Galaxies and the Distance Ladder

Total Page:16

File Type:pdf, Size:1020Kb

Galaxies and the Distance Ladder 1 Lecture 34 Galaxies and Dark Matter January 15c, 2014 2 M 100 -- Spiral Galaxy A grand design spiral galaxy. Click here for more info about this image. 3 NGC 5090 and NGC 5091 The spiral galaxy NGC 5091 may be colliding with elliptical galaxy NGC 5090. Click here for more info on the galaxy pair. 4 Small Magellanic Cloud Our nearest neighbor, an irregular galaxy. Click here for more info on this picture. 5 Distances to Galaxies • Galaxies were first thought to be star forming regions. • It was proposed that the “spiral nebula” were “island universes”. • Spectroscopic parallax is only good for distances up to 10,000 pc. Andromeda Galaxy 6 Using Cepheid Variable Stars to Measure Distances • Variable stars are stars whose brightness varies in a very smooth, predictable way. • Cepheid variables – periods vary from 1-100 days. Figure 23.5, Chaisson and McMillan, 6th ed. Astronomy Today, © 2008 Pearson Prentice Hall • RR Lyrae variables – periods are all less than 1 day. 7 • Cepheids are stars that have moved off of the MS. – Star is expanding and contracting. – Luminosity rises and falls. Figure 23.6, Chaisson and McMillan, 6th ed. Astronomy Today, © 2008 Pearson Prentice Hall 8 Cepheid Variables • Average luminosity is related to pulsation period. • If luminosity and apparent brightness are known, distance can be determined Luminosity Apparent Brightness 4d 2 Figure 23.7, Chaisson and McMillan, 6th ed. Astronomy Today, © 2008 Pearson Prentice Hall 9 Supernovae as Standard Candles • Type Ia supernovae all reach the same maximum luminosity, about 3 × 109 solar luminosities • If supernova is observed in another galaxy and the peak apparent brightness is measured, the distance can be calculated. Luminosity Apparent Brightness 4d 2 10 Tully-Fisher Relation for Determining Distances • Used to determine distances to galaxies where individual stars cannot be seen. • Relates speed of rotation and luminosity of a galaxy. – The faster a galaxy rotates, the higher the luminosity. • If apparent brightness and luminosity are known, distance can be determined 11 • How is rotational speed measured? – Doppler Shift Figure 24.11, Chaisson and McMillan, 6th ed. Astronomy Today, • Tully-Fisher calibrated using © 2008 Pearson Prentice Hall nearby galaxies with variable stars 12 The Distance Ladder 13 Distribution of Galaxies • Most galaxies are clustered – Milky Way has 3 nearby companions – ~40 galaxies in Local Group (Size ~1 Mpc) Map of three-quarters of the members of the Local Group Figure 16-18, Comins and Kaufmann, Artist’s view of the Local Group 7th ed. Discovering the Universe, Figure 16.30, Arny and Schneider, 5th ed. Explorations, © 2005 W.H. Freeman and Company © 2008 The McGraw-Hill Companies, Inc. 14 Which distance measuring method would be most reliable for a nearby galaxy in our Local Group? A. Parallax B. Spectroscopic parallax C. Cepheid variables D. Supernovas E. Tully-Fisher 15 Which distance measuring method would be most reliable for a nearby galaxy in our Local Group? A. Parallax B. Spectroscopic parallax C. Cepheid variables D. Supernovas E. Tully-Fisher 16 Clusters of Galaxies • Galaxies often found in clusters – Rich cluster: many hundreds of galaxies – Poor cluster (or group): only a few dozen galaxies • Held together by gravity • Milky Way is near the Virgo Cluster of ~2500 galaxies (Size ~3Mpc across) 17 Figure 16.36, Arny and Schneider, 5th ed. Explorations, © 2008 The McGraw-Hill Companies 18 Virgo Cluster – SDSS Image 19 Clusters and Superclusters • Large clusters – More Ellipticals found near the center – More Spirals found in outer regions • Superclusters – clusters of clusters of galaxies. – In between clusters -- no gas gas been detected • Most must have been swept up during galaxy formation. 20 Figures 25.23 and 24, Chaisson and McMillan, 6th ed. Astronomy Today, © 2008 Pearson Prentice Hall 21 Abell 2218 22 Role of Interactions • Small interactions may start formation of spiral structure. • Strong interactions (collisions, cannibalism) may alter structure completely – Spirals lose structure, become ellipticals. – Large galaxies “eat” many other galaxies, become very large 23 Galaxy Merger 24 Antennae Galaxy 25 Which of the following is NOT true concerning the Local Group? A. It contains about 40 member galaxies. B. It is roughly spherical in shape with the most massive galaxies near the center. C. It is a poor cluster. D. It is the galaxy cluster to which the Milky Way belongs. 