Seeds and Plants Imported
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IRISH WAR CRY Chestnut Horse, 2014; 16.2 Hands CONNECT: 6 Wins, $1,370,000 in 8 Starts, Cigar Mile H-G1, Pennsylvania Mr
IRISH WAR CRY Chestnut Horse, 2014; 16.2 Hands CONNECT: 6 wins, $1,370,000 in 8 starts, Cigar Mile H-G1, Pennsylvania Mr. Prospector Raise a Native Derby-G2, Westchester S-G3, Curlin S. Gold Digger Smart Strike GLOBAL CAMPAIGN: 6 wins, $1,321,080 to 4, 2020, Woodward H-G1, Mon- Classy ’n Smart Smarten mouth Cup S-G3, Peter Pan S-G3, 3rd Breeders’ Cup Classic-G1, etc. Curlin No Class OFF THE TRACKS: 4 wins, $570,594, Mother Goose S-G1, Schuylerville S-G3, etc. Chestnut, 2004 Vice Regent PARIS LIGHTS: 3 wins, $287,912 in 4 starts at 3, 2020, Coaching Club American Deputy Minister Mint Copy Sherriff’s Deputy Oaks-G1. Barbarika Bates Motel War Exchange TENFOLD: 4 wins, $1,137,835 to 5, 2020, Jim Dandy S-G2, Pimlico Special S-G3, 3rd Preakness S-G1, Hollywood Gold Cup S-G1, etc. Danzig Northern Dancer Pas de Nom LADY APPLE: 6 wins, $1,038,484 to 4, 2020, Fantasy S-G3, Iowa Oaks-G3, etc. Polish Numbers TERRA PROMESSA: 7 wins, $920,350, Fantasy S-G3, Honeybee S-G3, etc. Numbered Account Buckpasser Irish Sovereign Intriguing MYLADY CURLIN: 8 wins, $805,883 to 5, 2020, Falls City H-G2, etc. Chestnut, 2000 Bold Ruckus POINT OF HONOR: 3 wins, $684,040 to 4, 2020, Black-Eyed Susan S-G2, Sun- Beau Genius Royal Colleen Irish Genius coast S, 2nd Alabama S-G1, Coaching Club American Oaks-G1, etc. Irish Trip (GB) Saint Crespin III *Tabebuia II FEMALE LINE Dosage Profile: 5 7 12 0 0 IRISH SOVEREIGN. -
Psidium" Redirects Here
Guava 1 Guava This article is about the fruit. For other uses, see Guava (disambiguation). "Psidium" redirects here. For the thoroughbred racehorse, see Psidium (horse). Guava Apple Guava (Psidium guajava) Scientific classification Kingdom: Plantae (unranked): Angiosperms (unranked): Eudicots (unranked): Rosids Order: Myrtales Family: Myrtaceae Subfamily: Myrtoideae Tribe: Myrteae Genus: Psidium L. Species About 100, see text Synonyms • Calyptropsidium O.Berg • Corynemyrtus (Kiaersk.) Mattos • Cuiavus Trew • Episyzygium Suess. & A.Ludw. • Guajava Mill. • Guayaba Noronha • Mitropsidium Burret Guavas (singular guava, /ˈɡwɑː.və/) are plants in the Myrtle family (Myrtaceae) genus Psidium, which contains about 100 species of tropical shrubs and small trees. They are native to Mexico, Central America, and northern South America. Guavas are now cultivated and naturalized throughout the tropics and subtropics in Africa, South Asia, Southeast Asia, the Caribbean, subtropical regions of North America, Hawaii, New Zealand, Australia and Spain. Guava 2 Types The most frequently eaten species, and the one often simply referred to as "the guava", is the Apple Guava (Psidium guajava).Wikipedia:Citation needed. Guavas are typical Myrtoideae, with tough dark leaves that are opposite, simple, elliptic to ovate and 5–15 centimetres (2.0–5.9 in) long. The flowers are white, with five petals and numerous stamens. The genera Accara and Feijoa (= Acca, Pineapple Guava) were formerly included in Psidium.Wikipedia:Citation needed Apple Guava (Psidium guajava) flower Common names The term "guava" appears to derive from Arawak guayabo "guava tree", via the Spanish guayaba. It has been adapted in many European and Asian languages, having a similar form. Another term for guavas is pera, derived from pear. -
Non-Wood Forest Products from Conifers
