx. editor to be offered for CME in each issue. For CME credit, the participant must read the Technical Requirements for the Online Examination can be found at http://jhandsurg. articles in print or online and correctly answer all related questions through an online org/cme/home. examination. The questions on the test are designed to make the reader think and will occasionally require the reader to go back and scrutinize the article for details. Privacy Policy can be found at http://www.assh.org/pages/ASSHPrivacyPolicy.aspx. The JHS CME Activity fee of $30.00 includes the exam questions/answers only and does not ASSH Disclosure Policy: As a provider accredited by the ACCME, the ASSH must ensure fi include access to the JHS articles referenced. balance, independence, objectivity, and scienti c rigor in all its activities. Disclosures for this Article Statement of Need: This CME activity was developed by the JHS review section editors and review article authors as a convenient education tool to help increase or affirm Editors reader’s knowledge. The overall goal of the activity is for participants to evaluate the Ghazi M. Rayan, MD, has no relevant conflicts of interest to disclose. appropriateness of clinical data and apply it to their practice and the provision of patient Authors care. -
The Structure and Movement of Clarinet Playing D.M.A
The Structure and Movement of Clarinet Playing D.M.A. DOCUMENT Presented in Partial Fulfilment of the Requirements for the Degree Doctor of Musical Arts in the Graduate School of The Ohio State University By Sheri Lynn Rolf, M.D. Graduate Program in Music The Ohio State University 2018 D.M.A. Document Committee: Dr. Caroline A. Hartig, Chair Dr. David Hedgecoth Professor Katherine Borst Jones Dr. Scott McCoy Copyrighted by Sheri Lynn Rolf, M.D. 2018 Abstract The clarinet is a complex instrument that blends wood, metal, and air to create some of the world’s most beautiful sounds. Its most intricate component, however, is the human who is playing it. While the clarinet has 24 tone holes and 17 or 18 keys, the human body has 205 bones, around 700 muscles, and nearly 45 miles of nerves. A seemingly endless number of exercises and etudes are available to improve technique, but almost no one comments on how to best use the body in order to utilize these studies to maximum effect while preventing injury. The purpose of this study is to elucidate the interactions of the clarinet with the body of the person playing it. Emphasis will be placed upon the musculoskeletal system, recognizing that playing the clarinet is an activity that ultimately involves the entire body. Aspects of the skeletal system as they relate to playing the clarinet will be described, beginning with the axial skeleton. The extremities and their musculoskeletal relationships to the clarinet will then be discussed. The muscles responsible for the fine coordinated movements required for successful performance on the clarinet will be described. -
Capitate-Trapezoid Synostosis: Analysis of an Early Bronze Age Case and Review of the Literature P
Folia Morphol. Vol. 76, No. 2, pp. 149–156 DOI: 10.5603/FM.a2016.0068 R E V I E W A R T I C L E Copyright © 2017 Via Medica ISSN 0015–5659 www.fm.viamedica.pl Capitate-trapezoid synostosis: analysis of an Early Bronze Age case and review of the literature P. Saccheri1, G. Sabbadini2, E. Crivellato1, A. Canci3, F. Toso4, L. Travan1 1Department of Experimental and Clinical Medicine, Section of Anatomy, University of Udine, Italy 2Department of Medical, Surgical and Health Sciences, University of Trieste, Italy 3Department of History and Preservation of the Cultural Heritage, University of Udine, Italy 4Department of Diagnostic Imaging, University Hospital of Udine, Italy [Received: 22 July 2016; Accepted: 2 September 2016] Background: Carpal synostoses are congenital defects characterised by com- plete or incomplete coalition of two or more carpal bones. Although most of these defects are discovered only incidentally, sometimes they become clinically manifest. Among the different types of carpal coalition, the synostosis between capitate and trapezoid bones is quite rare, with only sparse data available in the literature. The aim of this report was to describe a case of capitate-trapezoid synostosis (CTS) observed in an ancient human skeleton, as well as to scrutinise the pertinent literature in order to assess for the characteristics of this type of defect, including its potential relevance to clinical practice. Materials and methods: We studied the skeletal remains of an Early Bronze Age male warrior affected by incomplete CTS. Macroscopic and radiological examina- tion of the defect was carried out. We also performed a comprehensive PubMed search in the Medline and other specialty literature databases to retrieve and analyse data relevant to the subject under consideration. -
The Appendicular Skeleton the Appendicular Skeleton
