Report IBM DB2 BLU Acceleration Vs

Total Page:16

File Type:pdf, Size:1020Kb

Report IBM DB2 BLU Acceleration Vs Research Report IBM DB2 BLU Acceleration vs. SAP HANA vs. Oracle Exadata Executive Summary The problem: how to analyze vast amounts of data (Big Data) most efficiently. The solution: the solution is threefold: 1. Find ways to organize and compress data such that large amounts of data take up less space – and find a way to read compressed data to speed query completion; 2. Use efficient algorithms to accelerate the speed of Big Data analysis; and, 3. Select a system environment that provides balanced resource utilization such that CPU power, memory, input/output (I/O), networks and storage all work together in a balanced fashion in order to generate query results as expeditiously as possible. Three companies – IBM, SAP, and Oracle – all build software environments designed to accelerate Big Data analysis. There are, however, very significant differences in how each vendor organizes/queries data – and in related system designs: IBM’s approach uses an innovative new technique known as “DB2 BLU Acceler- ation”. Using a columnar approach, “BLU” quickly whittles down the size of a Big Data database to isolate relevant data, in effect speed reading large databases (this approach enables BLU to achieve a 10-50X performance advantage over traditional row-based approaches). IBM’s approach also features database compression, the ability to read compressed data in memory, and a balanced system design; SAP’s HANA relies on placing large amounts of columnar data in main memory where the whole database can be analyzed in real time. HANA also compresses data by up to 20X (but need to decompress it to enable query processing). We like HANA, but we question whether system resource utilization is well-balanced; and, Oracle’s own Website describes Exadata Database Machine as “combining massive memory and low-cost disks to deliver the highest performance and petabyte scala- bility at the lowest cost”. To us, Exadata is a highly-tuned Oracle real application cluster (RAC) packaged as an appliance with storage that uses the Oracle database along with in-database advanced analytics. This offering does not exploit columnar data; does not read compressed data; and its compression facilities lag IBM’s DB2. A closer look at each vendor’s Big Data analytics offerings shows major differences in how data is cached and compressed; how workloads are managed; how memory is used – and in system balance/optimization. As we examined each vendor’s offerings from these perspec- tives, we found that IBM’s DB2 with BLU acceleration has strong advantages over SAP HANA and Oracle Exadata – particularly when it comes to balanced system design and performance. In this Research Report, Clabby Analytics discusses in greater depth how each of these systems differ. IBM DB2 BLU Acceleration vs. SAP HANA vs. Oracle Exadata The Big Data Marketplace Due to advances parallel processing; due to continual reductions in storage costs; due to the simplification of data management software; and due to lower cost, more powerful and flexible business analytics software, it has now become more affordable than ever before to run analytics applications against large volumes of enterprise data. For years enterprises have been capturing valuable, usable data — but this data has been too expensive to mine (analyze). Now, with reduced systems, storage and software costs, enterprises are finding that they can achieve a clear return-on-investment by analyzing more and more of the structured and unstructured data that they have long been able to capture. A CEO study entitled “Leading Through Connections” shows that enterprises now realize the strategic value of business analytics. Enterprises are cleansing their data, consolidating and parallelizing their databases, and building integrated infrastructures. As evidence of the strategic importance of Big Data analysis, also consider this study published in the MIT Sloan Management Review that concludes that enterprises that use Big Data analytics are twice as likely to outperform their competitors. This study also found that there has been a 60% increase in the use of business analytics over the past few years. The use of analytics is growing — and it is growing because enterprises now see the strategic value of analyzing all sorts of data. By moving to Big Data analytics enterprise are better able to respond to new opportunities as well as to create or respond more quickly to competitive threats. Enterprises that have embraced Big Data analytics are finding that they can better service customers, better manage risk, spot trends — and thus improve customer relationships, reduce risk, and exploit new business opportunities. Organizing and Working with Big Data The goal of business analytics is to help people make more informed decisions — thus leading to better business outcomes. In order to make more informed decisions, enterprises need to: Organize, integrate, and