26 Which of the following is NOT true concerning the Local Group? A. It contains about 40 member galaxies. B. It is roughly spherical in shape with the most massive galaxies near the center. C. It is a poor cluster. D. It is the galaxy cluster to which the Milky Way belongs. 27 Measuring the Mass of Galaxies – Kepler’s Third Law • Mass inside of radius of rotation can be measured using Kepler’s Third Law 2 3 M TOT P a • Period can be measured from the velocity of gas • Observe H to measure mass outside of stellar part of the disk. Figure 23.21, Chaisson and McMillan, 6th ed. Astronomy Today, © 2008 Pearson Prentice Hall 28 Measuring the Observable Mass • Add up mass of all of the stars, gas, dust, etc. that can be observed. • Observable Mass and Mass measured by rotation ARE NOT THE SAME!! Expected rotation curve from observable mass 29 Dark Matter • There is more mass than we can account for with known stars and gas. • The missing mass cannot be observed so it is called dark matter • In the Milky Way, about half of the matter is dark matter. • Other galaxies: 0-90% is dark matter. 30 Andromeda Galaxy Rotation Curve The M31 major axis mean optical radial velocities and the rotation curve, r <120 arcmin, superposed on the M31 image from the Palomar Sky Survey. Velocities from radio observations are indicated by triangles, 90< r <150 arcmin. Rotation velocities remain flat well beyond the optical galaxy, implying that the M31 cumulative mass rises linearly with radius. (Image by Vera Rubin and Janice Dunlap.) Physics Today, December 2006, p. 9 31 Using the Doppler effect to measure velocities, we find that the actual mass of the galaxy cluster is 10 to 100 times more than what is suggested by the luminous matter. Figure 25.2, Chaisson and McMillan, 6th ed. Astronomy Today, © 2008 Pearson Prentice Hall 32 Dark Matter revealed by Galaxy Cluster Collision This image was made by superimposing a picture made a visible wavelength, an image made at X-ray wavelengths (revealing hot gas as red blobs), and a map of dark matter (blue blobs) deduced from gravitational lensing. Figure 16.35, Arny and Schneider, 5th ed. Explorations, © 2008 The McGraw-Hill Companies, Inc. 33 Dark Matter in Galaxies and Clusters • Dark matter has been detected – in galaxies (by rotation curves) – in clusters (by galactic motions and by gravitational lensing) • Mass of cluster ~ 10-100 times observable mass • If true, universe is Figure 25.1b, Chaisson and McMillan, 6th ed. Astronomy Today, © 2008 Pearson Prentice Hall 90% Dark Matter. 34 • Where is the dark matter? – Believed to be distributed in large halo surrounding galaxy. – Also in clusters? • What is dark matter? -- not sure – Brown dwarfs = protostars that never started fusion. – Black dwarfs = cooled white dwarfs. – Black holes – Sub-atomic particles 35 Which of the following is NOT a reason why astronomers believe that dark matter exists? A. They can detect it with radio telescopes. B. The outer parts of galaxies rotate faster than expected on the basis of the luminous matter. C. The galaxies in clusters move faster than expected on the basis of the luminous matter. D. It explains some of the gravitational lensing that is observed at long distances. 36 Which of the following is NOT a reason why astronomers believe that dark matter exists? A. They can detect it with radio telescopes. B. The outer parts of galaxies rotate faster than expected on the basis of the luminous matter. C. The galaxies in clusters move faster than expected on the basis of the luminous matter. D. It explains some of the gravitational lensing that is observed at long distances. 37 Galaxy Formation • No set theory for galaxy formation yet. Galaxies form from one large cloud of gas Galaxies form from the merger of a few medium size gas clouds Galaxies form from many small gas clouds 38 Questions on Galaxy Formation • Why are ellipticals and spirals so different? – Ellipticals have mainly older stars = stars formed early on and little new star formation has occurred. – Spirals have new and old stars = more continuous star formation • What role do interactions play in creating galaxies? • Spiral galaxies are more common at large distances (in the past) -- where are they now? 39 Formation of Milky Way One model for the formation of the Milky Way. There still remains debate among scientists about the role that collisions and mergers play in the formation of large galaxies like the Milky way. Figure 15.27, Arny and Schneider, 5th ed. Explorations, © 2008 The McGraw-Hill Companies .
