Quick viewing(Text Mode)

Galaxy Formation

Galaxy Formation

Galaxy formation

Mojtaba Raouf Formation - Outline 2

̣ Cosmology & initial condition

̣ Structure Formation &

̣ Evolution of Gaseous halos

̣ Galaxy Groups/ Clusters

̣

̣ Feedback - Active Galactic Nuclei

̣ Models for Galaxy formation

̣ Our works

Lecture series School of Astronomy - IPM Galaxy Formation - Cosmology & initial condition 3

A classical, general relativistic description of cosmology is expected to break down at very early times when the Universe is so dense that quantum effects are expected to be important.

The standard cosmology has a number of conceptual problems when applied to the early Universe, and the solutions to these problems require an extension of the standard cosmology to incorporate quantum processes.

One generic consequence of such an extension is the generation of density perturbations by quantum fluctuations at early times.

It is believed that these perturbations are responsible for the formation of the structures observed in today’s Universe.

Lecture series School of Astronomy - IPM Galaxy Formation - Cosmology & initial condition 4

One particularly successful extension of the standard cosmology is the inflationary theory, in which the Universe is assumed to have gone through a phase of rapid, exponential expansion (called inflation) driven by the vacuum energy of one or more quantum fields. In many, but not all, inflationary models, quantum fluctuations in this vacuum energy can produce density perturbations with properties consistent with the observed large scale structure.

Cosmological simulations

This part of galaxy formation theory is still partly phenomenological: typically initial conditions are specified by a set of parameters that are constrained by observational data, such as the pattern of fluctuations in the microwave background or the present-day abundance of galaxy clusters.

Springel et al., Nature, 2006

30th Jerusalem Winter School Romain Teyssier4 Lecture series School of Astronomy - IPM Galaxy Formation - Structure Formation & Dark Matter 5

The mass inferred from the luminous stars is not sufficient to explain the dynamics of the object so-called Dark Matter.

There must be additional material, whose presence is only revealed by its gravitational effects, as seen for example in the orbital motions of in clusters, or in the rotation of spiral galaxies.

The physical nature of the dark matter is still one of the greatest mysteries of cosmology. Dark matter candidates include as of yet unknown elementary particles, primordial black holes, and stellar remnants.

Lecture series School of Astronomy - IPM Galaxy Formation - Structure Formation & Dark Matter 6

Dark matter halos form through gravitational instability. density perturbations grow linearly until they reach a critical density, after which they turn around from the expansion of the Universe and collapse to form virialized dark matter halos.

These halos continue to grow in mass (and size), either by accreting material from their neighborhood or by merging with other halos. .

Lecture series School of Astronomy - IPM Galaxy Formation - Dark Matter Merger Tree 7

Understanding the structure and formation of dark matter halos plays a pivotal role in the understanding of the formation and evolution of galaxies.

Based on Press–Schechter algorithm the time increases from top to bottom, and the widths of the tree branches represent the masses of the individual halos. A horizontal slice through the tree, such as that at t = tf gives the distribution of the masses of the progenitor halos at a given time. Merger trees play a very important role in hierarchical models of galaxy formation. In Lacey & Cole (1993) particular, they are the backbone of the semi- analytical models of galaxy formation

Lecture series School of Astronomy - IPM Galaxy Formation - Structure Formation & Dark Matter 8

The density distribution of dark matter in a high-resolution N-body simulation.

Credit: Millennium Simulation

Lecture series School of Astronomy - IPM Galaxy Formation - Evolution of Gaseous halos 9

Basic Fluid Dynamics and Radiative Processes Euler, and energy equations

The gravitational potential Φ satisfies the Poisson equation

Cooling is a crucial ingredient of galaxy formation. Depending on temperature and density, a variety of cooling processes can affect gas.

Lecture series School of Astronomy - IPM Galaxy Formation - Evolution of Gaseous halos 10

In a spherically symmetric gaseous system, the cooling time at radius r can be defined as

An estimate of the rate at which gas cools out in the halo then follows from

Evolution of Gaseous Halos with Energy Sources

Radiative Cooling Compton Cooling Photoionization Heating Gas can also be heated through non- Hydrostatic Equilibrium Gas Density Profile gravitational processes, such as Virial Theorem Applied to a Gaseous Halo radiation from stars and AGN, stellar Shocks Radiative Cooling in Gaseous Halos explosions and stellar winds.

Lecture series School of Astronomy - IPM Galaxy Formation - Galaxy Groups/ Clusters 11

Ideal Laboratories for Studying the the galaxy formation and evolution

Lecture series School of Astronomy - IPM Galaxy Formation - Galaxies 12

H.Mo et al 2008

Lecture series School of Astronomy - IPM Galaxy Formation - Galaxies 13

H.Mo et al 2008

Lecture series School of Astronomy - IPM Galaxy Formation 11

Galaxy Formation - Star Formation 14 Galaxy Formation 11 Figure 3. Aschematicdiagramshowingthetransferofmassandmetalsbetween stars and the hot and cold gas phases during a single timestep. The solid lines indicate the routes and rates by which mass is transferred between the three reservoirs, while the dashed lines refer only to the exchange of metals. The instantaneous rate of star formation is ψ and the cooling rate is M˙ cool.Themetallicitiesof the cold gas, stars and hot halo gas are Zcold, Z∗ and Zhot respectively. The yield of the assumed IMF is p and the parameters β and e describe the effect of SN feedback and the direct ejection of SNmetalsintothehothalogas.

Zcold the of the cold gas, and β the efficiency of the galaxy. The evolution of the stellar metallicity differs stellar feedback. Each of the arrows in Fig. 3 gives rise to from the closed-box model because it is affected by both the Cole et al. 2000 aterminthefollowingdifferential equations that describe ejection of reheated gas and the accretion of cold gas and Figure 3. Aschematicdiagramshowingthetransferofmassandmetalsbetween stars and the hot and cold gas phases during a single timestep. The solid lines indicate the routes and rates by which mass is transferred between the three reservoirs, while the dashed lines ˙ refer only to the exchange evolution of metals. The instantaneous of rate of starthe formation mass is ψ and the cooling and rate is M metalcool.Themetallicitiesof content of the three associated metals. the cold gas, stars and hot halo gas are Zcold, Z∗ and Zhot respectively. The yield of the assumed IMF is p and the parameters β and e describe the ereservoirs:ffect of SN feedback and the direct ejection of SNmetalsintothehothalogas. R: The fraction of mass recycled by stars (winds and SNe) Zcold the metallicity of the cold gas, and β the efficiency of the galaxy. The evolution of the stellar metallicity differs stellar feedback. Each of the arrows in Fig. 3 gives rise to from the closed-box model because it is affected by both the aterminthefollowingdi˙ fferential equations that describe ejection of reheated gas and the accretion of cold gas and the evolutionM of the⋆ mass and metal=(1 content of the threeR)associatedψ metals. the instantaneous star formation(4.6) rate 4.2.2 Star Formation Law and Feedback Parameterization reservoirs: − ˙ M⋆ =(1˙R)ψ ˙(4.6) M− hot = Mcool4.2.2+ Starβψ Formation Law and Feedback Parameterization (4.7) M˙ hot = M˙ cool + βψ (4.7) − In our previous work (e.g. Cole et al. 1994), we specified the ˙ ˙ − In our previous work (e.g. Cole et al. 1994), we specified the M = Mcool (1 R + β)ψ (4.8) cold − − star formation timescale and feedback efficiency in terms of β the efficiency of stellar feedback. ˙ Z ˙ ˙ M =(1 R)Zcoldψ (4.9) the circular velocity of the halo in which each galaxy formed, ⋆ M− cold = Mcool (1 R + β)ψ (4.8) ˙ Z ˙ VH.Therelationsweadoptedwere star formation timescale and feedback efficiency in terms of Mhot = McoolZhot +(pe + βZcold)ψ (4.10) − − − ′ ˙ Z ˙ 0′ −1 α⋆ Mcold = McoolZZhot τ = τ (VH/300 km s ) (4.12) p: The yield of the assumed IMF ˙ ⋆ ⋆ +(Mp(1 e) (1 + β R=(1)Zcold)ψ, (4.11)R)Zcoldψ (4.9) the circular velocity of the halo in which each galaxy formed, −⋆ − − and e: the fraction of newly produced metals Z Z ′ where Zcold = M /Mcold and Zhot = M /Mhot−.The ′ −α cold hot hot ejected directly from the stellar disk to the hot gas phase, Z β =(VH/Vhot) . (4.13) values of R and˙p in these equations are related to the˙ IMF, VH.Therelationsweadoptedwere M = M Z +(0′ pe + βZ )ψ (4.10) as discussed in Sectionhot 5.2. coolThe parameterhot τ⋆ ,wetreatedasafreeparameter,whilethecold ′ ′ ′ We assume that over one timestep the cooling rate, other three parameters, α⋆, Vhot and αhot,weconstrained ˙ − ′ Mcool,andthemetallicityofthehotgas,˙ Z Zhot,canbetaken˙ by comparing our models to the numerical simulations of 0′ −1 α⋆ to be constant.M Thiscold set of first-order,= coupledM differentialcoolZgalaxyhot formation of Navarro & White (1993). These simula- equations can be straightforwardly solved to give the change tions had only one free parameter, the fraction of SN energy τ⋆ = τ⋆ (VH/300 km s ) (4.12) in mass and metal content of cold gas, hot gas and stars since injected as kinetic energy into the . In Zcold the metallicity of the cold gas the start of the timestep (Appendix B). The model is quite order to suppress the formation of low luminosity galaxies, flexible: its behaviour is determined+( by specifyingp how(1 the eand) thus produce(1 a + galaxyβ luminosityR function)Z withcold a rea-)ψ, (4.11) functions τ⋆, β and e depend on the properties of the galaxy− sonably− shallow faint end slope,− as observed, we adopted and and its surrounding halo. We note that compared to the afiducialmodelwithverystrongfeedbackforlowcircular simple, “closed-box” chemical enrichment model, the yield Zvelocity halos, which we obtained by setting the parameter Z ′ ′ ′ −1 ′ is modified by the metal ejection and feedback to produce values α⋆ = 1.5, Vhot =140kms and αhot =5.5. ′ − where Zcold = Mcold/M− cold and Zhot = Mhot/Mhot.The αhot an effective yield peff =(1 e)p/(1 R + β)(equationB9), The more detailed modelling that we now perform of the Lecture− series− Schoolβ of=( AstronomyVH/Vhot) - IPM. (4.13) which is thereforevalues a function of of the potential-wellR and depthp of instructure these of our model equations galaxies allows us to specify are the star related to the IMF, ⃝c 0000 RAS, MNRAS 000,000–000 0′ as discussed in Section 5.2. The parameter τ⋆ ,wetreatedasafreeparameter,whilethe ′ ′ ′ We assume that over one timestep the cooling rate, other three parameters, α⋆, Vhot and αhot,weconstrained M˙ cool,andthemetallicityofthehotgas,Zhot,canbetaken by comparing our models to the numerical simulations of to be constant. This set of first-order, coupled differential galaxy formation of Navarro & White (1993). These simula- equations can be straightforwardly solved to give the change tions had only one free parameter, the fraction of SN energy in mass and metal content of cold gas, hot gas and stars since injected as kinetic energy into the interstellar medium. In the start of the timestep (Appendix B). The model is quite order to suppress the formation of low luminosity galaxies, flexible: its behaviour is determined by specifying how the and thus produce a galaxy luminosity function with a rea- functions τ⋆, β and e depend on the properties of the galaxy sonably shallow faint end slope, as observed, we adopted and its surrounding halo. We note that compared to the afiducialmodelwithverystrongfeedbackforlowcircular simple, “closed-box” chemical enrichment model, the yield velocity halos, which we obtained by setting the parameter is modified by the metal ejection and feedback to produce values α′ = 1.5, V ′ =140kms−1 and α′ =5.5. ⋆ − hot hot an effective yield peff =(1 e)p/(1 R + β)(equationB9), The more detailed modelling that we now perform of the − − which is therefore a function of the potential-well depth of structure of our model galaxies allows us to specify the star