govern their structured as well as unstructured data; Address data growth (scale) through data and compute parallelism; and, Find ways to cost effectively manage and store large, complex data sets. To achieve data consistency and operational efficiency, multiple, siloed data warehouses need to be consolidated and parallelized in order to create one version of the truth (a single, common database view). Further, Quality-of-Service (QoS) requirements for reliability, availability, and security — as well as scalability and performance – need to be addressed. Once the data has been cleansed and federated, enterprises need to figure out how to work with that data. Entire databases can be placed into memory, or they can be dynamically cached (placed in the storage subsystem, then accessed as needed). Data can be tiered such that the most important data can be located on fast disks in close proximity to the process- ors such that it can be analyzed most expeditiously. Data can be compressed such that it takes up less space (saving on storage and memory costs). Data can be organized into columns in order to improve analytics performance over traditional row-based data. Some vendors can even read this compressed data, producing results more quickly than competitors. September, 2013 © 2013 Clabby Analytics Page 2 IBM DB2 BLU Acceleration vs. SAP HANA vs. Oracle Exadata Big Differences Start to Show-up When Analyzing How Data Is Organized and How the System Design Supports Big Data Analytics Processing Some of the comparison points that we look for when comparing and contrasting IBM’s, SAP’s, and Oracle’s approaches include: What is the data structure? Is it row data or columnar – or both? Is the data cached or is it all held in memory? How is compression handled? What are the system design characteristics? Where/how is the data processed? What is being done to streamline CPU, memory and I/O interaction? What are the deployment characteristics? As Figure 1 shows, there are big differences in how IBM, SAP, and Oracle express data (rows vs. columnar); how memory management/caching is handled; how compression is handled; and how data is processed by the system (resource utilization). Figure 1 – How IBM, SAP, and Oracle Organized Big Data Source: Clabby Analytics – September, 2013 The way we see it, organizing data into columns has big performance advantages as compared with processing row-based data. We like in-memory databases like SAP’s HANA, especially for real-time processing, but we have some resource utilization issues with this design (so clever caching is more appealing to us). We see the ability to analyze compressed data as a huge competitive differentiator for September, 2013 © 2013 Clabby Analytics Page 3 IBM DB2 BLU Acceleration vs. SAP HANA vs. Oracle Exadata IBM because it speeds the time it takes to achieve results. From a systems design perspective, we like to see the balanced use of all resources – and we like to see processors exploit SIMD instructions (single instruction, multiple data) in order to more efficiently process data in parallel. As for deployment (and operations), it can be argued that IBM’s approach is less complex (load-and-go simplicity) and more flexible (more control over how to configure/build a Big Data server) as compared with its SAP and Oracle competitors. A Closer Look at IBM’s DB2 BLU Acceleration Solution First, it is important to note that IBM tunes its DB2 BLU acceleration for its own hardware – just as Oracle does for its own hardware. SAP, on the other hand, has been designed to run on the commodity (x86) hardware offered by many vendors. As we looked at IBM’s BLU Acceleration data structure we found that it can be used with row or column-based data. In column mode, it has been reported to be 10-50X faster than traditional row-based relational databases. From a memory management perspective, IBM’s DB2 with BLU Acceleration is designed to use in-memory columnar processing that maintains in-memory performance while dynamically moving unused data to/from storage as needed. As for compression, DB2 has long had a compression advantage over other major database competitors (a few years ago we wrote about how some Oracle customers were able to save 40% of their storage costs by taking advantage of DB2 compression). But, in addition to compression efficiency advantages, BLU Acceleration is able to read compressed data (no decompression necessary) while also employing data skipping algorithms to speed-read compressed databases. BLU Acceleration also takes advantage of processor level parallel vector processing to exploit multi-core and SIMD (single instruction, multiple data) parallelism (SIMD instructions help improve parallel performance, helping to produce query results faster than systems that do not exploit SIMD). DB2 with BLU Acceleration is NOT an in-memory database processing environment (like SAP’s HANA) – instead it uses dynamic memory management caching techniques to off-load some data to near proximity fast storage.