Page 1 of 8 NON -WOOD FOREST PRODUCTS 12 Non-Wood Forest Products From Conifers FAO - Food and Agriculture Organization of the United Nations The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-37 ISBN 92-5-104212-8 (c) FAO 1995 TABLE OF CONTENTS FOREWORD ACKNOWLEDGMENTS ABBREVIATIONS INTRODUCTION CHAPTER 1 - AN OVERVIEW OF THE CONIFERS WHAT ARE CONIFERS? DISTRIBUTION AND ABUNDANCE USES CHAPTER 2 - CONIFERS IN HUMAN CULTURE FOLKLORE AND MYTHOLOGY RELIGION POLITICAL SYMBOLS ART CHAPTER 3 - WHOLE TREES LANDSCAPE AND ORNAMENTAL TREES Page 2 of 8 Historical aspects Benefits Species Uses Foliage effect Specimen and character trees Shelter, screening and backcloth plantings Hedges CHRISTMAS TREES Historical aspects Species Abies spp Picea spp Pinus spp Pseudotsuga menziesii Other species Production and trade BONSAI Historical aspects Bonsai as an art form Bonsai cultivation Species Current status TOPIARY CONIFERS AS HOUSE PLANTS CHAPTER 4 - FOLIAGE EVERGREEN BOUGHS Uses Species Harvesting, management and trade PINE NEEDLES Mulch Decorative baskets OTHER USES OF CONIFER FOLIAGE CHAPTER 5 - BARK AND ROOTS TRADITIONAL USES Inner bark as food Medicinal uses Natural dyes Other uses TAXOL Description and uses Harvesting methods Alternative -
Phytosociological Analysis of Pine Forest at Indus Kohistan, Kpk, Pakistan
Pak. J. Bot., 48(2): 575-580, 2016. PHYTOSOCIOLOGICAL ANALYSIS OF PINE FOREST AT INDUS KOHISTAN, KPK, PAKISTAN ADAM KHAN1, MOINUDDIN AHMED2, MUHAMMAD FAHEEM SIDDIQUI*3, JAVED IQBAL1 AND MUHAMMAD WAHAB4 1Laboratory of plant ecology and Dendrochronology, Department of Botany, Federal Urdu University, Gulshan-e-Iqbal Campus Karachi, Pakistan 2Department of Earth and Environmental Systems, 600 Chestnut Street Indiana State University, Terre Haute, IN, USA 3Department of Botany, University of Karachi, Karachi-75270, Pakistan 4Institute of Botany, Chinese Academy of Sciences, Beijing, China *Corresponding author’s email: [email protected] Abstract The study was carried out to describe the pine communities at Indus Kohistan valley in quantitative term. Thirty stands of relatively undisturbed vegetation were selected for sampling. Quantitative sampling was carried out by Point Centered Quarter (PCQ) method. Seven tree species were common in the Indus Kohistan valley. Cedrus deodara was recorded from twenty eight different locations and exhibited the highest mean importance value while Pinus wallichiana was recorded from 23 different locations and exhibited second highest mean importance value. Third most occurring species was Abies pindrow that attained the third highest mean importance value and Picea smithiana was recorded from eight different locations and attained fourth highest importance value while it was first dominant in one stand and second dominant in four stands. Pinus gerardiana, Quercus baloot and Taxus fuana were the rare species in this area, these species attained low mean importance value. Six communities and four monospecific stands of Cedrus deodara were recognized. Cedrus-Pinus community was the most occurring community, which was recorded from 13 different stands. -
Prunus Cerasus Var. Marasca)
86 S. PEDISI] et al.: Anthocyanins in Sour Cherries, Food Technol. Biotechnol. 48 (1) 86–93 (2010) ISSN 1330-9862 original scientific paper (FTB-2300) Effect of Maturity and Geographical Region on Anthocyanin Content of Sour Cherries (Prunus cerasus var. marasca) Sandra Pedisi}¹*, Verica Dragovi}-Uzelac², Branka Levaj² and Dubravka [kevin2 1Faculty of Food Technology and Biotechnology, Zadar Centre, P. Kasandri}a 6, HR-23000 Zadar, Croatia 2Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia Received: June 15, 2009 Accepted: December 2, 2009 Summary The influence of different stages of maturity on the anthocyanin content and colour parameters in three sour cherry Marasca