IBM Db2: the AI Database 2 Db2 on Cloud Pak for Data Confidence-Based Query Results
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rainblock: Faster Transaction Processing in Public Blockchains
RainBlock: Faster Transaction Processing in Public Blockchains Soujanya Ponnapalli1, Aashaka Shah1, Souvik Banerjee1, Dahlia Malkhi2, Amy Tai3, Vijay Chidambaram1,3, and Michael Wei3 1University of Texas at Austin, 2Diem Association and Novi Financial, 3VMware Research Abstract Metric No state State: 10M Ratio We present RAINBLOCK, a public blockchain that achieves Time taken to mine txs (s) 1047 6340 6× " high transaction throughput without modifying the proof-of- # Txs per block 2150 833 2.5× # work consensus. The chief insight behind RAINBLOCK is that Tx throughput (txs/s) 28.6 4.7 6× # while consensus controls the rate at which new blocks are added to the blockchain, the number of transactions in each Table 1: Impact of system state on blockchain throughput. block is limited by I/O bottlenecks. Public blockchains like This table shows the throughput of Ethereum with proof-of- Ethereum keep the number of transactions in each block low work consensus when 30K txs are mined using three miners, so that all participating servers (miners) have enough time to in two scenarios: first, there are no accounts on the blockchain, process a block before the next block is created. By removing and in the second, 10M accounts have been added. Despite the I/O bottlenecks in transaction processing, RAINBLOCK al- no other difference, tx throughput is 6× lower in the second lows miners to process more transactions in the same amount scenario; we trace this to the I/O involved in processing txs. of time. RAINBLOCK makes two novel contributions: the RAIN- BLOCK architecture that removes I/O from the critical path of processing transactions (txs), and the distributed, multi- Bitcoin [1] and Ethereum, process only tens of transactions versioned DSM-TREE data structure that stores the system per second, limiting their applications [33, 65]. -
Socrates: the New SQL Server in the Cloud
Socrates: The New SQL Server in the Cloud Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro Hernandez Saenz, Jack Hu, Hanuma Kodavalla, Donald Kossmann, Sandeep Lingam, Umar Farooq Minhas, Naveen Prakash, Vijendra Purohit, Hugh Qu, Chaitanya Sreenivas Ravella, Krystyna Reisteter, Sheetal Shrotri, Dixin Tang, Vikram Wakade Microsoft Azure & Microsoft Research ABSTRACT 1 INTRODUCTION The database-as-a-service paradigm in the cloud (DBaaS) The cloud is here to stay. Most start-ups are cloud-native. is becoming increasingly popular. Organizations adopt this Furthermore, many large enterprises are moving their data paradigm because they expect higher security, higher avail- and workloads into the cloud. The main reasons to move ability, and lower and more flexible cost with high perfor- into the cloud are security, time-to-market, and a more flexi- mance. It has become clear, however, that these expectations ble “pay-as-you-go” cost model which avoids overpaying for cannot be met in the cloud with the traditional, monolithic under-utilized machines. While all these reasons are com- database architecture. This paper presents a novel DBaaS pelling, the expectation is that a database runs in the cloud architecture, called Socrates. Socrates has been implemented at least as well as (if not better) than on premise. Specifically, in Microsoft SQL Server and is available in Azure as SQL DB customers expect a “database-as-a-service” to be highly avail- Hyperscale. This paper describes the key ideas and features able (e.g., 99.999% availability), support large databases (e.g., of Socrates, and it compares the performance of Socrates a 100TB OLTP database), and be highly performant. -
Query Optimization Techniques - Tips for Writing Efficient and Faster SQL Queries
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616 Query Optimization Techniques - Tips For Writing Efficient And Faster SQL Queries Jean HABIMANA Abstract: SQL statements can be used to retrieve data from any database. If you've worked with databases for any amount of time retrieving information, it's practically given that you've run into slow running queries. Sometimes the reason for the slow response time is due to the load on the system, and other times it is because the query is not written to perform as efficiently as possible which is the much more common reason. For better performance we need to use best, faster and efficient queries. This paper covers how these SQL queries can be optimized for better performance. Query optimization subject is very wide but we will try to cover the most important points. In this paper I am not focusing on, in- depth analysis of database but simple query tuning tips & tricks which can be applied to gain immediate performance gain. ———————————————————— I. INTRODUCTION Query optimization is an important skill for SQL developers and database administrators (DBAs). In order to improve the performance of SQL queries, developers and DBAs need to understand the query optimizer and the techniques it uses to select an access path and prepare a query execution plan. Query tuning involves knowledge of techniques such as cost-based and heuristic-based optimizers, plus the tools an SQL platform provides for explaining a query execution plan.The best way to tune performance is to try to write your queries in a number of different ways and compare their reads and execution plans. -