The Appendicular Skeleton Figure 8–1 The Appendicular Skeleton • Allows us to move and manipulate objects • Includes all bones besides axial skeleton: – the limbs – the supportive girdles 1 The Pectoral Girdle Figure 8–2a The Pectoral Girdle • Also called the shoulder girdle • Connects the arms to the body • Positions the shoulders • Provides a base for arm movement 2 The Clavicles Figure 8–2b, c The Clavicles • Also called collarbones • Long, S-shaped bones • Originate at the manubrium (sternal end) • Articulate with the scapulae (acromial end) The Scapulae Also called shoulder blades Broad, flat triangles Articulate with arm and collarbone 3 The Scapula • Anterior surface: the subscapular fossa Body has 3 sides: – superior border – medial border (vertebral border) – lateral border (axillary border) Figure 8–3a Structures of the Scapula Figure 8–3b 4 Processes of the Glenoid Cavity • Coracoid process: – anterior, smaller •Acromion: – posterior, larger – articulates with clavicle – at the acromioclavicular joint Structures of the Scapula • Posterior surface Figure 8–3c 5 Posterior Features of the Scapula • Scapular spine: – ridge across posterior surface of body • Separates 2 regions: – supraspinous fossa – infraspinous fossa The Humerus Figure 8–4 6 Humerus • Separated by the intertubercular groove: – greater tubercle: • lateral • forms tip of shoulder – lesser tubercle: • anterior, medial •Head: – rounded, articulating surface – contained within joint capsule • Anatomical neck: – margin of joint capsule • Surgical neck: – the narrow -
Carpal Boss in Chronic Wrist Pain and Its Association with Partial Osseous
MUSCULOSKELETAL RADIOLOGY Carpal boss in chronic wrist pain and its association with partial osseous coalition and osteoarthritis ‑ A case report with focus on MRI findings Feng Poh Department of Diagnostic Radiology, Singapore General Hospital, Singapore Address for correspondence: Dr. Feng Poh, Department of Diagnostic Radiology, Singapore General Hospital, Outram Road ‑ 168 751, Singapore. E‑mail: [email protected] ABSTRACT The carpal boss is a bony prominence at the dorsal aspect of the 2nd and/or 3rd carpometacarpal joint, which has been linked to various etiologies, including trauma, os styloideum, osteophyte formation, and partial osseous coalition. It may result in symptoms through secondary degeneration, ganglion formation, bursitis, or extensor tendon abnormalities by altered biomechanics of wrist motion. We present a case of symptomatic carpal boss with the finding of a partial osseous coalition at the 2nd carpometacarpal (metacarpal– trapezoid) joint and highlight the magnetic resonance imaging (MRI) findings of carpal boss impingement and secondary osteoarthritis. To the best of our knowledge, there is no report in the literature describing the imaging findings of partial osseous coalition and degenerative osteoarthritis in relation to carpal boss. Key words: Carpal boss; carpal coalition; chronic wrist pain; os styloideum; osteoarthritis Introduction A persistent os styloideum is the widely accepted theory behind the carpal boss and has been described as the ninth Carpal boss, also known as “carpe bossu,” is a bony carpal bone.[4,5] It represents an un‑united ossicle over prominence at the dorsal aspect of the 2nd and/or the dorsal aspect of the wrist at the base of the 2nd and 3rd carpometacarpal joint and was first described by Fiolle.[1] 3rd metacarpals. -
Fractures of the Carpal Bones Excluding the Scaphoid
FRACTURES OF THE CARPAL BONES EXCLUDING THE SCAPHOID BY MUNIR A. SHAH, MD, AND STEVEN F. VIEGAS, MD Carpal fractures excluding the scaphoid can cause morbidity that is dispropor- tionate to their incidence because they are easily overlooked and are often harbingers of a wider wrist injury. Failure to recognize a more global injury pattern can result in undertreatment and permanent wrist dysfunction. Diagnosis requires a high index of suspicion,familiarity with carpal topography to guide the physical examination,and judicious use of specialized radiographic views and ancillary imaging techniques. Copyright © 2002 by the American Society for Surgery of the Hand racture of the carpal bones, excluding the topography to guide the physical examination and scaphoid, account for approximately 40% of judicious use of specialized radiographic views and Fall carpal fractures.1 Paradigms for evaluation ancillary imaging techniques based on clinical sus- and treatment of the fractured scaphoid are well picion. Second, such fractures are often harbingers delineated in the literature. The less common frac- of significant ligamentous disruption or associated tures of other carpal bones have received consider- carpal fractures. Failure to recognize a more global ably less attention. However, these injuries can injury pattern can result in undertreatment and produce morbidity that is disproportionate to their permanent wrist dysfunction. incidence for several reasons. First, carpal fractures We examine the incidence, mechanisms of injury, excluding the scaphoid may have a subtle clinical associated osseous and ligamentous injuries, physical and radiographic presentation and are easily over- examination findings, useful radiographic views, and looked. Diagnosis requires familiarity with carpal ancillary imaging techniques and management prin- ciples of these often overlooked carpal fractures. -