Recommended publications
  • Unusual Orbits in the Andromeda Galaxy Post-16
    Unusual orbits in the Andromeda galaxy Post-16 Topics covered: spectra, Doppler effect, Newton’s law of gravitation, galaxy rotation curves, arc lengths, cosmological units, dark matter Teacher’s Notes In this activity students will use real scientific data to plot the rotation curve of M31 (Andromeda), our neighbouring spiral galaxy. They will use Kepler’s third law to predict the motion of stars around the centre of M31. They will then measure the wavelengths of hydrogen emission spectra taken at a range of radii. The Doppler equation will be used to determine whether these spectra come from the approaching or receding limb of the galaxy and the velocity of rotation at that point. They will plot a velocity vs radius graph and compare it with their predicted result. A flat rotation curve indicates the presence of dark matter within Andromeda. Equipment: calculator, ruler, graph paper (if needed) Questions to ask the class before the activity: What is the Universe composed of? Answer: energy, luminous matter, dark matter, dark energy. What is a spectrum and how so we get spectral lines? Answer: a ‘fingerprint’ of an object made of light. The spectrum of visible light is composed of the colours of the rainbow. Absorption lines arise from electrons absorbing photons of light and jumping an energy level or levels; emission lines occur when electrons fall down to a lower energy level and emit a photon in the process. What can a spectrum tell us? Answer: the composition of an object such as a star, its temperature, its pressure, the abundance of elements in the star, its motion (velocity).
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • The Puzzling Nature of Dwarf-Sized Gas Poor Disk Galaxies
    Dissertation submitted to the Department of Physics Combined Faculties of the Astronomy Division Natural Sciences and Mathematics University of Oulu Ruperto-Carola-University Oulu, Finland Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by Joachim Janz born in: Heidelberg, Germany Public defense: January 25, 2013 in Oulu, Finland THE PUZZLING NATURE OF DWARF-SIZED GAS POOR DISK GALAXIES Preliminary examiners: Pekka Heinämäki Helmut Jerjen Opponent: Laura Ferrarese Joachim Janz: The puzzling nature of dwarf-sized gas poor disk galaxies, c 2012 advisors: Dr. Eija Laurikainen Dr. Thorsten Lisker Prof. Heikki Salo Oulu, 2012 ABSTRACT Early-type dwarf galaxies were originally described as elliptical feature-less galax- ies. However, later disk signatures were revealed in some of them. In fact, it is still disputed whether they follow photometric scaling relations similar to giant elliptical galaxies or whether they are rather formed in transformations of late- type galaxies induced by the galaxy cluster environment. The early-type dwarf galaxies are the most abundant galaxy type in clusters, and their low-mass make them susceptible to processes that let galaxies evolve. Therefore, they are well- suited as probes of galaxy evolution. In this thesis we explore possible relationships and evolutionary links of early- type dwarfs to other galaxy types. We observed a sample of 121 galaxies and obtained deep near-infrared images. For analyzing the morphology of these galaxies, we apply two-dimensional multicomponent fitting to the data. This is done for the first time for a large sample of early-type dwarfs. A large fraction of the galaxies is shown to have complex multicomponent structures.