Recommended publications
  • Netezza EOL: IBM IAS Is a Flawed Upgrade Path Netezza EOL: IBM IAS Is a Flawed Upgrade Path
    Author: Marc Staimer WHITE PAPER Netezza EOL: What You’re Not Being Told About IBM IAS Is a Flawed Upgrade Path Database as a Service (DBaaS) WHITE PAPER • Netezza EOL: IBM IAS Is a Flawed Upgrade Path Netezza EOL: IBM IAS Is a Flawed Upgrade Path Executive Summary It is a common technology vendor fallacy to compare their systems with their competitors by focusing on the features, functions, and specifications they have, but the other guy doesn’t. Vendors ignore the opposite while touting hardware specs that mean little. It doesn’t matter if those features, functions, and specifications provide anything meaningfully empirical to the business applications that rely on the system. It only matters if it demonstrates an advantage on paper. This is called specsmanship. It’s similar to starting an argument with proof points. The specs, features, and functions are proof points that the system can solve specific operational problems. They are the “what” that solves the problem or problems. They mean nothing by themselves. Specsmanship is defined by Wikipedia as: “inappropriate use of specifications or measurement results to establish supposed superiority of one entity over another, generally when no such superiority exists.” It’s the frequent ineffective sales process utilized by IBM. A textbook example of this is IBM’s attempt to move their Netezza users to the IBM Integrated Analytics System (IIAS). IBM is compelling their users to move away from Netezza. In the fall of 2017, IBM announced to the Enzee community (Netezza users) that they can no longer purchase or upgrade PureData System for Analytics (the most recent IBM name for its Netezza appliances), and it will end-of-life all support next year.
    [Show full text]
  • Osisoft Corporate Powerpoint Template
    HRS 2016 - IIOT, Advanced Analytics, & “Big Data” Forum • 1976–1979: concept of Teradata grows from research at California Institute of Technology (Caltech) and from the discussions of Citibank's advanced technology group. • 1984: Teradata releases the world's first parallel data warehouses and data marts. • 1986: Fortune Magazine names Teradata "Product of the Year." • 1992: Teradata creates the first system over 1 terabyte, which goes live at Wal-Mart. • 1997: Teradata customer creates world's largest production database at 24 terabytes. • 1999: Teradata customer has world's largest database with 130 terabytes. • 2014: Teradata acquires Rainstor, a company specializing in online big data archiving on Hadoop. https://en.wikipedia.org/wiki/Teradata#History HRS 2016 - IIOT, Advanced Analytics, & “Big Data” Forum • The genesis of Hadoop came from the Google File System paper that was published in October 2003. • This paper spawned another research paper from Google – MapReduce: Simplified Data Processing on Large Clusters. • Development started in the Apache Nutch project, but was moved to the new Hadoop subproject in January 2006. Doug Cutting, who was working at Yahoo! at the time, named it after his son's toy elephant. https://en.wikipedia.org/wiki/Apache_Hadoop#History HRS 2016 - IIOT, Advanced Analytics, & “Big Data” Forum Company Product Description IBM Informix Supports Dynamic In-memory (in-memory columnar processing) Parallel Vector Processing, Actionable Compression, and Data Skipping technologies, collectively called "Blink Technology“ by IBM. Released: March 2011. IBM DB2 BLU IBM DB2 for Linux, UNIX and Windows supports dynamic in-memory (in-memory columnar processing) parallel vector processing, actionable compression, and data- skipping technologies, collectively called IBM BLU Acceleration by IBM.
    [Show full text]
  • Bridging to the Cloud: the Right Database Can Make the Difference 2 Bridging to the Cloud: the Right Database Can Make the Difference
    IBM Analytics Data Management White Paper Bridging to the cloud: The right database can make the difference 2 Bridging to the cloud: The right database can make the difference Contents For increasing numbers of organizations, the new reality for development, deployment and delivery of applications 3 Database requirements for moving to the cloud and services is hybrid cloud. Few, if any, organizations are 4 How IBM Db2 acts as your bridge to the cloud going to move all their strategic workloads to the cloud, but virtually every enterprise is embracing cloud for a wide 5 Why IBM Db2 makes a difference variety of requirements. 5 For more information In fact, hybrid cloud is the new normal for IT. IDC says more than 80 percent of enterprise IT organizations will commit to hybrid cloud by 2017,1 and 70 percent of IT decision-makers say they will always have a mix of traditional IT and cloud architectures.2 With important applications and workloads deployed across both on-premises and hybrid, public and private cloud environments, business and IT stakeholders must be able to access data with equal efficiency, reliability and speed — regardless of physical location, infrastructure type or time frame. To accelerate innovation, improve the IT delivery economic model and reduce risk, organizations need to combine data and experience in a cognitive model that yields deeper and more meaningful insights for smarter decision- making. Whether the user needs a data set maintained in house for customer analytics or access to a cloud-based data store for assessing marketing program results — or any other business need — a high-performance, highly available, mixed-load database platform is required.
    [Show full text]
  • What Sellers Need to Know IBM DB2 with BLU Acceleration on Power
    What Sellers Need to Know IBM DB2 with BLU Acceleration on Power Table of Contents IBM DB2 with BLU Acceleration on Power ........................................................................................... 1 What Makes Power Systems unique for DB2 Workloads ..................................................................... 2 What makes DB2 unique as a RDBMS ................................................................................................ 3 In-memory Technologies ...................................................................................................................... 3 Quick Hit Selling Points ........................................................................................................................ 4 Key areas of opportunity for DB2 on Power ......................................................................................... 5 Solution RDBMS Database .............................................................................................................. 5 Solution - SAP Database .................................................................................................................. 5 Solution - Big Data .......................................................................................................................... 6 IBM Featured Products ............................................................................................................................................. 6 Solution - Business Intelligence .......................................................................................................
    [Show full text]
  • IBM Dashdb: Enterprise MPP Service Fully Managed Cloud Data Warehousing with High Speed and Massive Scalability
    IBM Analytics Technical White Paper IBM dashDB: Enterprise MPP Service Fully managed cloud data warehousing with high speed and massive scalability IBM dashDB™ Enterprise MPP is a high performance, massively Highlights scalable cloud data warehouse service, fully managed by IBM. dashDB MPP enables simple and speedy information management, analytics • Scale out your data warehouse in the and business intelligence operations in the cloud. It offers the same ease cloud for larger data sets of use as other dashDB configurations, but with the ability to handle • Reach new performance heights with the much larger data sets. MPP cluster architecture • Run analytics and business intelligence dashDB’s massively parallel processing (MPP) architecture is a tools better and faster with MPP networked cluster of servers working in parallel to speed up query fulfillment. In the dashDB MPP cluster, multiple servers work on the same query simultaneously, and processing at each server is parallelized Contents across all the CPUs. Furthermore, the dashDB MPP cluster provides 2 Why MPP? more storage capacity for each data set. The resulting performance boost saves you valuable time and resources as you extend the reach of 3 Massively high performance dashDB MPP your data warehouse in the cloud. 4 The ultimate “polyglot” Primary use cases Because dashDB MPP is fully managed by IBM, users are free to store, A dashDB MPP scenario manipulate and analyze their data without the added complexity of 5 Getting started network cluster maintenance and database management. Creating tables dashDB: IBM’s cloud data warehouse service dashDB is IBM’s fully managed cloud data warehouse service for builders — the developers, database administrators, business analysts, data scientists, and more who are bringing new solutions, architectures and applications to market every day.