ecotypes grown in two Dalmatian geographical regions has been studied. Anthocyanins were determined by HPLC-UV/VIS PDA analysis and the colour of fruit flesh and skin was measured by tristimulus colourimeter (CIELAB system). The major anthocyanins in all ecotypes at all stages of maturity were cyanidin 3-glucosylrutinoside and cyanidin 3-rutinoside, whereas pelargonidin glycosides were de- termined in lower concentrations. During ripening, anthocyanins did not change uni- formly, but in most ecotypes they were determined in higher concentrations at the last stage of maturity (3.18 to 19.75 g per kg of dry matter). The formation of dark red, almost black colour in ripe Marasca cherries decreased redness (a*), brightness (L*) and colour intensity (C*). The results of two-way ANOVA test indicated that the growing region sig- nificantly influenced the accumulation of individual anthocyanins and L* value during ripening, while ecotype and the interaction between the growing region and the ecotype significantly affected total anthocyanin content of sour cherry. -
2018-01-26 Langual Proposal from Foodex2 – Plants in Facet B
2018-01-26 LanguaL proposal from FoodEx2 – plants in facet B The following are proposals to update LanguaL Facet B, after having indexed EFSA FoodEx2 Exposure hierarchy 20170919. To these, I have added previously-submitted 2017 proposals based on GS1 that have not (yet) been included in LanguaL facet B. GS1 terms and FoodEx2 terms in the following tables are just given to indicate the origin of the proposal. Comments are given in red. First, some simple additions of terms to the SYNONYM field, to make it easier to find descriptors in the LanguaL Food Product Indexer: descriptor synonyms FoodEx2 term FoodEx2 def WORMWOOD [B3433] Add SYN: artemisia vulgaris LITTLE RADISH [B2960] Add SYN: raphanus sativus BLACK RADISH [B2959] Add SYN: raphanus sativus niger PARSNIP [B1483] Add SYN: pastinaca sativa ARRACACHA [B3439] Add SYN: arracacia xanthorrhiza CHAYOTE [B1730] Add SYN: GS1 10006356 - Squash Squash, Choko, grown from Sechium edule (Choko) choko NEW ZEALAND SPINACH Add SYN: GS1 10006427 - New- Tetragonia tetragonoides Zealand Spinach [B1732] tetragonia tetragonoides JAPANESE MILLET Add : barnyard millet; A000Z Barnyard millet Echinochloa esculenta (A. Braun) H. Scholz, Barnyard millet or Japanese Millet. [B4320] echinochloa esculenta INDIAN LONG PEPPER Add SYN! A019B Long pepper fruit Piper longum [B2956] piper longum EUROPEAN ELDER Modify SYN: [B1403] sambucus spp. (which refers to broader term) Should be sambucus nigra DOG ROSE [B2961] ADD SYN: rosa canina LOOSE LEAF LETTUCE Add SYN: [B2087] lactusa sativa L. var. crispa LOLLO ROSSO [B2088] Add SYN: GS1 10006425 - Lollo Lactuca sativa L. var. crispa Rosso red coral lettuce JAVA APPLE [B3395] Add syn! syzygium samarangense Some existing descriptors would also greatly benefit from updated AI (and synonyms): FoodEx2 FoodEx2 def descriptor AI synonyms term ENDIVE [B1314] Add to AI: A00LD Escaroles There are two main varieties of cultivated C. -
Biodiversity Conservation in Botanical Gardens
AgroSMART 2019 International scientific and practical conference ``AgroSMART - Smart solutions for agriculture'' Volume 2019 Conference Paper Biodiversity Conservation in Botanical Gardens: The Collection of Pinaceae Representatives in the Greenhouses of Peter the Great Botanical Garden (BIN RAN) E M Arnautova and M A Yaroslavceva Department of Botanical garden, BIN RAN, Saint-Petersburg, Russia Abstract The work researches the role of botanical gardens in biodiversity conservation. It cites the total number of rare and endangered plants in the greenhouse