⃝c 0000 RAS, MNRAS 000,000–000 Galaxy Formation - Feedback 15

Missing Satellite problem Down sizing problem

Small dense halos Pursues Cluster form at high redshift and cooling within Böhringer et al., 1991 them is predicted to Fabian et al., 2003 be very efficient. This disagrees badly with observations, which show that only a relatively small f r a c t i o n o f a l l baryons are in cold gas or stars

Lecture series School of Astronomy - IPM Galaxy Formation - Active Galactic Nuclei (AGN) 16 A Active Galactic Nuclei (AGN) play a key role in the formation and evolution of galaxies through so- called AGN feedback.

Virgo Cluster

Churazov et al., 2001 Forman et al., 2005

Credit by: NASA/CXC/CfA/R.Kraft et al.; Submillimeter: MPIfR/ESO/APEX/A.Weiss et al.; Optical: ESO/WFI Lecture series School of Astronomy - IPM

 ĭÖĴ¿¶ ùÖ¿Ġī ¸õøÙ ¼÷Öû IJ¿Úÿ

 ĭÖĴ¿¶ ùÖ¿Ġī ¸õøÙ ¼÷Öû IJ¿Úÿ õñ ĩöç Ē¾÷Ķß ŃĶĬĔī ñĶÿ ½ī ıñÖĜàûÕ ñĶçĶī òİī Ýõòğ ¼Öij ößĶ¿­īÖ¶ ĵ ¼ñòē ¼Öij ýĵõ ÷Õ ÝŃñÖĔī Į¾Õ Ħë ¼ÕöÙ õñ ĩöç Ē¾÷Ķß ŃĶĬĔī ñĶÿ ½ī ıñÖĜàûÕ ñĶçĶī òİī‘ Ýõòğ ¼Öij ößĶ¿­īÖ¶ ĵ ¼ñòē ¼Öij ýĵõ ÷Õ ÝŃñÖĔī Į¾Õ Ħë ¼ÕöÙ ĭÖĴ¿¶ ùÖ¿Ġī ¸õøÙ ¼÷Öû IJ¿Úÿ ÖÙ ĩöç öĄİē öij Þ¶öë ú­û IJ·Úÿ µ¾ ¼ĵõ ĩöçÖÙ ĩöç ĭñö¶ öĄİē þð¬öij Þ¶öë Ö¾ ú­û òÿÖÙ IJ·Úÿ ½ī µ¾ ¼ĵõÝÕõó ĩöç ÝõĶă ĭñö¶ þð¬ IJÙ Ö¾ òÿÖÙ Ö¾ Öij ½ī ÝÕõó¼÷Öû ÝõĶă IJ¿Úÿ IJÙ Ö¾ Į¾ÕÖij ¼÷Öû IJ¿Úÿ Į¾Õ Ğ¿ğñ ½ßõĶă õñ Öij ¼÷Öû IJ¿Úÿ Į¾Õ ññöº ½ī Į¿¿ĔßĞ¿ğñ ¼ñòē ½ßõĶă õñ ¼Öij Öij ¼÷Öû ýĵõ IJ¿Úÿ Į¾Õ ĊûĶß ññöº ½ī CöăÖİē Į¿¿Ĕß ¼ñòē ö»¾ñ ¼Öij ÖÙ ýĵõ ĭÉ ĊûĶß þİ·ĬijöÙ CöăÖİē ö»¾ñ ÖÙ ÖÙ ĭÉ IJçĶß þİ·ĬijöÙ ÖÙ IJçĶß Öij Īàü¿û ıòİijñ Ħ¿·Āß ÝÕõó ñÕòĔß IJ¶ Öç ĭÉ ÷Õ ½ħĵ òİÿÖÙ Į¾ñÖ¿İÙ ÝÕõó Ö¾ Öij ĪßÕ ¼÷Öû IJ¿Úÿ ÝÕõó IJ¶ ñĶÙ òİijÕĶï Þ¾ñõĶïöÙ ĵ ĥñÖĔß C½įÖī÷ ùÖ¿Ġī ŽŽ Öij Īàü¿û ıòİijñ Ħ¿·Āß ÝÕõó ñÕòĔß IJ¶ Öç ĭÉ ÷Õ ½ħĵIJ¿Úÿ ÝÕõóòİÿÖÙ ĩöç CĦĬēĮ¾ñÖ¿İÙ õñ Þü¿į ÝÕõó ö¾ô¬ Ö¾ ĭÖ·īÕ Öij öīÕ ĪßÕ Į¾Õ ¼÷Öû òİÿÖÙ ½ī IJ¿Úÿ ĭĶßĵö¬ Œ ÝÕõó’” ½ºõøÙ IJ¶ IJÚßöī ñĶÙ ÷Õ òİijÕĶï Öij ĭÖĀ·Ĵ¶ ĭÖĴ¿¶ õñ  ĭÖĴ¿¶ ùÖ¿Ġī ¸õøÙ ¼÷Öû IJ¿Úÿ IJ¿Úÿ ÝÕõó ĩöç CĦĬē õñ Þü¿į ö¾ô¬ ĭÖ·īÕ öīÕ Į¾ÕÖij òİÿÖÙ¼÷Öû IJ¿Úÿ ½ī Þìă ĭĶßĵö¬ öÙ ½ĴçĶß Œ ĦÙÖğ’” Þ¾ñĵòìī½ºõøÙÝÕõó ؾöĠß IJÚßöī ĚĄį Į¾Õ ĵ òÿÖÙ IJ¶ ÷Õ ½ēÖĔÿ Öij ½ī öß ĭÖĀ·Ĵ¶ ¸õøÙR Ēçöī ĪßÕ ĩöç òĔÙ ÷Õ ĭÖĴ¿¶ ½ºõøÙ ĵ M Ħ¶ IJÚßöī õñ ĩöç Į¾òİ° IJÙ ıõó ¼÷ÖûN ÷Õ ıòÿ Ħ¿·Āß ½Ĭàü¿û ½·¿īÖݾñ ĥñÖĔß IJÙ ĭò¿ûõ ĭÖī÷ ñõÕôº ½ī Į¾Õ  Tcr / GM/R òÿÖÙ ½ī Īàü¿û ĥĶċ þ¾ÖĬ¿¬ ¼ÕöÙ ĩ÷Ń ĭÖī÷ Ýòī ñĵòë õñ CTcr) òįõÕñ õÕöğ ĭÉ õñ Öij ¼÷Öû IJ¿Úÿ Þìă öÙ ½ĴçĶß ĦÙÖğ Þ¾ñĵòìī ؾöĠßIJ¿Úÿ ĵ Į¾Õ Īüç ĵN òÿÖÙ¼Öij ¼÷Öû ½ī IJ¿Úÿ öß òįĶÿ¸õøÙ ½ī ĪßÕ Ī¿üĠß ĩöç IJàûñ Ž÷Õ≈ IJÙ ½ºõøÙ ĭÖĀ·Ĵ¶ ¼ö¿ºIJÚßöī Ħ·ÿ Į¾òİ° ¼ñòē ¼Öij ¼÷Öû ¼÷Öû IJ¿Úÿ ÖīĶĬē ½ī Ħ¶ ½ĀÚİç ¼²öįÕ! K Öç Į¾Õ õñ ŽK/ W =  CòÿÖÙ ½ī ĥÖ¾ö¾ĵ ĥñÖĔß IJÙ ĭò¿ûõ ¼ÕöÙ ĩ÷Ń ĭÖī÷ ĒğÕĵ õñ ĭÖī÷ õñ ĩöç Ē¾÷Ķß ŃĶĬĔī ñĶÿ ½ī ıñÖĜàûÕ ñĶçĶī òİī Ýõòğ#Ž“% ñĶÿ¼Öij ½ī ößĶ¿­īÖ¶ IJàïÕñö¬ ½ī ĵ ¼ñòē Öij ¼÷Öû ¼ÖijIJ¿Úÿ Į¾Õ ýĵõ ĥĶăÕ ÷Õ ½ûõöÙ ÝŃñÖĔī IJÙ þðÙ Į¾Õ Į¾Õ Ħë¼ IJīÕñÕ ¼ÕöÙ õñ ½·¿īÖݾñĵõò¿ij| | ¼Öij ¼÷Öû ñõÕôº ½ī òÿÖÙ ÖÙ ĩöç öĄİē öij Þ¶öë ú­û IJ·Úÿ µ¾ ¼ĵõ ĩöç ĭñö¶ þð¬ Ö¾ òÿÖÙ ½ī ÝÕõó ÝõĶă IJÙ Ö¾ Öij ¼÷Öû IJ¿Úÿ Į¾Õ N N IJ¿Úÿ ĵ Īüç ¼Öij ¼÷Öû IJ¿Úÿ òįĶÿ ½ī Ī¿üĠß IJàûñ Ž IJÙ ĭÖĀ·Ĵ¶ ¼ö¿º Ħ·ÿ ¼ñòē ¼Öij ¼÷Öû IJ¿ÚÿĪüç ÖīĶĬēN µ¿īÖݾñ Ž Ğ¿ğñ ½ßõĶă õñ Öij ¼÷Öû IJ¿Úÿ Į¾Õ ññöº ½ī Į¿¿Ĕß ¼ñòē ¼Öij ýĵõ ĊûĶß CöăÖİē ö»¾ñ ÖÙ ĭÉ þİ·ĬijöÙ ÖÙ IJçĶß K = / mi vi Ž  Ž | |  #Ž“% ñĶÿ ½ī IJàïÕñö¬ ½ī Öij ¼÷Öû IJ¿Úÿ Į¾Õ ĥĶăÕ ½ûõöÙ IJÙ þðÙ Į¾Õ ¼ IJīÕñÕ õñ ½·¿īÖݾñĵõò¿ij ¼Öij ¼÷Öû i= Öij Īàü¿û ıòİijñ Ħ¿·Āß ÝÕõó ñÕòĔß IJ¶ Öç ĭÉ ÷Õ ½ħĵ½ĀįÕöº òİÿÖÙ þİ·ĬijöÙ Į¾ñÖ¿İÙ Þìß ÝÕõó ĩÖüçÕ Þ¶öë Ö¾ Öij ÝŃñÖĔī ĪßÕ ¼÷Öû ¼ñòē IJ¿Úÿ Ħë ÷Õ ÝÕõó ÞûÕ ÝõÖÚē IJ¶ ñĶÙ ½ûÖİÿ òİijÕĶï ĭÖĴ¿¶ Īüç N ¼Öij ¼÷Öû IJ¿Úÿ" ’” IJ¿Úÿ ÝÕõó ĩöç CĦĬē õñ Þü¿į ö¾ô¬ ĭÖ·īÕ öīÕ Į¾Õ¼ò¿ÿõĶï