    [Show full text]
  • Astrotalk: Behind the News Headlines
    AstroTalk: Behind the news headlines Richard de Grijs (何锐思) (Macquarie University, Sydney, Australia) The Gaia ‘Sausage’ galaxy Our Milky Way galaxy has most likely collided or otherwise interacted with numerous other galaxies during its lifetime. Indeed, such interactions are common cosmic occurrences. Astronomers can deduce the history of mass accretion onto the Milky Way from a study of debris in the halo of the galaxy left as the tidal residue of such episodes. That approach has worked particularly well for studies of the most recent merger events, like the infall of the Sagittarius dwarf galaxy into the Milky Way’s centre a few billion years ago, which left tidal streamers of stars visiBle in galaxy maps. The damaging effects these encounters can cause to the Milky Way have, however, not been as well studied, and events even further in the past are even less obvious as they Become Blurred By the galaxy’s natural motions and evolution. Some episodes in the Milky Way’s history, however, were so cataclysmic that they are difficult to hide. Scientists have known for some time that the Milky Way’s halo of stars drastically changes in character with distance from the galactic centre, as revealed by the chemical composition—the ‘metallicity’—of the stars, the stellar motions, and the stellar density. Harvard astronomer Federico Marinacci and his colleagues recently analysed a suite of cosmological computer simulations and the galaxy interactions in them. In particular they analysed the history of galaxy halos as they evolved following a merger event. They concluded that six to ten Billion years ago the Milky Way merged in a head- on collision with a dwarf galaxy containing stars amounting to about one-to-ten billion solar masses, and that this collision could produce the character changes in stellar populations currently observed in the Milky Way’s stellar halo.
    [Show full text]
  • (Dark) Matter! Luminous Matter Is Concentrated at the Center
    Cosmology Two Mysteries and then How we got here Dark Matter Orbital velocity law Derivable from Kepler's 3rd law and Newton's Law of gravity r v2 M = r G M : mass lying within stellar orbit r r: radius from the Galactic center v: orbital velocity From Sun's r and v: there are about 100 billion solar masses inside the Sun's orbit! 4 Rotation curve of the Milky Way: Speed of stars and clouds of gas (from Doppler shift) vs distance from center Galaxy: rotation curve flattens out with distance Indicates much more mass in the Galaxy than observed as stars and gas! Mass not concentrated at center5 From the rotation curve, inferred distribution of dark matter: The Milky Way is surrounded by an enormous halo of non-luminous (dark) matter! Luminous matter is concentrated at the center 6 We can make measurements for other galaxies Weighing spiral galaxies C Compare shifts of spectral lines (in atomic H gas clouds) as a function of distance from the center 7 Rotation curves for various spiral galaxies First measured in 1960's by Vera Rubin They all flatten out with increasing radius, implying that all spiral galaxies have vast haloes of dark matter – luminous matter 1/6th of mass 8 This mass is the DARK MATTER: It's some substance that interacts gravitationally (equivalent to saying that it has mass)... It neither emits nor absorbs light in any form (equivalent to saying that it does not interact electromagnetically) Dark matter might conceivably have 'weak' (radioactive force) interactions 9 Gaggles of Galaxies • Galaxy groups > The Local group
    [Show full text]
  • Experiencing Hubble
    PRESCOTT ASTRONOMY CLUB PRESENTS EXPERIENCING HUBBLE John Carter August 7, 2019 GET OUT LOOK UP • When Galaxies Collide https://www.youtube.com/watch?v=HP3x7TgvgR8 • How Hubble Images Get Color https://www.youtube.com/watch? time_continue=3&v=WSG0MnmUsEY Experiencing Hubble Sagittarius Star Cloud 1. 12,000 stars 2. ½ percent of full Moon area. 3. Not one star in the image can be seen by the naked eye. 4. Color of star reflects its surface temperature. Eagle Nebula. M 16 1. Messier 16 is a conspicuous region of active star formation, appearing in the constellation Serpens Cauda. This giant cloud of interstellar gas and dust is commonly known as the Eagle Nebula, and has already created a cluster of young stars. The nebula is also referred to the Star Queen Nebula and as IC 4703; the cluster is NGC 6611. With an overall visual magnitude of 6.4, and an apparent diameter of 7', the Eagle Nebula's star cluster is best seen with low power telescopes. The brightest star in the cluster has an apparent magnitude of +8.24, easily visible with good binoculars. A 4" scope reveals about 20 stars in an uneven background of fainter stars and nebulosity; three nebulous concentrations can be glimpsed under good conditions. Under very good conditions, suggestions of dark obscuring matter can be seen to the north of the cluster. In an 8" telescope at low power, M 16 is an impressive object. The nebula extends much farther out, to a diameter of over 30'. It is filled with dark regions and globules, including a peculiar dark column and a luminous rim around the cluster.