Not ACID, Not BASE, but SALT a Transaction Processing Perspective on Blockchains
Not ACID, not BASE, but SALT A Transaction Processing Perspective on Blockchains Stefan Tai, Jacob Eberhardt and Markus Klems Information Systems Engineering, Technische Universitat¨ Berlin fst, je, [email protected] Keywords: SALT, blockchain, decentralized, ACID, BASE, transaction processing Abstract: Traditional ACID transactions, typically supported by relational database management systems, emphasize database consistency. BASE provides a model that trades some consistency for availability, and is typically favored by cloud systems and NoSQL data stores. With the increasing popularity of blockchain technology, another alternative to both ACID and BASE is introduced: SALT. In this keynote paper, we present SALT as a model to explain blockchains and their use in application architecture. We take both, a transaction and a transaction processing systems perspective on the SALT model. From a transactions perspective, SALT is about Sequential, Agreed-on, Ledgered, and Tamper-resistant transaction processing. From a systems perspec- tive, SALT is about decentralized transaction processing systems being Symmetric, Admin-free, Ledgered and Time-consensual. We discuss the importance of these dual perspectives, both, when comparing SALT with ACID and BASE, and when engineering blockchain-based applications. We expect the next-generation of decentralized transactional applications to leverage combinations of all three transaction models. 1 INTRODUCTION against. Using the admittedly contrived acronym of SALT, we characterize blockchain-based transactions There is a common belief that blockchains have the – from a transactions perspective – as Sequential, potential to fundamentally disrupt entire industries. Agreed, Ledgered, and Tamper-resistant, and – from Whether we are talking about financial services, the a systems perspective – as Symmetric, Admin-free, sharing economy, the Internet of Things, or future en- Ledgered, and Time-consensual. -
Netezza EOL: IBM IAS Is a Flawed Upgrade Path Netezza EOL: IBM IAS Is a Flawed Upgrade Path
Author: Marc Staimer WHITE PAPER Netezza EOL: What You’re Not Being Told About IBM IAS Is a Flawed Upgrade Path Database as a Service (DBaaS) WHITE PAPER • Netezza EOL: IBM IAS Is a Flawed Upgrade Path Netezza EOL: IBM IAS Is a Flawed Upgrade Path Executive Summary It is a common technology vendor fallacy to compare their systems with their competitors by focusing on the features, functions, and specifications they have, but the other guy doesn’t. Vendors ignore the opposite while touting hardware specs that mean little. It doesn’t matter if those features, functions, and specifications provide anything meaningfully empirical to the business applications that rely on the system. It only matters if it demonstrates an advantage on paper. This is called specsmanship. It’s similar to starting an argument with proof points. The specs, features, and functions are proof points that the system can solve specific operational problems. They are the “what” that solves the problem or problems. They mean nothing by themselves. Specsmanship is defined by Wikipedia as: “inappropriate use of specifications or measurement results to establish supposed superiority of one entity over another, generally when no such superiority exists.” It’s the frequent ineffective sales process utilized by IBM. A textbook example of this is IBM’s attempt to move their Netezza users to the IBM Integrated Analytics System (IIAS). IBM is compelling their users to move away from Netezza. In the fall of 2017, IBM announced to the Enzee community (Netezza users) that they can no longer purchase or upgrade PureData System for Analytics (the most recent IBM name for its Netezza appliances), and it will end-of-life all support next year. -
SAP Database Administration with IBM
André Faustmann, Michael Greulich, André Siegling, Benjamin Wegner, and Ronny Zimmerman SAP® Database Administration with IBM® DB2® Bonn Boston Contents at a Glance 1 Introduction ............................................................................ 19 2 SAP System Landscapes ......................................................... 25 3 Basics and Architecture of the IBM DB2 for LUW Database ................................................................................. 71 4 Lifecycle ................................................................................. 233 5 Administration Tools Inside and Outside the SAP System .... 327 6 Backup, Restore, and Recovery .............................................. 463 7 Monitoring DB2 SAP Systems with SAP Solution Manager .................................................................................. 575 8 SAP NetWeaver Business Warehouse and IBM DB2 for LUW .................................................................................. 647 9 Common Problems and Their Solutions for DB2 Administrators ........................................................................ 697 Contents Foreword .................................................................................... 15 Acknowledgments ....................................................................... 17 1 Introduction ................................................................. 19 1.1 Who This Book Is For .................................................... 21 1.2 Focus of This Book ....................................................... -