    [Show full text]
  • Osisoft Corporate Powerpoint Template
    Advanced Analytics with Power BI: Doing even more with your PI System data Presented by Curt Hertler - Global Solutions Architect “The only thing new in the world, is the history you do not know.” - Harry S. Truman Teradata - Data Warehouse • 1976–1979: concept of Teradata grows from research at California Institute of Technology (Caltech) and from the discussions of Citibank's advanced technology group. • 1984: Teradata releases the world's first parallel data warehouses and data marts. • 1986: Fortune Magazine names Teradata "Product of the Year." • 1992: Teradata creates the first system over 1 terabyte, which goes live at Wal-Mart. • 1997: Teradata customer creates world's largest production database at 24 terabytes. • 1999: Teradata customer has world's largest database with 130 terabytes. • 2014: Teradata acquires Rainstor, a company specializing in online big data archiving on Hadoop. https://en.wikipedia.org/wiki/Teradata#History 3 Hadoop - Wide Search of Everything • The genesis of Hadoop came from the Google File System paper that was published in October 2003. • This paper spawned another research paper from Google – MapReduce: Simplified Data Processing on Large Clusters. • Development started in the Apache Nutch project, but was moved to the new Hadoop subproject in January 2006. Doug Cutting, who was working at Yahoo! at the time, named it after his son's toy elephant. https://en.wikipedia.org/wiki/Apache_Hadoop#History 4 In-Memory Columnar processing - Tabular based analytics Company Product Description IBM Informix Supports Dynamic In-memory (in-memory columnar processing) Parallel Vector Processing, Actionable Compression, and Data Skipping technologies, collectively called "Blink Technology“ by IBM.
    [Show full text]
  • Cost/Benefit Case for IBM Db2 11.1 Compared to Oracle Database 12C for OLAP Deployments Sponsored By: IBM
    WHITEPAPER / JULY 14, 2017 / QL218356 Cost/Benefit Case for IBM Db2 11.1 Compared to Oracle Database 12c for OLAP Deployments Sponsored by: IBM Market Situation Today, organizations looking to grow their businesses have the opportunity to adopt innovative analytics applications to facilitate the process. New generation applications, coupled with modern database technologies and cutting-edge hardware, will enable organizations to rapidly generate actionable business insights to increase competitive advantage. At the same time, organizations must not only evaluate the performance of these business intelligence (BI) and analytics applications and the systems required to run them, but also their cost-effectiveness, compatibility with existing IT assets, capacity to meet growing organizational requirements, and ability to ensure business continuity. An increasing number of businesses are investing in cost-effective emerging technologies as a way to boost competitive advantage. However, despite the spotlight placed on BI and analytics offerings, the database foundation remains the crucial engine driving businesses processes and critical decision making for most organizations. A database platform that efficiently manages data and allows users to extract insights with ease will improve an organization’s efficiently and agility in confronting the challenges faced by modern businesses. IBM Db2, Oracle Database, MySQL, and Microsoft SQL Server continue to be dominant enterprise-ready databases, each supported by various hardware from established vendors. This paper presents a cost/benefit case for two industry-leading database platforms for analytics workloads—IBM Power Systems with AIX running IBM Db2 11.1 with BLU Acceleration, and Oracle Exadata Database Machine configured with Oracle Linux and Oracle Database 12c Release 2.
    [Show full text]
  • Solution Brief Title Goes Here
    IBM Hybrid Data Management Solution Brief IBM Db2: The AI Database Powered by AI and built to empower intelligent businesses Today’s businesses run on data and the leaders that drive them must Highlights embrace forward-looking data science and artificial intelligence (AI) technologies to retain competitive differentiation. They must also • Powered by AI: Use machine learning reliably support increasingly complex business operations without to tune workloads and optimize queries downtime. Supporting these disparate needs once required a myriad for significantly faster querying. of data platforms, but that is no longer the case. • Built for AI: Enjoy faster data exploration, model more complex With version 11.5, IBM Db2® is extending its legacy of dependability relationships and leverage support by adding AI functionality designed to help optimize performance for data science tools. and support data scientists’ mission to find deeper insights. It is both powered by and built for AI. • Extreme performance: Employ in-memory technology for mission- critical transactional and analytics Powered by AI workloads. • Machine learning algorithms help to provide significantly faster query speed improvements. • Petabyte-level scalability: Use industry-leading compression and • Machine learning algorithms are used to score queries and provide application-transparent database confidence-based results for faster insights. scalability beyond 100 nodes1 to • An Augmented Data Explorer4 enables a range of users, including grow as needed. data scientists, developers and line of business users, to more easily access insights with an intuitive interface and natural language query • Enterprise availability: Achieve failover in seconds between two nodes.2 (NLQ) capabilities. Built for AI • Support for PYTHON, GO, JSON, and Jupyter Notebooks allows data scientists to use the most innovative tools available.