    [Show full text]
  • Star Formation Relations and CO Sleds Across the J-Ladder and Redshift 3 on the ESA Herschel Space Observatory20 (Pilbratt Et Al
    Draft version July 17, 2014 Preprint typeset using LATEX style emulateapj v. 5/2/11 STAR FORMATION RELATIONS AND CO SPECTRAL LINE ENERGY DISTRIBUTIONS ACROSS THE J-LADDER AND REDSHIFT T. R. Greve1, I. Leonidaki2, E. M. Xilouris2, A. Weiß3, Z.-Y. Zhang4,5, P. van der Werf6, S. Aalto7, L. Armus8, T. D´ıaz-Santos8, A.S. Evans9,10, J. Fischer11, Y. Gao12, E. Gonzalez-Alfonso´ 13, A. Harris14, C. Henkel3, R. Meijerink6,15, D. A. Naylor16 H. A. Smith17 M. Spaans15 G. J. Stacey18 S. Veilleux14 F. Walter19 Draft version July 17, 2014 ABSTRACT 0 We present FIR[50 − 300 µm]−CO luminosity relations (i.e., log LFIR = α log LCO + β) for the full CO rotational ladder from J = 1 − 0 up to J = 13 − 12 for a sample of 62 local (z ≤ 0:1) (Ultra) 11 Luminous Infrared Galaxies (LIRGs; LIR[8−1000 µm] > 10 L ) using data from Herschel SPIRE-FTS and ground-based telescopes. We extend our sample to high redshifts (z > 1) by including 35 (sub)- millimeter selected dusty star forming galaxies from the literature with robust CO observations, and sufficiently well-sampled FIR/sub-millimeter spectral energy distributions (SEDs) so that accurate FIR luminosities can be deduced. The addition of luminous starbursts at high redshifts enlarge the range of the FIR−CO luminosity relations towards the high-IR-luminosity end while also significantly increasing the small amount of mid-J/high-J CO line data (J = 5 − 4 and higher) that was available prior to Herschel. This new data-set (both in terms of IR luminosity and J-ladder) reveals linear FIR−CO luminosity relations (i.e., α ' 1) for J = 1 − 0 up to J = 5 − 4, with a nearly constant normalization (β ∼ 2).
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • The Evolution of Cluster E and S0 Galaxies Measured from The
    A Mon. Not. R. Astron. So c. 000, 000{000 (0000) Printed 12 May1999 (MN L T Xstyle le v1.4) E The evolution of cluster E and S0 galaxies measured from ? the Fundamental Plane 1;2 yzx 3;4;5 zx 6;7;8 x 3;5 x Inger Jrgensen Marijn Franx , Jens Hjorth , Pieter G. van Dokkum 1 McDonald Observatory, The University of Texas at Austin, RLM 15.308, Austin, TX 78712, USA 2 Gemini Observatory, 670 N. A`ohoku Pl., Hilo, HI 96720, USA (Postal address for IJ) 3 Kapteyn Institute, P.O.Box 800, 9700 AVGroningen, The Netherlands 4 Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 5 Leiden Observatory, P.O.Box 9513, 2300 RA Leiden, The Netherlands (Postal address for MF and PvD) 6 Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK 7 NORDITA, Blegdamsvej 17, DK-2100 Copenhagen , Denmark 8 Astronomical Observatory, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen , Denmark (Postal address for JH) May 5, 1999, accepted for publication in Mon. Not. Royal Astron. Sco., Gemini Preprint #43 ABSTRACT Photometry has b een obtained for magnitude limited samples of galaxies in the two rich clusters Ab ell 665 (37 galaxies) and Ab ell 2218 (61 galaxies). Both clusters have m a redshift of 0.18. The limiting magnitude of the samples is 19 in the I-band. Sp ec- troscopy has b een obtained for seven galaxies in A665 and nine galaxies in A2218, all of whichalsohaveavailable photometry. Sp ectroscopy has b een obtained for two additional galaxies in A2218, one of whichisabackground galaxy.