òİÿÖÙ ¼Öij ½ī IJīĶĐİī ĭĶßĵö¬ ¼÷Öû Œ IJ¿Úÿ Į¿İ±Ĭij½ºõøÙ ĵ IJÚßöī ½ûÖİÿ ÷Õ ĭÖĴ¿¶ Öij ĵ µ¾ø¿ěĭÖĀ·Ĵ¶ öàïÕ õñ ĭÖĴ¿¶ ¼Õ ıñöàüº õñ ÝõĶă Öij ¼÷Öû IJ¿Úÿ Į¾Õ Ħ¿üįÖଠ¼²öįÕ W ĵ òįĶÿ ½ī IJàěöº õÖ¶ IJÙ Öij ¼÷Öû IJ¿Úÿ Þìă öÙ ½ĴçĶß ĦÙÖğ Þ¾ñĵòìī ؾöĠß Į¾Õ ĵ òÿÖÙ ½ī öß ¸õøÙ ĪßÕ ĩöç ÷Õ ½ºõøÙ IJÚßöī Į¾òİ° ¼÷Öû #Ž”% N W = / Gmimj/ ri rj ÝÕõó ĩÖĬß Þēöû ĵ ĭÖ·ī õÕñöÙ ÖÙ t ıÕĶðħñ ĭÖī÷ öij õñ Īàü¿ûĪüç ÞħÖë CòÿÖÙ ½īµ¿īÖݾñ ĩöç Īij ıõó N ĦīÖÿ Ž Īàü¿û− ò¿İ¶Ž ąöě | − | ‘ ñõÕôº ½ī i=j (ri, ui)(i = , ,...,N) "̸ N CòÿÖÙ ½ī ½ĀįÕöº Īàü¿û Į¾Õ õñ Öij þİ·ĬijöÙ ĩÖĬß IJ¶ Öç ĭÉ ÷Õ   Ž Cññöº ½ī Ě¿ăĶß Īàü¿û IJ¿Úÿ ĵ Īüç ¼Öij ¼÷Öû IJ¿Úÿ òįĶÿ ½ī Ī¿üĠß IJàûñ Ž IJÙ ĭÖĀ·Ĵ¶ ¼ö¿º Ħ·ÿ ¼ñòē ¼Öijñö¶ ¼÷Öû Ě¿ăĶß IJ¿Úÿ ÝõĶă ÖīĶĬē Į¾òÙ ĭÕĶß ½ī Õõ ĩÕ i ıõó Þ¶öë ½ĀįÕöº þİ·ĬijöÙ Þìß ĩÖüçÕ Þ¶öë ÝŃñÖĔī ¼ñòē Ħë ÷Õ ÞûÕ ÝõÖÚē ½ûÖİÿÝÕõó ĭÖĴ¿¶ Į¿Ù ½īÕõÉ Īüç IJÙ ¼²öįÕN ¼Öij ñĶÿ ½ī ¼÷Öû IJè¿àį ĩöç IJ¿Úÿ Ž ĭò¿īõÉ ÷Õ IJ¶ CñĶÿ ½ī ĥĶìß ÷Öě ñõÕĵ Īàü¿û C½·¿īÖݾñ ĥñÖĔß ÷Õ ú¬ #Ž“% ñĶÿ ½ī IJàïÕñö¬ ½ī Öij ¼÷Öû IJ¿Úÿ Į¾Õ ĥĶăÕ ½ûõöÙ IJÙ þðÙ Į¾Õ ¼ IJīÕñÕ õñ ½·¿īÖݾñĵõò¿ijTrel ¼Öij ¼÷Öû 17 Galaxy Formation - N-body SimulationÝÕõód ñÕòĔßr IJÙ Īàü¿û ĭò¿īõÉ ½įÖī÷ ùÖ¿Ġī ñĵõ ½ī þ¿¬ ½·¿īÖݾñĶīöß ĥñÖĔß ÞĬû IJÙ Īàü¿û ĵ òÙÖ¾ ½ī ĥÖĠàįÕ i = u , ¼ò¿ÿõĶï ¼Öij IJīĶĐİī ¼÷Öû IJ¿Úÿ Į¿İ±Ĭij ĵ ½ûÖİÿ ĭÖĴ¿¶ ĵ µ¾ø¿ě öàïÕ õñ ¼Õ ıñöàüºdt i ÝõĶă Öij ¼÷Öû IJ¿Úÿ Į¾Õ  ñõÕñ ½»àüÙ IJĨÔüī ¼ IJûòİij ĵ ĵ òįĶÿ ½ī IJàěöº õÖ¶ IJÙ PP (Particle–Particle) N Trel N/log(Œ‚ N)Tcr ’ duĪüçi µ¿īÖݾñ Ž ∝ Algorithm = Fi = φ i, #Ž”% Ž t Į¾Õdt ĵ ¸õøÙN−∇ ñÖĔÙÕ| ĵ ñÖ¾÷ ÝÕõó ñÕòĔß òįõÕñ ½¾ŃÖÙ ĭò¿īÕõÉ ĥĶìß ĭÖī÷ ½·¾õÖß ıñÖī ĵ ½įÖĀ·Ĵ¶ ¼Öij Īàü¿û #Ž•% ÝÕõó ĩÖĬß Þēöû ĵ ĭÖ·ī õÕñöÙ ÖÙ ıÕĶðħñ ĭÖī÷ öij õñ Īàü¿û ÞħÖë CòÿÖÙ ½ī ĩöç Īij ıõó NĦīÖÿ Īàü¿û ò¿İ¶ ąöě ½ĀįÕöº þİ·ĬijöÙ Þìß ĩÖüçÕ Þ¶öë ÝŃñÖĔī ¼ñòēĵ òÿÖÙ ½ī Ħë ½ĀįÕöº ÷Õ ÞûÕ Ħ¿üįÖଠÝõÖÚēφ òÿÖÙ ½ûÖİÿ ½ī ıõó Ħìī ĭÖĴ¿¶õñ õñ µ¾õÖß ×Öàÿ Īüç ıñÖī ĭÖĬij ñĶçĵ¼Öij Ö¾ ĩöç ęöă ¼÷Öû òëÕĵ ĊĠě IJÙ IJ¿Úÿ ıòÿ òįĶÿ ñõÕĵ ¼ĵö¿į ½ī ąöěFi ŃÖÙ ¼ñõĶïöÙ IJČÙÕõ õñ ö¿ė Öij Īàü¿û Į¾Õ Õøħ CòÿÖÙ ½ī ĭÖĴ¿¶ öĬē ÷Õ þ¿Ù ĭÖī÷ PM (Particle–Mesh) Algorithm(ri, u i)(i = , ,...,N) CòÿÖÙ ½ī¼ò¿ÿõĶï ½ĀįÕöº ¼Öij Īàü¿û IJīĶĐİī Į¾Õ ¼÷Öû õñ Öij IJ¿Úÿ þİ·ĬijöÙ Į¿İ±Ĭij ĩÖĬß ĵ ½ûÖİÿ IJ¶ Öç ĭÖĴ¿¶ ĭÉ ĵ ÷Õ µ¾ø¿ě  öàïÕ õñ ¼Õ ıñöàüºŽú¾ÖĠī ÝõĶă ĵò¾É öàĬ¶ ½īCññöº Öij ÝÕõó Þûñ ¼÷Öû ÖÙ IJÙ ½ī òįõÕñ ĭĶûÕĶ¬ IJ¿Úÿ Ě¿ăĶß IJÿĶï IJħñÖĔī Į¾Õ ñĶï оöċ Īàü¿û öĬē ÷Õ Cĩöç ÷Õ öß Ē¾÷Ķß µ°Ķ¶ ĊûĶß ĭò¿īÕõÉ ĭÖī÷ IJ¶ ¼ĵö¶ ĵ ÷ÖÙ ¼Öij IJÿĶï  Þü¿į IJĨÔüī i ñö¶ Ě¿ăĶß ÝõĶăIJَ ĉĶÙöīφ Į¾òÙ= π Ħ¿üįÖà¬GòįĶÿρ ĭÕĶß(r,t) ½ī ÷Õ ½ī ½ºõøÙ IJàěöº Õõ ĪĴû ĩÕ õÖ¶ IJ¶ IJÙıõó ÞûÕ Þ¶öë ½įÖī÷ ĩöç Ž ö·¾ĵõ ÷Õ ıñÖàûÕ ö»¾ñ ñõÕĶīòįĶÿ ½ī ąöě ¼ñõĶïöÙ µ°Ķ¶ Tree Algorithm ∇   ñÕòĔß µ¾ñøį þİ·ĬijöÙ òİàüij#Ž”% ĭĶī÷É ĩöç ĦĬē õñ Öij ıõÖ¿û Öij ĭÉ õñ IJ¶ ¼Õ ıõÖ¿û ¼Öij IJīĶĐİī Ħäī òÿÖÙ ıõó µ¾ ½ī öß ØûÖİī ıÕöĬij ¼Öij òëÕĵ ÷Õ ıñÖĜàûÕ ĵõ Į¾Õ ÷Õ CòÙÖ¾ ½ī ĉÖüÚįÕ ĭÖī÷ õôº ÖÙ IJİ¿ī÷ ¼ÖĈě ½ûÖİÿ ĭÖĴ¿¶ ĦÓÖüī õñ ÝÕõó ĩÖĬß Þēöû ĵ ĭÖ·ī õÕñöÙ ÖÙ t ıÕĶðħñ ĭÖī÷ öij õñ Īàü¿ûv ÞħÖëdx/dt CòÿÖÙx ½ī ĩöç Īij ıõóĥĶìßN ñĶÿĦīÖÿ ½ī Īàü¿û öèİī ½¾Öß ò¿İ¶ Ž ąöě ÖßòĬē a Öijr Īàü¿ûx = ö¾÷r/a Ħ¿·Āß IJÙ IJ·ĨÙ ÞûÕ ıÕöĬij ¼²öįÕ ĥÖĠàįÕ ÖÙ ÖĴİß IJį ıõó ¼öàĀ¿Ù P3MĪ¿ijÕĶï (Particle–Particle–dri C ≡ ĵ Øüë öÙ ŃÖÙ ÝŃñÖĔī ½ü¾Ķį ÷ÖÙ ÖÙ  òÿÖÙ ½ī ıÕöĬij ĥĶċ IJ¶ −→ òÿÖÙ CòÿÖÙ ½ī ½ĀįÕöº Īàü¿û Į¾Õ õñ Öij þİ·ĬijöÙ ĩÖĬßParticle–Mesh) IJ¶ Öç ĭÉ= uAlgorithm ÷Õi, (ri, u i)(i = , Ž,...,NC½ĀįÕöº) Cññöº ñĶï ĦÓÖüī ½ī Ě¿ăĶß õñ Į¾Õ öÙ Īàü¿û ıĵńē ñĶÿ Ħë  Īüç ¼ÞÿÕñ ıòÿ õÕĶĬij ö¿ė ĵ Ī¿Ġàüī ýĵõ ÷Õ ÞûÕ öàĴÙ ½¾Öß Ž ¼Öij ĒĬèß dt ½·¿īÖݾñĶīöß čÖìħ ÷Õ Īàü¿û ñĶÿ ½ī âēÖÙ ĭĶ° #Œ% ñĶÿ IJàěöº öĐį õñ Þü¾ÖÙ ½ī Īij ýø¾õ ĵöě ÷Õ ĦăÖë ¼Öīöº ñö¶ Ě¿ăĶß ÝõĶă Į¾òÙdx ĭÕĶßi/dt = ½īvi Õõ ĩÕ i ıõó Þ¶öë  òijñ ½ī õÕöğ ö¿ãÖß Þìß Õõ ĥĶìß ĵ ñĶÿ õÕò¾Ö¬Öį