    [Show full text]
  • IBM Data Studio and IBM DB2 LUW Database - Management Guide
    IBM Data Studio and IBM DB2 LUW database - Management Guide Laboratorio PoliCloud ‐ Politecnico di Milano IBM Data Studio and IBM DB2 LUW database Management Guide Version Date Edited by 1.0 04/2015 Mario Marchente 1 IBM Data Studio and IBM DB2 LUW database - Management Guide SUMMARY 1. - Introduction 2. – IBM DB2 for Linux/Unix/Windows (LUW) 2.1 – Database Objects 2.2 – Data Types 2.3 – Users, groups, roles and PUBLIC 2.3.1 - Users and groups 2.3.2 - PUBLIC 2.3.3 - Roles 2.4 - Security Model 2.4.1 – Authentication 2.4.2 – Authorization 2.4.3 - Users, groups, roles, PUBLIC privileges 2.4.4 - Database Object Privileges 2.4.5 - Implicit Privileges 3. - IBM Data Studio 3.1 - The packaging 3.2 - Getting started with the Data Studio interface 3.2.1 – Perspectives, Views and Editors 3.2.2 – The Database Administration Perspective 3.3 – Interfacing DB2 databases 3.3.1 – Creating 3.3.2 – Connecting to 3.3.3 - Instances 3.3.4 – Browsing 3.4 – Generating DB2 database objects 3.4.1 - Creating Schema Object 3.4.2 - Creating Table Object 3.4.3 - Creating Indexes 3.4.4 - Creating Views 3.4.5 - Altering Tables 3.4.6 - Deploying multiple changes with a change plan 3.5 – Managing DB2 database tables 3.6 – Viewing DB2 objects relationships 3.7 - Administering DB2 database security 3.7.1 - Creating user, group and roles 3.7.2 – Assigning privileges 3.8 – Managing DB2 database services 3.8.1 – DB2 database logging 3.8.2 - Backing up and recovering databases 3.8.3 - More maintenance operations 3.8.4 - Moving data 3.8.5 - Managing DB2 performance 3.8.5.1 - DB2 table space object 3.85.2- DB2 buffer pool object 3.8.6 – DB2 statistics utility 3.8.7 – DB2 data reorganization 2 IBM Data Studio and IBM DB2 LUW database - Management Guide 1.
    [Show full text]
  • Technology Broker Roadmap to Revenue Table of Contents
    IBM Cloud and Data Platform Technology Broker Roadmap to Revenue Table of contents Executive letter from Brian Fallon, Director 03 of Worldwide Digital and Partner Ecosystem, IBM Cloud and Cognitive Software Why should Technology Brokers care about 04 leveraging solution and service providers to grow their businesses? Featured roadmaps 08 IBM® Aspera® file transfer solution: Help make 09 hybrid cloud and born-on-the-cloud offerings more efficient through high-speed data transfer IBM Cognos® Analytics: Enable service or solution 11 providers to offer better decision-making capabilities for their customers Edge computing and IoT analytics: 15 A recipe for success IBM Cloud™ Pak for Data: Enable your service and 18 solution providers to offer the speed of a public cloud with the control and security of a private cloud in a box IBM MQ messaging middleware: Maintain data 22 integrity in hybrid cloud environments IBM SPSS® predictive and prescriptive analytics 24 with IBM CPLEX® decision optimization tools: Enrich the ISV, MSP or CSP offering through insight IBM Streams: Provide your ISVs, MSPs, and CSPs 30 the ability to include real-time cybersecurity detection of anomalous Domain Name System (DNS) behavior Guidance to building a business case for your 32 sales teams Resources to get started 34 Technology Broker Roadmap to Revenue 2 Executive letter Dear IBM Technology Brokers: Last year we introduced the ESA Roadmap to Revenue as a useful tool for you to use as you talked with your existing service and solution providers, and worked to gain new providers, as well. The marketplace is driving the IBM Business Partner ecosystem to change as customers rely more frequently on service and solution providers for their strategic IT business needs.