History of AI at IBM and How IBM Is Leveraging Watson for Intellectual Property
History of AI at IBM and How IBM is Leveraging Watson for Intellectual Property 2019 ECC Conference June 9-11 at Marist College IBM Intellectual Property Management Solutions 1 IBM Intellectual Property Management Solutions © 2017-2019 IBM Corporation Who are We? At IBM for 37 years I currently work in the Technology and Intellectual Property organization, a combination of CHQ and Research. I have worked as an engineer in Procurement, Testing, MLC Packaging, and now T&IP. Currently Lead Architect on IP Advisor with Watson, a Watson based Patent and Intellectual Property Analytics tool. • Master Inventor • Number of patents filed ~ 24+ • Number of submissions in progress ~ 4+ • Consult/Educate outside companies on all things IP (from strategy to commercialization, including IP 101) • Technical background: Semiconductors, Computers, Programming/Software, Tom Fleischman Intellectual Property and Analytics [email protected] Is the manager of the Intellectual Property Management Solutions team in CHQ under the Technology and Intellectual Property group. Current OM for IP Advisor with Watson application, used internally and externally. Past Global Business Services in the PLM and Supply Chain practices. • Number of patents filed – 2 (2018) • Number of submissions in progress - 2 • Consult/Educate outside companies on all things IP (from strategy to commercialization, including IP 101) • Schaumburg SLE Sue Hallen • Technical background: Registered Professional Engineer in Illinois, Structural Engineer by [email protected] degree, lots of software development and implementation for PLM clients 2 IBM Intellectual Property Management Solutions © 2017-2019 IBM Corporation How does IBM define AI? IBM refers to it as Augmented Intelligence…. • Not artificial or meant to replace Human Thinking…augments your work AI Terminology Machine Learning • Provides computers with the ability to continuing learning without being pre-programmed. -
MDA Process to Extract the Data Model from a Document-Oriented Nosql Database Amal Ait Brahim, Rabah Tighilt Ferhat, Gilles Zurfluh
MDA process to extract the data model from a document-oriented NoSQL database Amal Ait Brahim, Rabah Tighilt Ferhat, Gilles Zurfluh To cite this version: Amal Ait Brahim, Rabah Tighilt Ferhat, Gilles Zurfluh. MDA process to extract the data model from a document-oriented NoSQL database. ICEIS 2019: 21st International Conference on Enterprise Information Systems, May 2019, Heraklion, Greece. pp.141-148, 10.5220/0007676201410148. hal- 02886696 HAL Id: hal-02886696 https://hal.archives-ouvertes.fr/hal-02886696 Submitted on 1 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: https://oatao.univ-toulouse.fr/26232 Official URL : https://doi.org/10.5220/0007676201410148 To cite this version: Ait Brahim, Amal and Tighilt Ferhat, Rabah and Zurfluh, Gilles MDA process to extract the data model from a document-oriented NoSQL database. (2019) In: ICEIS 2019: 21st International Conference on Enterprise Information Systems, 3 May 2019 - 5 May 2019 (Heraklion, Greece). -
Database Systems Administrator FLSA: Exempt
CLOVIS UNIFIED SCHOOL DISTRICT POSITION DESCRIPTION Position: Database Systems Administrator FLSA: Exempt Department/Site: Technology Services Salary Grade: 127 Reports to/Evaluated by: Chief Technology Officer Salary Schedule: Classified Management SUMMARY Gathers requirements and provisions servers to meet the district’s need for database storage. Installs and configures SQL Server according to the specifications of outside software vendors and/or the development group. Designs and executes a security scheme to assure safety of confidential data. Implements and manages a backup and disaster recovery plan. Monitors the health and performance of database servers and database applications. Troubleshoots database application performance issues. Automates monitoring and maintenance tasks. Maintains service pack deployment and upgrades servers in consultation with the developer group and outside vendors. Deploys and schedules SQL Server Agent tasks. Implements and manages replication topologies. Designs and deploys datamarts under the supervision of the developer group. Deploys and manages cubes for SSAS implementations. DISTINGUISHING CAREER FEATURES The Database Systems Administrator is a senior level analyst position requiring specialized education and training in the field of study typically resulting in a degree. Advancement to this position would require competency in the design and administration of relational databases designated for business, enterprise, and student information. Advancement from this position is limited to supervisory management positions. ESSENTIAL DUTIES AND RESPONSIBILITIES Implements, maintains and administers all district supported versions of Microsoft SQL as well as other DBMS as needed. Responsible for database capacity planning and involvement in server capacity planning. Responsible for verification of backups and restoration of production and test databases. Designs, implements and maintains a disaster recovery plan for critical data resources. -