Clinical Orthopedics Advanced Research Journal Case Report Teodonno F, Et Al
1 VolumeVolume 2019; 2018; Issue Issue 01 Clinical Orthopedics Advanced Research Journal Case Report Teodonno F, et al. Clin Ortho Adv Res J: COARJ-100003. Trans-Scaphoid Perilunate Dislocation with Fractured Triquetral Bone in A Pediatric Patient: A 10-Month Follow Up of a Case Report Teodonno F*, Macera A, Crespo Lastras P, Cervero Suárez FJ, Suárez Rueda C and Márquez Ámbite J Department of Orthopedic Surgery and Traumatology, Infanta Elena Hospital, Valdemoro, Madrid, Spain *Corresponding author: Francesca Teodonno, Department of Orthopedic Surgery and Traumatology, Infanta Elena Hospital, Valde- moro, Madrid, Spain, Tel: +34918948410; Email: [email protected] Citation: Francesca Teodonno, et al. (2019) Trans-Scaphoid Perilunate Dislocation with Fractured Triquetral Bone in A Pediatric Pa- tient: A 10-Month Follow Up of a Case Report. Clin Ortho Adv Res J: COARJ-100003. Received date: 28 October, 2019; Accepted date: 04 November, 2019; Published date: 15 November, 2019 Abstract Transcarpal fractures and dislocations in pediatric patients are seldomly reported in literature. Trans-scaphoid dislocations rep- resent only the 1,4% of all scaphoid fractures in the pediatric population.We present the case of 12-year-old boy that, after a fall on the outstretched hand from a motorbike, sustains a trans-scaphoid perilunate dislocation with non displaced fractures of the scaphoid and triquetrum bones, and was treated conservativelythrough closed reduction for the dislocation and immobilization with a closed cast. At final follow up of 10 months, the fractures healed well with a full return of good wrist function. This unusual injury is described so that it may be better acknowledged in the future. -
Comprehensive Anatomy and Physiology for ICD-10-CM and ICD-10-PCS Coding Contents
2016 Optum Learning: Comprehensive Anatomy and Physiology for ICD-10-CM and ICD-10-PCS Coding Contents Introduction ................................................................................................................1 Welcome to Comprehensive Anatomy and Physiology for ICD-10-CM and ICD-10-PCS Coding .....................................................................1 Summary ....................................................................................................11 Chapter 1. Introduction to the Human Body ........................................................13 Anatomy Overview .....................................................................................13 Figure 1.1: Tissue ...................................................................................14 Figure 1.2: Anatomical Position .............................................................17 Figure 1.3: Body Planes ..........................................................................19 Figure 1.4: Motion .................................................................................20 Summary ....................................................................................................21 Knowledge Assessment Questions ..............................................................22 Chapter 2. ICD-10-CM: Integumentary System ....................................................25 Anatomic Overview ....................................................................................25 Figure 2.1: Skin .....................................................................................25 -
A Rare Tumor of the Trapezoid Bone in a Patient with Chronic Wrist Pain
J Orthop Spine Trauma. 2018 December; 4(4): 77-9. DOI: http://dx.doi.org/10.18502/jost.v4i4.3101 Case Report A Rare Tumor of the Trapezoid Bone in a Patient with Chronic Wrist Pain Mohammad Nejadhosseinian 1,*, Amir Reza Farhoud2, Mohammad Javad Dehghani Firoozabadi1, Seyed Mohammad Javad Mortazavi3 1 Resident, Department of Orthopedic Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran 2 Assistant Professor, Department of Orthopedic Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran 3 Professor, Department of Orthopedic Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran *Corresponding author: Mohammad Nejadhosseinian; Department of Orthopedic Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran. Tel: +98-9122055011, Email: [email protected] Received: 02 June 2018; Revised: 27 July 2018; Accepted: 15 September 2018 Abstract Background: Osteoid osteoma (OO) is a benign tumor that rarely occurs in carpal bones. Occurrence of OO in trapezoid is extremely rare. We present a patient with OO of the trapezoid as 7th reported case around the world. Case Presentation: A 25-year-old man was referred to our clinic with a 12-month history of pain of his left wrist. He mentioned that he had wrist pain during manual activity and the pain was increasing over time. He did not have history of trauma. He was treated with nonsteroidal anti-inflammatory drugs (NSAIDs) before being referred to our clinic; however, it did not work. Examination showed tenderness over the dorsoradial side of the left wrist. Conventional radiographs of the wrist were normal.