    [Show full text]
  • IBM Db2: the AI Database 2 Db2 on Cloud Pak for Data Confidence-Based Query Results
    IBM Hybrid Data Management IBM Db2 The AI Database Powered by AI and built to empower intelligent businesses with multi-modal management Highlights Today’s businesses run on data and the leaders that drive them must embrace forward-looking data science and artificial intelligence (AI) – Cloud Pak for Data: Leverage technologies to retain competitive differentiation. They must also platform integration, container- reliably support increasingly complex business operations without ization and data virtualization to downtime. Supporting these disparate needs once required a myriad accelerate the Journey to AI. of data platforms, but that is no longer the case. – Powered by AI: Use machine With version 11.5.4, IBM® Db2® is extending its legacy of dependability learning to tune workloads and AI functionality by adding multi-data management designed to help and optimize queries for optimize performance and support enterprises to find deeper insights. significantly faster querying. It is not only powered by and built for AI, but expands the utility of Db2 to include graph analytical capability. – Built for AI: Enjoy faster data exploration, model more complex relationships and Powered by AI leverage support for data science tools. – Machine learning algorithms help to provide significantly faster query speed improvements. – Graph: Support dynamic multi- – Machine learning algorithms are used to score queries and provide modal data management with confidence-based results for faster insights. real-time query support. – REST service: Interact with Db2 Built for AI data from your web, mobile, or cloud application through a set – Support for PYTHON, GO, JSON, and Jupyter Notebooks allows of scalable RESTful APIs. data scientists to use the most innovative tools available.
    [Show full text]
  • A Comparative Taxonomy and Survey of Public Cloud Infrastructure Vendors Dimitrios Sikeridis, Ioannis Papapanagiotou, Bhaskar Prasad Rimal, and Michael Devetsikiotis
    1 A Comparative Taxonomy and Survey of Public Cloud Infrastructure Vendors Dimitrios Sikeridis, Ioannis Papapanagiotou, Bhaskar Prasad Rimal, and Michael Devetsikiotis Abstract—An increasing number of technology enterprises started renting the capacity of their data centers to companies are adopting cloud-native architectures to offer their web-based and individuals around the world [4]. By doing that, they products, by moving away from privately-owned data-centers provided efficient and scalable computing centers that other and relying exclusively on cloud service providers. As a result, cloud vendors have lately increased, along with the estimated companies could not develop or maintain on their own. This annual revenue they share. However, in the process of selecting combination of low-cost (zero installation and maintenance a provider’s cloud service over the competition, we observe costs) and high-performance (high-end supercomputers with a lack of universal common ground in terms of terminology, unlimited memory capabilities) was quickly accompanied with functionality of services and billing models. This is an important other advantages, including minimal cost of software, unlim- gap especially under the new reality of the industry where each cloud provider has moved towards his own service taxonomy, ited storage capacity, data reliability, universal data access while the number of specialized services has grown exponentially. and multiple user collaboration. Therefore, the transition to This work discusses cloud services offered by four dominant, in cloud based services became a viable solution for the majority terms of their current market share, cloud vendors. We provide of technology companies and a must for any new start-up.
    [Show full text]