    [Show full text]
  • The Evolution of Galaxy Structure Over Cosmic Time
    Annu. Rev. Astron. Astrophy. 2014 1056-8700/97/0610-00 The Evolution of Galaxy Structure over Cosmic Time Christopher J. Conselice Centre for Astronomy and Particle Theory School of Physics and Astronomy University of Nottingham, United Kingdom Key Words galaxy evolution, galaxy morphology, galaxy structure Abstract I present a comprehensive review of the evolution of galaxy structure in the universe from the first galaxies we can currently observe at z ∼ 6 down to galaxies we see in the local universe. I further address how these changes reveal galaxy formation processes that only galaxy structural analyses can provide. This review is pedagogical and begins with a de- tailed discussion of the major methods in which galaxies are studied morphologically and structurally. This includes the well-established visual method for morphology; S´ersic fitting to measure galaxy sizes and surface brightness profile shapes; non-parametric structural methods including the concentration (C), asymmetry (A), clumpiness (S) (CAS) method, the Gini/M20 parameters, as well as newer structural indices. Included is a discussion of how these structural indices measure fundamental properties of galaxies such as their scale, star formation rate, and ongoing merger activity. Extensive observational results are shown demonstrating how broad galaxy morphologies and structures change with time up to z ∼ 3, from small, compact and peculiar systems in the distant universe to the formation of the Hubble sequence dominated by spirals and ellipticals we find today. This review further addresses how structural methods accurately identify galaxies in mergers, and allow mea- arXiv:1403.2783v1 [astro-ph.GA] 12 Mar 2014 surements of the merger history out to z ∼ 3.
    [Show full text]
  • Facilitator Information – Galaxies
    Facilitator Information (All you need to know about galaxies to survive the day) What is a galaxy? Galaxies are large collections of stars and gas and dust. They have millions to billions of stars, all held into a cluster by gravitational attraction. Most galaxies are flat, but there are different shapes — some are spirals, some are elliptical, and some are irregular. Our Galaxy The Milky Way is a galaxy, a slowly rotating cluster of more than 200,000,000,000 stars! Our Milky Way Galaxy looks a little like a pinwheel. It is a spiral galaxy, about 100,000 light years across. Spiral galaxies have: a bulge in the center (called the nuclear bulge) that contains the nucleus; a wide, flat disk with distinct spiral arms containing stars; and a surrounding halo of stars. There are several “spiral arms” in our Milky Way: Sagittarius, Cygnus, Perseus, and Orion. Where are we in the Milky Way Galaxy? We are in one of the spiral arms, about 30,000 light years from the center of the Milky Way Galaxy — or about two-thirds of the way from the center. Can you see the Milky Way? Yes! On a very dark night, away from bright lights, you can see a faint, hazy — or milky — band in the sky. This is the Milky Way. The hazy appearance is because there so many stars that are very distant; your eye cannot distinguish the stars as separate points of light. By using binoculars or a telescope, you can see the individual stars. The Milky Way is like a big, flat disk in space.
    [Show full text]
  • The Andromeda Galaxy's Most Important Merger
    The Andromeda Galaxy’s most important merger ~ 2 Gyrs ago as M32’s likely progenitor Richard D’Souza* & Eric F. Bell Although the Andromeda Galaxy’s (M31) proximity offers a singular opportunity to understand how mergers affect galaxies1, uncertainty remains about M31’s most important mergers. Previous studies focused individually on the giant stellar stream2 or the impact of M32 on M31’s disk3,4, thereby suggesting many significant satellite interactions5. Yet, models of M31’s disk heating6 and the similarity between the stellar populations of different tidal substructures in M31’s outskirts7 both suggested a single large merger. M31’s outer low- surface brightness regions (its stellar halo) is built up from the tidal debris of satellites5 and provides decisive guidance about its important mergers8. Here we use cosmological models of galaxy formation9,10 to show that M31’s massive11 and metal-rich12 stellar halo, containing intermediate-age stars7, dramatically narrows the range of allowed interactions, requiring a 10 single dominant merger with a large galaxy (M*~2.5x10 M¤, the third largest member of the Local Group) ~2 Gyr ago. This single event explains many observations that were previously considered separately: its compact and metal-rich satellite M3213 is likely to be the stripped core of the disrupted galaxy, M31’s rotating inner stellar halo14 contains most of the merger debris, and the giant stellar stream15 is likely to have been thrown out during the merger. This interaction may explain M31’s global burst of star formation ~2 Gyr ago16 in which ~1/5 of its stars were formed.
    [Show full text]