du dri  i dvi/dt + ŽH(t)vi = xΦ i ‘ = Fi==ui, φ i, −aŽ ∇ |  dt dt −∇ | ’ Ž ĮīøàĨÙ ¼ IJħñÖĔīĭÖĴ¿¶ IJČûÕĵ ùÖ¿Ġī ĭÕò¿ī ¸õøÙ ñö·¾ĵõ ¼÷Öû IJ¿Úÿ ŽŽŽ òÿÖÙ ½ī ½ħÖ»° ÝŃńàïÕ IJÙ IJçĶß ÖÙ ½ĀįÕöº Ħ¿üįÖà¬ Φ ĵ H(t)=˙a/a ÝŃñÖĔī Į¾Õ õñ ıõó öij ÝÖĄàðī ¼ÕöÙ òĔÙ µ¾ ĵ Þēöû ¼ÕöÙ òĔÙ ’ ñõÕñ ¼òĔÙ ’N +  ÷Öě ¼ÖĈě µ¾ ñõÕñ ıõó N IJ¶ ½Ĭàü¿û Ž Ž φ xΦ = πGa [ρ(x,t) ρ¯(t)]. Fi ’ ĵ òÿÖÙ ½ī ½ĀįÕöº Ħ¿üįÖଠòÿÖÙ ½ī ıõó Ħìīdu õñi ×Öàÿ ĭÖĬij Ö¾ ĩöç òëÕĵ∇ IJÙ¼Öij ıòÿıõÖàû ýĵõ ñõÕĵ ñõÖ¿Ĩ¿ī ÷Õ ĭÕĶß ¼ĵö¿į− ŒŒ ½ī òÿÖÙ ½ēĶį ĭÖĀ·Ĵ¶ öß µ°Ķ¶ŃÖÙ µ¾ IJČÙÕõ öĐį õñ ñõĶī IJ¶ õñ ½ßõĶă ½įÖī÷ õñ ¼Öij CòİÿÖÙ ĩÖº ÷Õ½ī ĩöç ıõó Ž ñõÖ¿Ĩ¿ī ĭò¿īÕõÉ  Öß ĭÖī÷ ĭĶ¿Ĩ¿ī IJ¶  òÿÖÙ ĦīÖÿ ñÖ¾÷ ÖÚħÖė ÝÕõó Öij ¼÷Öû ñÕòĔß öºÕ = Fi = φ i, ùÖ¿Ġī ÖÙ IJü¾ÖĠī ĦÙÖğ Į¿¾Ö¬ ĭò¿īÕõÉ ĭÖī÷ ÖÙ ½Ĭàü¿û CòįõÕñ ñöÙõÖ¶ ø¿į ¼ñõĶïöÙ ¼Öij Īàü¿û õñ ÝŃñÖĔī Į¾Õ ñõÕñ dtöĐį ęöă ĉÖüÚįÕ−∇ ÷Õ ĵõ| þ¿¬ ÝÖÚûÖìī õñ CòݶIJČûÕĵ ½Ĭį ½ăÖï ĭÕò¿ī ÝĵÖĜß Į¾Õ ÝŃñÖĔī ÞïÖû ½ĨăÕ Į¾Õ Ħë Ž ıò¾Õ CĭÖĴ¿¶ ñÕñ ĉÖüÚįÕ þijÖ¶ Įàěöº òĔÙ öĐį ’  õñ ÖÙ IJÙ Õõ ÷Öě ¼ÖĈě ĭÕĶß ½ī õÖ¶ Į¾Õ ÖÙ ñö¶ ıñÖĜàûÕ ¼õÖīÉ ò¾É ½ī Þûñ IJÙ ĭĶûÕĶ¬ IJħñÖĔī оöċ ÷Õ Cĩöç Ē¾÷Ķß ĊûĶß òijÕĶï IJěÖćÕ ĭÖīøàħĶÙ IJħñÖĔī IJĨĬç µ¾ ÝõĶă Į¾Õ õñ  Īàü¿û öĬē ½įÖī÷ Ħ¿üįÖଠµ¾ ıĵńĔÙ ıõó åĵ÷ öij Į¿Ù ½ßĶ¿į þįÕöºÕò¿¬ ½īĶĬē ĥÖĬàëÕ ĭĶįÖğ ĭÖĬħÕ ÷Õ ÞûÕf(x ÝõÖÚē, v,t) ½Ĩ¶dxd µ¾ø¿ěv IJ¶ ĦÓÖüī òÿÖÙ Į¾Õ ½ī õñf( ÞûÕx, v,t ıòÿ) ıõó µß µ¾ Ē¾÷Ķß ĒÙÖß µĬ¶ IJÙ ½·¿īÖݾñ Īàü¿û µ¾ ¼ φ Fi Df ∂f ½çõÖï∂f ∂φT ∂f   ĵ òÿÖÙ ½ī ½ĀįÕöº Ħ¿üįÖଠòÿÖÙ ½ī ıõó ĦìīŽ õñ ×Öàÿ ĭÖĬij Ö¾ ĩöç òëÕĵ IJÙ ıòÿ ñõÕĵ ¼ĵö¿į ŃÖÙ IJČÙÕõòÿÖÙ õñ ½ī t=ĭÖī÷+ õñv.v Þēöû õÕñöÙ. ĵ=r CĭÖ·ī[f] õÕñöÙ ĥĶë d xd v ĭÖĬħÕ õñ ıõó ĭñö¶ φ = πGρ(r,t) Dt  ∂t ∂x − ∂x ∂v ” ∇ mimj (rñĶÿi rj ½ī) IJè¿àį Ħ¾ĵĶ¿ħ ¼ IJħñÖĔī ÷Õ IJ¶ ñĶÿ ½ī Ě¿ăĶß ĮīøàħĶÙ ¼ñõĶïöÙ ö¿ė ¼ IJħñÖĔī ĊûĶß µ¿īÖݾñ ò¾É ½ī Þûñ IJÙ ĭĶûÕĶ¬Fi = IJħñÖĔīG оöċ− ÷Õ Cĩöç.φ Ē¾÷Ķßext(ri) ĊûĶß “ − ri rj  −∇ j=i ½ī ñõĶïöÙ ö»ĨĬē ¼Öij ñöÙõÖ¶ ÷Õ ÷Öě ¼ÖĈě õñ ½ĀįÕöº ñõĶïöÙ ÷Öě IJÙ ıõó ñĵõĵ ĥÖĬàëÕ CòÿÖÙ ½ī ñõĶïöÙ ö»ĨĬē C[f] !̸ | − | Df ∂f ∂f ∂φT ∂f ½ī öß ØûÖİī ıÕöĬij ¼Öij òëÕĵ ÷Õ ıñÖĜàûÕ ĵõ Į¾Õ ÷Վ CòÙÖ¾φ = ½īπG ĉÖüÚįÕρ(r,t) ĭÖī÷ õôº ÖÙ IJİ¿ī÷ĭÕò¿ī ¼ÖĈě ¼Öij ÞijÖÚÿ ½ûÖİÿ IJÙ IJçĶß ĭÖĴ¿¶ ÖÙ ½ěöċ ĦÓÖüī ÷Õ ñö¶= ıõÖÿÕ õñ ½ħÖĔĜįÕ+ v. ĵ ĦĔě ñĶï µ¾õÖß. = ıñÖīŒ ĵ ¼ĵö¶ ¼Öij IJÿĶï µ¿īÖݾñ IJÙ ĭÕĶß “  SPH  Dt ∂t ∂x − ∂x ∂v Ī¿ijÕĶï Cv dx/dt ĵ x Øüë öÙ ŃÖÙ ÝŃñÖĔī∇ ½ü¾Ķį ÷ÖÙ ÖÙ  òÿÖÙ ½ī ıÕöĬij ĥĶċ aIJ¶ IJÙ ĭÕĶßr ½ī õÕøÙÕ Į¾Õx ĪĴī= ¼Öijr/a IJįĶĬįòÿÖÙ ÷Õ ÞûÕ ıòÿ IJÓÕõÕ ĭÉ ¼ÕöÙ ½ēĶİàī ¼Öij ñöÙõÖ¶ Öij ıõÖÿ µ¿īÖݾñ ÖÙ IJČûÕĵ ≡ −→ φ = φ (x,t)+φ(x,t) ñö¶ ıõÖÿÕ ½ī öß ØûÖİī ıÕöĬij ¼Öij òëÕĵ ÷Õ ıñÖĜàûÕ ĵõLecture Į¾Õ ÷Õ CòÙÖ¾ series ½ī ĉÖüÚįÕ ĭÖī÷ õôº ÖÙ IJİ¿ī÷ ½ĨïÕñ ¼ÖĈě õÖ¶÷ÖûñĶï ½ûÖİÿ ĭÖĴ¿¶ Ħ¿üįÖଠĦÓÖüī ĵ ½çõÖï õñ Ħ¿üįÖଠÞÿÕñSchool đĶĬèī of ÷Õ Astronomy IJÙ ÞûÕ ÝõÖÚē -T IPMext Ħ¶ Ħ¿üįÖଠĭÕò¿ī v dx/dt x Ī¾õÕña Ē¾÷Ķßr ĒÙÖß ¼ÕöÙx = ĵr ñÖ¿ī/a Þûñ IJÙ  IJħñÖĔī ĭĶûÕĶ¬ IJħñÖĔī Ħë ÖÙ ĵ ò¾É ½ī Þûñ IJÙ Ē¾÷Ķß ĒÙÖß ÷Õ ½ĨïÕñ Ħ¿üįÖଠĪ¿ijÕĶï C ≡ ĵ Øüë öÙ ŃÖÙ ÝŃñÖĔī ½ü¾Ķį ÷ÖÙ ÖÙ  òÿÖÙ ½ī ıÕöĬij ĥĶċ IJ¶ −→ òÿÖÙ ρ(x,t)= f(x, v,t)dv dxi/dt = vi ÞÿÕñ  ½·¾ø¿ě öàïÕ ¼Öij ĵöĬĨğ ŽŽ # öij ñĶÿ ½ī IJàěöº öĐį õñ Öij ¼÷ÖûN IJ¿Úÿ Į¾Õ ¼ÕöÙ ½·¾ø¿ěöàïÕ ĵöĬĨğ  CIJĨÔüī Þ¾ñõĶïöÙ ĵ ½įÖī÷ ùÖ¿Ġī IJÙ IJçĶß ÖÙ dxi/dt = vi ¼ñòē ¼Öij ýĵõ IJÙ ĦăÖë ĩöç  Īàü¿û đÖçõÕ ú­û ĵ IJ¿ħĵÕ Ē¾÷Ķß ĒÙÖß ÷Õ ¼÷Öû IJįĶĬį ÖÙ ÕòàÙÕ ıÖ»àûñ Į¾Õ Ħë òİݶ ½ī ıñÖĜàûÕ ×ĶĨČī ½¾ÕõÖ¶ ĵ Þğñ IJÙ ĮàěÖ¾ Þûñ õĶĐİī IJÙ CIJĨÔüī ÖÙ ØûÖİàī ¼ñòē ýĵõ ÷Õ Öij ĵöĬĨğ Į¾Õ ÷Õ ĩÕò¶ IJį ¼÷Öû õÕĶĬij ñĶÿ ½ī ĩÖèįÕ Īüç Ž ñö·¾ĵõ ÖÙ µ°Ķ¶ ùÖ¿Ġī õñ ĵ ½ĔćĶī ÝõĶă IJÙ ÝŃñÖĔī Į¾Õ ñĶÿ ½ī ĩÖèįÕ ĵ ÞûÕ ØħÖė Īàü¿û öÙ Īüç µ¾ þįÕöº ĵöĬĨğ Į¾Õ õñ  ¼Õ ıõÖàû ĵ ¼Õ ıõÖ¿û ¼Öij IJīĶĐİī ¼ĵÖĬû µ¿įÖ·ī   ½¾Öߎ Ħ¿·Āß ÷Õ ÞĔįÖĬī ¼ÕöÙ āÖï õĶċ IJÙ IJ·ĨÙ Cµ¾ñøį ¼Öij þİ·Ĭij öÙ õñ ĵö¿į ĵ Þēöû ĭñö¶ ñĵòìī ¼ÕöÙ ÖĴİß dvi/dt + H(t)vi = xΦ i ½ßÖÚûÖìī ¼Öij ÖČï ĭòÿ ØħÖė ÷Õ ¼ö¿ºĶĨç ¼ÕöÙ Öij ¼÷Öû IJ¿Úÿ Į¾Õ õñ òÿÖÙ ½ī ĭĶī÷É ÝÕõó IJ¿Úÿ ÝÕõó ½ğÖÙ Þ¶öë Ž Ž IJ¿Úÿ òÿÖÙ ½ī ĪĴī Īàü¿û õñ ĥÖĔě ÝÕõó ‘ ñÕòĔß Öij ¼÷Öû IJ¿Úÿ Į¾Õ õñ Õö¾÷ CñĶÿ ½ī ÝŃñÖĔī ñõÕĵ ½ēĶİĄī ¼Öij −a ∇ | òÿÖÙ ½ī ½īÕøħÕ ñÖ¾÷ õÖ¿üÙ Þğñ CIJàüüº ĭÖī÷ ¼ÖČï Ħ¿Úğ ÷Õ dvi/dt + H(t)vi = xΦ i Ž −aŽ ∇ | ‘ òÿÖÙ ½ī ½ħÖ»° ÝŃńàïÕ IJÙ IJçĶß ÖÙ ½ĀįÕöº Ħ¿üįÖଠΦıõóĵ ¼ñÖ¾÷H(t)=˙ ñÕòĔß ĦīÖÿa/a Īàü¿ûÝŃñÖĔī ĦÓÖüī Į¾Õ Į¾Õ õñ õñ  ÷ÖÙ ĵ ¼ĵö¶‘ ¼Õ ıõÖàû ¼Öij IJÿĶï ĥÖ»° ¼Õ ıõÖàû ¼Öij Īàü¿û Ž òÿÖÙ ½ī ½ħÖ»° ÝŃńàïÕ IJÙ IJçĶß ÖÙ ½ĀįÕöº Ħ¿üįÖà¬ Φ ĵ HĭÖī÷(t)=˙ ½įÖī÷a/a ùÖ¿ĠīÝŃñÖĔī õñ ¼÷Öû Į¾Õ IJ¿Úÿ õñ Þü¾ÖÙ ½ī Õôħ Cò¾É ½ī ×Öüë IJÙ ñõĶïöÙ ö¬ ¼Öij Īàü¿û ĵøç ÷Õ ĵ òÿÖÙ ½ī ĩöç Īij Ž Ž ñö¶ ĥÖÚįñ ĥĶìß ö¿û õñ Õõ ÝÕõó µ¾ñøį Öij þİ·ĬijöÙ ĭÕĶàÙ Öß ñĶÿ ÕöçÕ ĭò¿īõÉ x֎ = πGaŽ [ρ(x,t) ρ¯(t)]. ’ ∇ xΦ = πGa [ρ(x,t) −ρ¯(t)]. ’ ∇ − ıÖ¿û öÙÕ þįÕöº CòÿÖÙ ½ī ½ĨÚğ ĵöĬĨğ Ž Ø¿¶öß IJĨÔüī Į¾Õ  ½įÖĀ·Ĵ¶ µü¾ñ IJħÖ° ıÖ¿û öÙÕ ö¿ãÖß Þìß ¼ ıö¶  öĐį ęöăöĐį ĉÖüÚįÕ ęöă ĉÖüÚįÕ ÷Õ ĵõ ÷Õ þ¿¬ ĵõ þ¿¬ ÝÖÚûÖìī ÝÖÚûÖìī õñ õñ Còݶ Còݶ ½Ĭį ½Ĭį ½ăÖï ½ăÖï ÝĵÖĜß ÝĵÖĜß ÝŃñÖĔī ÝŃñÖĔī Į¾Õ Į¾Õ Ħë Ħë CĭÖĴ¿¶áñÖë CĭÖĴ¿¶ ĉÖüÚįÕ ¼õÖ¿üÙ ĉÖüÚįÕ Įàěöº ½¾Öß Ž µ¾ñøį öĐį Įàěöº õñ ¼Öij ÖÙ öĐį þİ·ĬijöÙ õñ ÖÙÖij ıõÖàû ĥÖ»° ½ëÕĶį õñ ½ěöċ ÷Õ ĵ ÞûÕ ØħÖė Īàü¿û ÝÕõó Ħ¶ öÙ IJħÖ° òÿÖÙ ½ī öß Ħ·Āī ĵ öß ıò¿±¿¬ ½ĨÚğ ¼Öij ĵöĬĨğ ÷Õ ÝŃñÖĔī Ħë Õôħ òįĶÿ ½ī Ħ¿üįÖà¬Ħ¿üįÖଠµ¾ ıĵńĔÙ µ¾ ıĵńĔÙ ıõó åĵ÷ ıõó åĵ÷ öij Į¿Ù öij Į¿Ù ½ßĶ¿į ½ßĶ¿į þįÕöº þįÕöº ½īĶĬē ½īĶĬē ĭĶįÖğ ĭĶįÖğ ÷Õ ÷Õ ÞûÕ ÞûÕ ÝõÖÚē ÝõÖÚē ½Ĩ¶ ½Ĩ¶ µ¾ø¿ě µ¾ø¿ě ĦÓÖüī ĦÓÖüī Į¾Õ õñ Į¾Õ ÞûÕ õñ ıòÿ ÞûÕ ıòÿ Cµ¾õÖß ıñÖī õĶĈë õñ½çõÖï āĶĄï IJÙ ½įÖĀ·Ĵ¶ Õöě ĵ ½įÖĀ·Ĵ¶ ĥĶìß ½ûÖİÿ ĭÖĴ¿¶ ĵ ½įÖĀ·Ĵ¶ µ¿īÖݾñ  ÷Õ Õôħ CòįÕ ıòÿ Ħ¿·Āß ıõó ¼ñÖ¾÷ õÖ¿üÙ½çõÖï ñÕòĔß ÷Õ µ¾õÖß ıñÖī ¼Öij IJħÖij āÖï õĶċ IJÙ ĵ Öij ĭÖĀ·Ĵ¶  ½įÖĴ¿¶ µ¿īÖݾñ m m (r r ) IJÙ ¼÷Öû õÕĶĬij ÷Õ ŃĶĬĔī ĵ òÿÖÙ ½Ĭį ĪĴī µ¾ñøį ¼Öij ñõĶïöÙ ñö¶ Ě¿ăĶß IJČûÕĵ ĭÕò¿ī ÖÙ ½àëÕõ IJÙ Õõ Öij ĭÉ ĭÕĶß ½ī F = Gm imj (ri jr ) .φ (r ) i i j i− j ext i ÖijWIMP µ¾õÖß ıñÖī ÝÕõó “ IJ¶ ½àħÖë õñ ñĶÿ ½ī IJàěöº õÖ¶ IJÙ ½·¾ø¿ě ö¿ė ¼Öij ½¾Öß Ž Ħ¿·Āß ÷Õ ¼ö¿ºĶĨç õĶĐİī F = − G ri rj  −∇ .φ (r ) i j=i − ext i “ − ̸ |ri − rj|  −∇ õĶċ IJÙ ýĵõ Į¾Õ ñĶÿ éńăÕ ½ĀįÕöº ö¿ė þİ·ĬijöÙ ñĶï ÖÙ Õõ ÝÕõó Į¾Õ µ¿īÖ¿įñ ĭÕĶß ½ī òįĶÿ ½ī IJàěöº öĐį õñ j=!i !̸ | − | ñõÕñ ½¾ÕõÖ¶ Öij IJħÖij ø¶öī õñ āÖï   Öij ýĵõ ½İßĶ¿į þįÕöº Ž