collection of Peter the Great Botanical garden (BIN RAN). The greenhouse collection of Pinaceae representatives has been analysed, provided with a short description of family, genus and certain species, presented in the collection. The article highlights the importance of Pinaceae for various industries, decorative value of plants of this group, the worth of the pinaceous as having environment-improving properties. In Corresponding Author: the greenhouses there are 37 species of Pinaceae, of 7 geni, all species have a E M Arnautova conservation status: CR -- 2 species, EN -- 3 species, VU- 3 species, NT -- 4 species, LC [email protected] -- 25 species. For most species it is indicated what causes depletion. Most often it is Received: 25 October 2019 the destruction of natural habitats, uncontrolled clearance, insect invasion and diseases. Accepted: 15 November 2019 Published: 25 November 2019 Keywords: biodiversity, botanical gardens, collections of tropical and subtropical plants, Pinaceae plants, conservation status Publishing services provided by Knowledge E E M Arnautova and M A Yaroslavceva. This article is distributed under the terms of the Creative Commons 1. Introduction Attribution License, which permits unrestricted use and Nowadays research of biodiversity is believed to be one of the overarching goals for redistribution provided that the original author and source are the modern world. -
NP 2013.Docx
LISTE INTERNATIONALE DES NOMS PROTÉGÉS (également disponible sur notre Site Internet : www.IFHAonline.org) INTERNATIONAL LIST OF PROTECTED NAMES (also available on our Web site : www.IFHAonline.org) Fédération Internationale des Autorités Hippiques de Courses au Galop International Federation of Horseracing Authorities 15/04/13 46 place Abel Gance, 92100 Boulogne, France Tel : + 33 1 49 10 20 15 ; Fax : + 33 1 47 61 93 32 E-mail : [email protected] Internet : www.IFHAonline.org La liste des Noms Protégés comprend les noms : The list of Protected Names includes the names of : F Avant 1996, des chevaux qui ont une renommée F Prior 1996, the horses who are internationally internationale, soit comme principaux renowned, either as main stallions and reproducteurs ou comme champions en courses broodmares or as champions in racing (flat or (en plat et en obstacles), jump) F de 1996 à 2004, des gagnants des neuf grandes F from 1996 to 2004, the winners of the nine épreuves internationales suivantes : following international races : Gran Premio Carlos Pellegrini, Grande Premio Brazil (Amérique du Sud/South America) Japan Cup, Melbourne Cup (Asie/Asia) Prix de l’Arc de Triomphe, King George VI and Queen Elizabeth Stakes, Queen Elizabeth II Stakes (Europe/Europa) Breeders’ Cup Classic, Breeders’ Cup Turf (Amérique du Nord/North America) F à partir de 2005, des gagnants des onze grandes F since 2005, the winners of the eleven famous épreuves internationales suivantes : following international races : Gran Premio Carlos Pellegrini, Grande Premio Brazil (Amérique du Sud/South America) Cox Plate (2005), Melbourne Cup (à partir de 2006 / from 2006 onwards), Dubai World Cup, Hong Kong Cup, Japan Cup (Asie/Asia) Prix de l’Arc de Triomphe, King George VI and Queen Elizabeth Stakes, Irish Champion (Europe/Europa) Breeders’ Cup Classic, Breeders’ Cup Turf (Amérique du Nord/North America) F des principaux reproducteurs, inscrits à la F the main stallions and broodmares, registered demande du Comité International des Stud on request of the International Stud Book Books. -
Disturbances Influence Trait Evolution in Pinus