Big Blue in the Bottomless Pit: the Early Years of IBM Chile
Big Blue in the Bottomless Pit: The Early Years of IBM Chile Eden Medina Indiana University In examining the history of IBM in Chile, this article asks how IBM came to dominate Chile’s computer market and, to address this question, emphasizes the importance of studying both IBM corporate strategy and Chilean national history. The article also examines how IBM reproduced its corporate culture in Latin America and used it to accommodate the region’s political and economic changes. Thomas J. Watson Jr. was skeptical when he The history of IBM has been documented first heard his father’s plan to create an from a number of perspectives. Former em- international subsidiary. ‘‘We had endless ployees, management experts, journalists, and opportunityandlittleriskintheUS,’’he historians of business, technology, and com- wrote, ‘‘while it was hard to imagine us getting puting have all made important contributions anywhere abroad. Latin America, for example to our understanding of IBM’s past.3 Some seemed like a bottomless pit.’’1 However, the works have explored company operations senior Watson had a different sense of the outside the US in detail.4 However, most of potential for profit within the world market these studies do not address company activi- and believed that one day IBM’s sales abroad ties in regions of the developing world, such as would surpass its growing domestic business. Latin America.5 Chile, a slender South Amer- In 1949, he created the IBM World Trade ican country bordered by the Pacific Ocean on Corporation to coordinate the company’s one side and the Andean cordillera on the activities outside the US and appointed his other, offers a rich site for studying IBM younger son, Arthur K. -
The Relational Data Model and Relational Database Constraints
chapter 33 The Relational Data Model and Relational Database Constraints his chapter opens Part 2 of the book, which covers Trelational databases. The relational data model was first introduced by Ted Codd of IBM Research in 1970 in a classic paper (Codd 1970), and it attracted immediate attention due to its simplicity and mathematical foundation. The model uses the concept of a mathematical relation—which looks somewhat like a table of values—as its basic building block, and has its theoretical basis in set theory and first-order predicate logic. In this chapter we discuss the basic characteristics of the model and its constraints. The first commercial implementations of the relational model became available in the early 1980s, such as the SQL/DS system on the MVS operating system by IBM and the Oracle DBMS. Since then, the model has been implemented in a large num- ber of commercial systems. Current popular relational DBMSs (RDBMSs) include DB2 and Informix Dynamic Server (from IBM), Oracle and Rdb (from Oracle), Sybase DBMS (from Sybase) and SQLServer and Access (from Microsoft). In addi- tion, several open source systems, such as MySQL and PostgreSQL, are available. Because of the importance of the relational model, all of Part 2 is devoted to this model and some of the languages associated with it. In Chapters 4 and 5, we describe the SQL query language, which is the standard for commercial relational DBMSs. Chapter 6 covers the operations of the relational algebra and introduces the relational calculus—these are two formal languages associated with the relational model. -
IBM DB2 for Z/OS: the Database for Gaining a Competitive Advantage!
Why You Should Read This Book Tom Ramey, Director, DB2 for z/OS IBM Silicon Valley Laboratory “This book is a ‘must read’ for Enterprise customers and contains a wealth of valuable information! “It is clear that there is a technology paradigm shift underway, and this is opening enormous opportunities for companies in all industries. Adoption of Cloud, Mobile, and Analytics promises to revolutionize the way we do business and will add value to a company’s business processes across all functions from sales, marketing, procurement, manufacturing and finance. “IT will play a significant role enabling this shift. Read this book and find out how to integrate the heart of your infrastructure, DB2 for z/OS, with new technologies in order to maximize your investment and drive new value for your customers.” Located at IBM’s Silicon Valley Laboratory, Tom is the director of IBM’s premiere relational database management system. His responsibilities include Architecture, Development, Service, and Customer Support for DB2. He leads development labs in the United States, Germany, and China. Tom works closely with IBM’s largest clients to ensure that DB2 for z/OS continues as the leading solution for modern applications, encompassing OLTP to mobile to analytics. At the same time he continues an uncompromising focus on meeting the needs of the most demanding operational environments on Earth, through DB2’s industry- leading performance, availability, scaling, and security capabilities. IBM DB2 for z/OS: The Database for Gaining a Competitive Advantage! Shantan Kethireddy Jane Man Surekha Parekh Pallavi Priyadarshini Maryela Weihrauch MC Press Online, LLC Boise, ID 83703 USA IBM DB2 for z/OS: The Database for Gaining a Competitive Advantage! Shantan Kethireddy, Jane Man, Surekha Parekh, Pallavi Priyadarshini, and Maryela Weihrauch First Edition First Printing—October 2015 © Copyright 2015 IBM.