Ē¾öû Öij Īà¾õĶ»ħÕ IJĔûĶß ÖÙ #%  ıõó ŒŒ ñĵòë ¼ÕöÙ ò¾ñöº đĵöÿ ’Œ IJijñ Ħ¾ÕĵÕ õñ ¼ößĶ¿­īÖ¶ ¼Öij ¼÷Öû IJ¿Úÿ ĵ#Ž% ¼Õ IJ·Úÿ¼Õ ıõó ¼Öij ò¶ òįò¿ûõ ĕĶĨÙ IJÙ ¼÷Öû IJ¿Úÿ Į¾Õ C”Œ IJijñ õññĶïöÙ ĭĵòÙ ĦÓÖüī Ħë ¼ÕöÙ òīÕõÖ¶ ĵ þİ·ĬijöÙ Ħë ¼ÕöÙ ¼÷Öû IJ¿Úÿ ¼ÕöÙ ¼Öij Īà¾õĶ»ħÕ Þ¿ë Į¿Ĭij õñ òİÿÖÙ ½ī Öij ò¶ Į¾Õ ¼Öij IJįĶĬį ÷Õ #% ½àïõñ ¼Öij Īàü¿û ¼Öij ¼÷Öû IJ¿Úÿ ŽŒŒ” ĥÖû õñ #% òÿ IJÓÕõÕ ¼ñõĶïöÙ ¼Öij Īàü¿û õñ Öij ½¾Ößĵñ µ¿īÖݾñ ĵ µ¾ñøį ŒŒ Öß ¼ñõĶïöÙ ö¿ė ¼Öij Īàü¿û ĵ Īüç Ž ĭò¿īõÉ ½įÖī÷ ùÖ¿Ġī ĵ Ī¿Ġàüī ýĵõ ÖÙ #‘% ıõó Œ‘ Öß ¼ñõĶïöÙ ñÕòĔß ½ºõøÙ IJÚßöī ĵ ÞûÕ ıòÿ ÝÖÚûÖìī ñõÕĵ Millenium ¼÷Öû IJ¿Úÿ òİįÖī ½įÖĀ·Ĵ¶ µ¿īÖݾñ ¼÷Öû IJ¿Úÿ õñ ıõó ĵ ıõó Œ’ Öß CþįÕöº Þìß IJĠĨë ĵ ¼Öij µü¾ñ C¼Õ ıõÖ¿û ¼Öij Īàü¿û IJ¿Úÿ ĦÓÖüī õñ òÙÖ¾ ½ī þ¾ÕøěÕ ĭÖݱĬij ÝÕõó ¼ÕöÙ ¼ñÖ¾÷ ¼Öij ýńß ö¿ïÕ ¼Öij ıñ õñ #’% òÿÖÙ ½ī ¼÷Öû IJ¿Úÿ ĦÙÖğ ½·¿īÖݾñ ĭÖī÷ öÙÕöÙ òă òİ° ½įÖī÷ ùÖ¿Ġī ĭÉ ÷Õ #“% òÿÖÙ ½ī GRAP E õÕøěÕ Þðû ĭÉ IJè¿àį ĵ ÞûÕ ıòÿ ĩÖèįÕ ø¿į ¼õÕøěÕ Þðû ½ßÖÚûÖìī ĭÕĶß þ¾ÕøěÕ Õöß ½ºõøÙ IJÚßöī IJÙ ½ßÖÚûÖìī Ýõòğ ÞûÕ ıòÿ ½ëÕöċ ½ĀįÕöº þİ·ĬijöÙ ¼ÕöÙ āÖï õĶċ IJÙ Öij õÕøěÕ Þðû Į¾Õ IJ¶ Öç òijñ ½ī IJÓÕõÕ ªńě