Master's Thesis Diversify or specialize: Disturbances influence trait evolution in Pinus Supervision by: Prof. Dr. Elena Conti & Dr. Niklaus E. Zimmermann University of Zurich, Institute of Systematic Botany & Swiss Federal Research Institute WSL Birmensdorf Landscape Dynamics Bianca Saladin October 2013 Front page: Forest of Pinus taeda, northern Florida, 1/2013 Table of content 1 STRONG PHYLOGENETIC SIGNAL IN PINE TRAITS 5 1.1 ABSTRACT 5 1.2 INTRODUCTION 5 1.3 MATERIAL AND METHODS 8 1.3.1 PHYLOGENETIC INFERENCE 8 1.3.2 TRAIT DATA 9 1.3.3 PHYLOGENETIC SIGNAL 9 1.4 RESULTS 11 1.4.1 PHYLOGENETIC INFERENCE 11 1.4.2 PHYLOGENETIC SIGNAL 12 1.5 DISCUSSION 14 1.5.1 PHYLOGENETIC INFERENCE 14 1.5.2 PHYLOGENETIC SIGNAL 16 1.6 CONCLUSION 17 1.7 ACKNOWLEDGEMENTS 17 1.8 REFERENCES 19 2 THE ROLE OF FIRE IN TRIGGERING DIVERSIFICATION RATES IN PINE SPECIES 21 2.1 ABSTRACT 21 2.2 INTRODUCTION 21 2.3 MATERIAL AND METHODS 24 2.3.1 PHYLOGENETIC INFERENCE 24 2.3.2 DIVERSIFICATION RATE 24 2.4 RESULTS 25 2.4.1 PHYLOGENETIC INFERENCE 25 2.4.2 DIVERSIFICATION RATE 25 2.5 DISCUSSION 29 2.5.1 DIVERSIFICATION RATE IN RESPONSE TO FIRE ADAPTATIONS 29 2.5.2 DIVERSIFICATION RATE IN RESPONSE TO DISTURBANCE, STRESS AND PLEIOTROPIC COSTS 30 2.5.3 CRITICAL EVALUATION OF THE ANALYSIS PATHWAY 33 2.5.4 PHYLOGENETIC INFERENCE 34 2.6 CONCLUSIONS AND OUTLOOK 34 2.7 ACKNOWLEDGEMENTS 35 2.8 REFERENCES 36 3 SUPPLEMENTARY MATERIAL 39 3.1 S1 - ACCESSION NUMBERS OF GENE SEQUENCES 40 3.2 S2 - TRAIT DATABASE 44 3.3 S3 - SPECIES DISTRIBUTION MAPS 58 3.4 S4 - DISTRIBUTION OF TRAITS OVER PHYLOGENY 81 3.5 S5 - PHYLOGENETIC SIGNAL OF 19 BIOCLIM VARIABLES 84 3.6 S6 – COMPLETE LIST OF REFERENCES 85 2 Introduction to the Master's thesis The aim of my master's thesis was to assess trait and niche evolution in pines within a phylogenetic comparative framework. -
Diospyros Species
Floribunda 5(2) 2015 31 LEAF FLUSHING AS TAXONOMIC EVIDENCE OF SOME DIOSPYROS SPECIES Eva Kristinawati Putri1 & Tatik Chikmawati2 1Graduate School of Bogor Agricultural University, Biology Department, Indonesia [email protected] (corresponding author) 2Bogor Agricultural University, Indonesia Eva Kristinawati Putri & Tatik Chikmawati. 2015. Pemoposan Sebagai Bukti Taksonomi Beberapa Jenis Diospyros. Floribunda 5(2): 31–47. — Kita cenderung menggunakan struktur generatif untuk identifikasi tanaman, meskipun ketersediaan struktur generatif di lapangan seringkali menjadi masalah bagi praktik identifikasi tanaman yang berbuah hanya sekali dalam setahun, seperti pada Diospyros L. (Ebenaceae). Pemoposan (leaf flushing) masih jarang digunakan dan implikasi taksonominya belum pernah diperhitungkan. Penelitian ini mempelajari pemoposan dan implikasi taksonominya pada delapan jenis Diospyros di Ecopark Cibinong Science Center LIPI, Bogor (Jawa Barat). Observasi karakter morfologi dilakukan pada tiga cabang (masing-masing memiliki tiga set pemoposan dan sebuah kuncup apikal dorman) pada 22 individu Diospyros. Perkembangan kuncup Diospyros menghasilkan satu set pemoposan yang dapat dibedakan dengan set pemoposan yang sebelumnya. Pemoposan setelah periode dormansi dan adanya daun tereduksi pada beberapa spesies mengindikasikan adanya ritme pertumbuhan kuncup. Pemoposan dapat dite- mukan beberapa bulan sekali atau di sepanjang tahun dengan membutuhkan waktu 40–55 hari hingga terben- tuknya daun dewasa. Pemoposan menyediakan 39 karakter yang dapat digunakan sebagai bukti taksonomi untuk membedakan delapan jenis Diospyros berikut dengan kunci identifikasinya. Kata kunci: Diospyros, pemoposan, bukti taksonomi Eva Kristinawati Putri & Tatik Chikmawati. 2015. Leaf Flushings as Taxonomic Evidence of Some Diospyros Species. Floribunda 5(2): 31–47. — People tend to use generative structures for plant identification. Nevertheless, generative structure availibility limits the identification practice for a plant with once-a-year fruit-bearing phase, such as Diospyros L. -
OXIDATIVE STRESS in ALGAE: METHOD DEVELOPMENT and EFFECTS of TEMPERATURE on ANTIOXIDANT NUCLEAR SIGNALING COMPOUNDS Md Noman Siddiqui Purdue University
Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations Spring 2014 OXIDATIVE STRESS IN ALGAE: METHOD DEVELOPMENT AND EFFECTS OF TEMPERATURE ON ANTIOXIDANT NUCLEAR SIGNALING COMPOUNDS Md Noman Siddiqui Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Part of the Fresh Water Studies Commons Recommended Citation Siddiqui, Md Noman, "OXIDATIVE STRESS IN ALGAE: METHOD DEVELOPMENT AND EFFECTS OF TEMPERATURE ON ANTIOXIDANT NUCLEAR SIGNALING COMPOUNDS" (2014). Open Access Theses. 256. https://docs.lib.purdue.edu/open_access_theses/256 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School ETD Form 9 (Revised/) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By MD NOMAN SIDDIQUI Entitled OXIDATIVE STRESS IN ALGAE: METHOD DEVELOPMENT AND EFFECTS OF TEMPERATURE ON ANTIOXIADANT NUCLEAR SIGNALING COMPOUNDS Master of Science For the degree of Is approved by the final examining committee: PAUL BROWN REUBEN GOFORTH THOMAS HOOK To the best of my knowledge and as understood by the student in the 7KHVLV'LVVHUWDWLRQ$JUHHPHQW 3XEOLFDWLRQ'HOD\DQGCHUWLILFDWLRQDisclaimer (Graduate School Form ), this thesis/dissertation DGKHUHVWRWKHSURYLVLRQVRIPurdue University’s “Policy on Integrity in Research” and the use of copyrighted material. PAUL BROWN Approved by Major Professor(s): ____________________________________ -
Appendix APPENDIX TABLE 1
Appendix APPENDIX TABLE 1. ADDITIVES AND OTHER FOOD CHEMICALS-PRINCIPAL CHARACTERISTICS (See list of synonyms and other explanatory notes at end of table) Common Names (Other names) ~ Usual Sources Solubility and Function(s) Formula General Characteristics ~ ~ Acacia (gum arabic) Dried, gummy exudation. Acacia senegal (L.) Willd, and Water (freely soluble). t= Em ulsifier, stabilizer, other species in the Leguminosae Alcohol (insoluble). thickener. (Also see entry on family. V)~ Gums and Mucilages.) Acetaldehyde (ethanol) CH3CHO Colorless liquid with characteristic (1) Oxidation of ethanol or Water, alcohol, and organic solvents Flavoring agent odor. Flammable. ethylene. (2) Dry distillation of (miscible) . calcium acetate with calcium formate. Acetanisole (p-Methoxy C9H100 2 Pale yellow solid with Hawthorn Synthesis. Most fixed oils and propylene acetophenone like odor. glycol (soluble). Glycerin and Flavoring agent mineral oil (insoluble). Acetic Acid, Glacial CH3COOH Clear, colorless liquid with pungent, (1) Oxidation-fermentation of Water, alcohol, and glycerine Acidifier, Flavoring agent acrid odor. Acid taste when diluted. ethanol. (2) Oxidation of acetalde (miscible). hyde. (3) Direct synthesis from methanol and carbon monoxide. Acetoin (Acetyl methyl carbinol; CH3CH(OH)COCH3 Colorless, pale liquid (monomer). Fermentation of diacetyl. Water and propylene glycol Dimethylketol; 2-Hydroxy-2- White crystalline powder (dimer). (miscible). Vegetable oils butanone) Monomer has a characteristic (practically insoluble). Flavoring agent buttery odor. Acetone (2-Propanone; Dimethyl CH3COCH3 Clear, colorless liquid. Very volatile (1) Direct oxidation of propylene Water, alcohol, ether, chloroform ketone) with characteristic odor. Highly with air. (2) Fermentation of and most vegetable oils (miscible). Extraction solvent flammable. starch (also produces butanol). (3) Oxidation of cumene to form cumene hydroperoxide which de composes into acetone and phenol.