’ Galaxy Formation - Models 18 Cosmological N body simulations

What30th Jerusalem is the Winter ideal School N-body simulation? Romain Teyssier31

Lecture series School of Astronomy - IPM Œ ĭÖĴ¿¶ ùÖ¿Ġī ¸õøÙ ¼÷Öû IJ¿Úÿ

Ī¾õÕñ ½įÖī÷ ĩÖº ´ńī ¼ÕöÙ Õôħ CòÿÖÙ ĩĵñ IJĨĬç ÷Õ öß ¸õøÙ ĥĵÕ IJĨĬç IJ¶ ñĶÿ ½ī ĦăÖë ½įÖī÷ ñÖĬàēÕ ĦÙÖğ Þğñ  u ∆t = α | | tol F Ž‘ | | òݶŒ ½ī ĆĠį Õõ Īàü¿û ¼ö¾ô¬ ÞĀº÷ÖÙ ÝõĶă Į¾òÙ ¼÷Öû÷ÖÙ IJ¶ ÖèįÉ ÷Õ òÿÖÙ ½ī úįÕöħĶßĭÖĴ¿¶ ùÖ¿Ġī òĔÙ ĭĵòÙ ¸õøÙ öàīÕõÖ¬ ¼÷Öûαtol IJ¿ÚÿC ÷Õ ÞûÕ ÝõÖÚē ´ńī öß ØûÖİī ×ÖðàįÕ Œ σ ĭÖĴ¿¶ ùÖ¿Ġī ¸õøÙ ¼÷Öû IJ¿Úÿ Ī¾õÕñ ½įÖī÷ ĩÖº ´ńī ¼ÕöÙ Õôħ CòÿÖÙ ĩĵñ IJĨĬç ÷Õ∆t öß= ¸õøÙαtol ĥĵÕ IJĨĬç IJ¶ ñĶÿ ½ī ĦăÖë ½įÖī÷ ñÖĬàēÕ ĦÙÖğ Þğñ  F Ž’ | | u Ī¾õÕñ ½įÖī÷ ĩÖº ´ńī ¼ÕöÙ Õôħ CòÿÖÙ ĩĵñ IJĨĬç ÷Õ∆ ößt = ¸õøÙαtol ĥĵÕ| | IJĨĬç IJ¶ ñĶÿ ½ī ĦăÖë ½įÖī÷ ñÖĬàēÕ ĦÙÖğ Þğñ σ #‘Œ% òÿÖÙF ½ī IJĨÔüī õñ ÝÕõó Þēöû ½ēĶį ½ºòݶÕö¬ Ž‘ IJ¶ C u| | ∆t = α | | tol F Ž‘ α òݶ ½ī ĆĠį Õõ Īàü¿û ¼ö¾ô¬ ÞĀº÷ÖÙ ÝõĶă Į¾òÙ ¼÷Öû÷ÖÙ| IJ¶| ÖèįÉ ÷Õ òÿÖÙ ½ī úįÕöħĶß òĔÙ ĭĵòÙ öàīÕõÖ¬ tol C òݶ ½ī ĆĠį Õõ Īàü¿û ¼ö¾ô¬ ÞĀº÷ÖÙ ÝõĶă Į¾òÙ ¼÷Öû÷ÖÙ IJ¶ ÖèįÉ ÷Õ òÿÖÙ÷Õ ½ī ÞûÕ úįÕöħĶß ÝõÖÚēµ¿īÖݾñĵõò¿ij òĔÙ ´ńī ĭĵòÙ öàīÕõÖ¬ öß ØûÖİīαtol C ×ÖðàįÕ  σ ÷Õ ÞûÕ ÝõÖÚē ´ńī öß ØûÖİī ×ÖðàįÕ ∆t = αtol Ž’ σF ∆t = α | | ıòÿ õÕĶĬij ¼Õ ıõó µ¿īÖݾñĵõò¿ij  tol F Ž’ | | #‘Œ% òÿÖÙ ½ī IJĨÔüī õñ ÝÕõó Þēöû ½ēĶį ½ºòݶÕö¬ σ IJ¶ C ĭÖĀ·Ĵ¶ ¼ö¿º Ħ·ÿ IJĔħÖČī õñ µ¿īÖݾñĵõò¿ij ĦÓÖüī Ħë#‘Œ æ¾Õõ% òÿÖÙ ¼Öij ½ī µ¿İ·ß IJĨÔüī õñ ÷Õ ½·¾ÝÕõó ıòÿ Þēöû õÕĶĬij ½ēĶį ¼Õ ½ºòݶÕö¬ ıõó µ¿īÖݾñĵõò¿ijσ IJ¶ C ¼³įÕöºŃ ĩöě ÷Õ ÞħĶĴû õĶĐİī IJÙ Õôħ C#‘Ž% ñĶÿ ½ī ĥÖÚįñ ÝÕõó µß µß Þ¶öë ýĵõ Į¾Õ õñ #‘% òÿÖÙ ½ī Öij òİݶ ½ī Þ¶öë ĥÖ¿û ÖÙ ÝÖĄàðī ñĶÿ ½ī ıñÖĜàûÕ Þ¶öë ÝŃñÖĔī µ¿īÖݾñĵõò¿ij  dρ µ¿īÖݾñĵõò¿ij  Galaxy Formation+ ρ .u = - Hydrodynamic Simulations 19 dt ∇ Œ Ž“ Smoothed-Particle Hydrodynamicsıòÿıòÿ (SPH) õÕĶĬij õÕĶĬij ¼Õ ¼Õ ıõó ıõó µ¿īÖݾñĵõò¿ij µ¿īÖݾñĵõò¿ij   C Grid-Baseddu AlgorithmsP ĭÖĀ·Ĵ¶ĭÖĀ·Ĵ¶ ¼ö¿º ¼ö¿º Ħ·ÿ Ħ·ÿ IJĔħÖČī IJĔħÖČī õñ µ¿īÖݾñĵõò¿ij õñ µ¿īÖݾñĵõò¿ij ĦÓÖüī ĦÓÖüī= Ħë Ħë∇ æ¾Õõ æ¾Õõ ¼Öij ¼Öijφ µ¿İ·ß µ¿İ·ß ÷Õ ½·¾ ÷Õ ½·¾ ıòÿ ıòÿ õÕĶĬij õÕĶĬij ¼Õ ıõó ¼Õ µ¿īÖݾñĵõò¿ij ıõó µ¿īÖݾñĵõò¿ij dt − ρ −∇ Ž” ¼³įÕöºŃ¼³įÕöºŃ ĩöě ÷Õ ĩöě ÞħĶĴû ÷Õ ÞħĶĴû õĶĐİī õĶĐİī IJÙ IJÙ Õôħ Õôħ C#‘Ž C#‘Ž%% ñĶÿ ñĶÿ ½ī ½ī ĥÖÚįñ ĥÖÚįñ ÝÕõó ÝÕõó µß µß µß µß Þ¶öë Þ¶öë ýĵõ ýĵõ Į¾Õ õñ Į¾Õ # õñ‘% # òÿÖّ% ½ī òÿÖÙ Öij ½ī Öij òİݶ òİݶ ½ī ½ī Þ¶öë Þ¶öë ĥÖ¿û ĥÖ¿û ÖÙ ÖÙ ÝÖĄàðī ÝÖĄàðī ñĶÿ ñĶÿ ½ī ıñÖĜàûÕ ½ī ıñÖĜàûÕ Þ¶öë Þ¶öë ÝŃñÖĔī ÝŃñÖĔīC dρ dE dρ P+ ρ .u =L(E,ρ) = dt + ρ∇.u.u =Œ Ž“ Ž• dt dt− ρ ∇∇ − Œρ Ž“ C CĭĶûÕĶ¬ IJħñÖĔī öÙ ıĵńē CÝŃñÖĔī Ħë ¼ÕöÙ òİÿÖÙd ½īu ĩöç òëÕĵP þ¾Öīöº ĵ þ¾Öīöû íöį H ĵ C ĵCL = C H IJ¶ CC = ∇ φ Ž” − ddtu − ρP −∇ ñĶÿ ½ī IJàěöº öĐį õñ ø¿į ÞħÖë IJħñÖĔī = ∇ φ Ž” dt − ρ −∇ C P =(㠍)ρE Œ dE P − L(E,ρ) C = .u Ž• dt − ρ ∇ − ρ γ dE P L(E,ρ) The IllustrisòÿÖÙ simulations ½ī ĵõñ ½Ùwere ú¾òįÕ run on supercomputersIJ¶ C in France, Germany, and = .u SPH Ž• ĩöç ¼³įÕöºŃCĭĶûÕĶ¬ IJħñÖĔī ĭĶ¿ûŃĶīöě öÙ ıĵńē õñ CÝŃñÖĔī òÿÖÙ ½ī Ħë ıõó ¼ÕöÙ ¼ñÕòĔßdt òİÿÖÙ ½ī− ÝõĶăρ ĩöç∇ òëÕĵ IJÙ− ĵ þ¾Öīöº ĶħõÖ¶ρ ÞįĶī ĵ þ¾Öīöû ýĵõthe US. íöį ÖÙ TheH ĥÖ¿û ĵlargestC þ¾ÖĬįĵC Lwas= runC onH 8,192½ĨăÕIJ¶ C compute ıò¾Õ cores, and took 19 million CPU hours (the equivalent of one− computer CPU running for 19 million hours, or ĥÖäī ¼ÕöÙ ñö¶ Į¿¿Ĕß ĥÖ¿û ¼ÕöÙ Õõ ½įÕò¿ī öij ĭÕĶß ½ī ÝÕõó Į¾Õ ÷Õ ıñÖĜàûÕ ÖÙñĶÿ òİÿÖÙ ½ī IJàěöº ½ī öĐįIJàü¾Ö¬ õñ ø¿į ĥÖ¿û ÞħÖë öăÖİē IJħñÖĔī ĵ ÝÕõó about 2,000 years).H C L = C H CĭĶûÕĶ¬ IJħñÖĔī öÙ ıĵńē CÝŃñÖĔī Ħë ¼ÕöÙ òİÿÖÙ ½ī ĩöçĪ¾õÕñ òëÕĵ ½Ú¾öĠß þ¾Öīöº õĶċ ĵ IJÙ þ¾Öīöû CòÿÖÙ r íöįĭÖ·ī õñĵ öĐįĵC ñõĶī ĭÕò¿ī− A IJ¶öºÕ C P =(㠍)ρE Œ − ñĶÿ ½ī IJàěöº öĐį õñ ø¿į ÞħÖë IJħñÖĔī HydroN simulations establishing through directly accounting for the baryonic A γ A(r)=componentm j W (gas,(r r stars,; h) supermassiveòÿÖÙ ½ī ĵõñ ½Ù ú¾òįÕ black IJ¶ holes, C etc.) in cosmological P =(j㠍)ρE j SPH  Œ ĩöç ¼³įÕöºŃ ĭĶ¿ûŃĶīöě õñ òÿÖÙ ½ī ıõó ¼ñÕòĔßsimulations ÝõĶăρ−j IJÙ that ĵ ĶħõÖ¶ − calculate ÞįĶī ýĵõ fluid ÖÙ ĥÖ¿û motion þ¾ÖĬį ("hydrodynamics")½ĨăÕ ıò¾Õ as well as , in j!= ĥÖäī ¼ÕöÙ ñö¶ Į¿¿Ĕß ĥÖ¿û ¼ÕöÙ Õõ ½įÕò¿ī öijprinciple ĭÕĶß ½ī ÝÕõó offering Į¾Õ ÷Õ ıñÖĜàûÕa self-consistent ÖÙ òİÿÖÙ ½īòÿÖÙ IJàü¾Ö¬ and ½ī ĥÖ¿û fully ĵõñ öăÖİē predictive ½Ù ú¾òįÕ ĵ ÝÕõó γ methodology.IJ¶ C Ī¾õÕñh ½Ú¾öĠß õĶċ IJÙ CòÿÖÙ r ĭÖ·ī õñ öĐį ñõĶī ĭÕò¿īWA(r,öºÕ h) ÞÚüįĩöç ¼³įÕöºŃ öºÕ IJ¶ ñĶÿ ĭĶ¿ûŃĶīöě ½ī Į¿¿Ĕß õñ ¼Ķìį òÿÖÙ IJÙ ½ī IJàüij ıõóLecture Į¾Õ ¼ñÕòĔß ĦĬē series ÝõĶă õñ  đÖĔÿ IJÙ ĵ õñĶħõÖ¶ ¼÷Öû ÞįĶī õÕĶĬij ýĵõ IJàüij ÖÙ ĥÖ¿û ÷Õ ÞûÕ þ¾ÖĬį ÝõÖÚē SPH ½ĨăÕ IJ¶ ıò¾Õ C School of Astronomy - IPM N η r/h ÝõĶăĥÖäī ¼ÕöÙ òİÿÖÙ ñö¶ öĐį Į¿¿Ĕß ñõĶī ĥÖ¿û ıõó ½»¾ÖüĬij ¼ÕöÙ Õõ ½įÕò¿ī õñ IJ¶ öij òÿÖÙ ĭÕĶß ½ī ½ī ½ßÕõó ÝÕõóAj ĒĬç Į¾Õ ú¬ ÷Õ ıñÖĜàûÕ òÿÖÙ öÙÕöÙ ÖÙ òİÿÖÙ òÿÖÙ ½ī öß ¸õøÙ IJàü¾Ö¬ ĥÖ¿ûÞÙÖã öăÖİē õÕòĠī ÷Õ ĵ ÝÕõó A(r)= mj W (r rj; h) r  A ½ī ĩÖèįÕ ½ûòİij ÝõĶă IJÙ ĵ ½àïõñ Īà¾ö»ħÕ ĊûĶß þİ·ĬijöÙĪ¾õÕñρj Þü¿ħ ½Ú¾öĠß− IJ¿Ĵß õĶċ ¼ÕöÙ IJÙ CòÿÖÙ Ķç ĵ ÞüçĭÖ·ī  õñr öĐįrj ñõĶīηh ĭÕò¿īCñö¿º ½īöºÕ j!= | − | ≤ N ÖÙ ñĶÙ òijÕĶï öÙÕöÙ ĭÕò¿ī ½¾ÖĈě ĞàĀī #‘% ñĶÿ ÞÚüį öºÕ IJ¶ ñĶÿ ½ī Į¿¿Ĕß ¼Ķìį IJÙ IJàüij Į¾Õ ĦĬē õñ hAđÖĔÿj õñ ¼÷Öû õÕĶĬij IJàüij ÷Õ ÞûÕ ÝõÖÚē W (r, h) IJ¶ C A(r)= N mj W (r rj; h)  Aρj − η r/h ÝõĶă òİÿÖÙ öĐį ñõĶī ıõó ½»¾ÖüĬij õñ IJ¶ òÿÖÙj ½ī= ½ßÕõój ĒĬç ú¬ òÿÖÙ öÙÕöÙ òÿÖÙ öß ¸õøÙ ÞÙÖã õÕòĠī ÷Õ A(r)= !mj W (r rj ; h) Ž ½ī ĩÖèįÕ ½ûòİij ÝõĶă IJÙ ĵ ½àïõñ∇ Īà¾ö»ħÕ ĊûĶß þİ·ĬijöÙρj ∇ Þü¿ħ IJ¿Ĵß− ¼ÕöÙ Ķç ĵ Þüç  r rj ηh Cñö¿º ½ī j!= | − | ≤ ÞÚüį öºÕ IJ¶ ñĶÿ ½ī Į¿¿Ĕß ¼Ķìį IJÙ IJàüij Į¾Õ ĦĬē õñ h đÖĔÿÖÙ õñ ñĶÙ ¼÷Öû òijÕĶï õÕĶĬij öÙÕöÙ ĭÕò¿ī IJàüij ½¾ÖĈě ÷Õ ÞûÕ ĞàĀī ÝõÖÚē #‘W%( ñĶÿr, h) IJ¶ C N η r/h ÝõĶă òİÿÖÙ öĐį ñõĶī ıõó ½»¾ÖüĬij õñ IJ¶ òÿÖÙ ½ī ½ßÕõóŒAj ĒĬç ú¬ òÿÖÙ öÙÕöÙ òÿÖÙ öß ¸õøÙ ÞÙÖã õÕòĠī ÷Õ A(r)= mj W (r rj ; h) Ž ½ī ĩÖèįÕ ½ûòİij ÝõĶă IJÙ ĵ ½àïõñ Īà¾ö»ħÕ∇ ĊûĶß þİ·ĬijöÙρj ∇ Þü¿ħ− IJ¿Ĵß ¼ÕöÙ Ķç ĵ Þüç  r rj ηh Cñö¿º ½ī j!= | − | ≤ ÖÙ ñĶÙ òijÕĶï öÙÕöÙ ĭÕò¿ī ½¾ÖĈě ĞàĀī #‘% ñĶÿ

N Œ Aj A(r)= mj W (r rj ; h) Ž ∇ ρj ∇ − j!=

Œ Galaxy Formation - Hydrodynamic Simulations 20

Hubble DEEP Hydro Simulation

Lecture series School of Astronomy - IPM Galaxy Formation - Semi-Analytic Model (SAM) 21

Indirect galaxy formation

Images of the Hubble Ultra Deep Field as predicted by the Millennium Run Observatory (left) and as actually observed by the (right).

Lecture series School of Astronomy - IPM Galaxy Formation - 22

Lecture series School of Astronomy - IPM Galaxy Formation - 23

Lecture series School of Astronomy - IPM Galaxy Formation 24

Lecture series School of Astronomy - IPM Galaxy Formation 25

Lecture series School of Astronomy - IPM Galaxy Formation 26

Lecture series School of Astronomy - IPM Galaxy Formation 27

Lecture series School of Astronomy - IPM Galaxy Formation-Schematic overview of Galaxy formation 28

Cosmological Model

Dark matter halo merger tree

Gas Cooling & Disk Galaxy merger Density profile formation spheroid formation Spheroid sizes Disk sizes

Star Formation & Feedback Feedback Bursts

AGN SN Chemical evolution

Jet model Stellar population

Dust extinction

Observable galaxy properties

Lecture series School of Astronomy - IPM Galaxy Formation- Our works 29 Physical consequences In the radio mode or low energy activity SN (∝SFR) some of hot gas accreted onto the central super massive black hole after cooling down and settled at the galaxy center. Hence, relative to the black hole accretion rate, the amount of energy add to the cooling gas, AGN instantly. 3 AGN (∝mBHσ ) Croton et al. 2006

AGN

Lecture series School of Astronomy - IPM Galaxy Formation- Our works 30

Physically Motivated AGN Feedback

Lecture series School of Astronomy - IPM Galaxy Formation- Our works 31

Lecture series School of Astronomy - IPM Galaxy Formation- Our works 32

Dynamically Old & young identifications

Lecture series School of Astronomy - IPM Galaxy Formation- Our works 33

Effect of environment; Old: evolved & young : evolving

8

6 / 0.96 Gyr] • O

4 /dt [M BH

Log dM 2

0 11.0 11.2 11.4 11.6 11.8 -1 Log M* [M O• h ]

Recent Major merger Accretion of SMBH

Lecture series School of Astronomy - IPM Galaxy Formation- Our future plans 34

AGN physic in galaxy formation Optimization of our model for galaxy formation Geometrical environment in the Simulation data Hydro-dynamical simulation and metallicity gradient Properties of galaxy groups in hydrodynamic and SAM

Lecture series School of Astronomy - IPM Galaxy Formation- Book 35

@akhtarnegar http://www.akhtarnegar.ir

Thanks for your attention

Lecture series School of Astronomy - IPM Galaxy Formation- Extra slide 36

Lecture series School of Astronomy - IPM