FOR 350 Laboratory Writing Assignment: Multiaged Silviculture

Total Page:16

File Type:pdf, Size:1020Kb

FOR 350 Laboratory Writing Assignment: Multiaged Silviculture Chapter 4 Dynamics of multiaged stands 4.1 Introduction consist of multiple canopy strata, upper strata will receive plentiful sunlight whereas lower strata will Understanding stand dynamics is prerequisite for be in much poorer light environments. The term silviculture and particularly for the silviculture of light regime is used to describe the dynamics of complex stands. The simultaneous growth and de- light quality, duration, and intensity on a daily, sea- velopment of multiple age classes of trees compli- sonal, or annual basis. A common means of describ- cates our interpretations of within-stand growth ing the light regime in understory canopy strata is and competition. This is particularly true in the the ratio of below-canopy light to above-canopy understory, where small trees are important future light. This is often expressed as the percent of above- overstory trees but may exist in variable states of canopy light (PACL) or percent of photosynthetical- competition for light or moisture. Some of these un- ly active radiation (PAR). The PACL typically varies derstory trees must be able to persist and grow to inversely with the light extinction characteristics maintain vigor and form and to advance their posi- and number of the canopy layers overhead. Thus, tion in the stand. Growth and persistence of under- a single-stratum overhead might have a steep PACL story trees in multiaged stands is therefore a process gradient as shown in Figure 4.1. As stand structure of obtaining adequate resources while maintaining increases in complexity, the light regime would also an overstory. This chapter discusses the dynamics become more complex (Figure 4.1). PACL is a useful of overstory/understory relations through the lim- tool for expressing the relative light intensity under itations of light and moisture in complex stands. a forest canopy; however, it does not provide much Shade tolerance is presented as a dominant factor indication of the quality of the light that is received. that limits options in multiaged stands, and tree Light quality can vary with type of foliage over- architecture is presented as a diagnostic variable. head, the amount of diffuse and direct light, and the This information is used to define tree growth pat- quality of the light. terns in multiaged stands as trees move through the Most vascular plants increase their growth with canopy and respond to increases in growing space. increasing light intensity until their light needs More detail on stand dynamics, and particularly are met. An asymptotic or saturation curvilinear the dynamics leading to the formation of complex relationship is often used to describe these rela- stand structures, is available in Oliver and Larson tions (Figure 4.2; Coates and Burton 1999; Stan- (1996). Gap dynamics are presented in Chapter 5. cioiu and O’Hara 2006c; O’Hara et al. 2007b). The implication of this form is that plant growth in- 4.2 Dynamics of light-limited systems creases with light intensity until some maximum. Above this maximum, growth is generally unaf- 4.2.1 Light regimes fected by increases in light intensity. The shape of The reduced light in the lower strata of multiaged this light-response relationship would vary with stands has a dominant influence on growth and form the species in both the understory and overstory, of regeneration. Because multiaged stands typically and their shade tolerance. Multiaged Silviculture. Kevin L. O’Hara. © Kevin L. O’Hara 2014. Published 2014 by Oxford University Press. DyNAmIcs Of mULTIAGED sTANDs 23 complex structure Height Seedling sprout height single-stratum structure PACL PACL Figure 4.2 Seedling or sprout height with increasing percent above- Figure 4.1 Percent above-canopy light (PACL) as a function of canopy light (PACL). height in a simple single-stratum structure with a mature overstory (solid line) and in a complex structure with multiple canopy strata (dashed line). A key component of multiaged silviculture is find- stands will only be possible at low overstory stock- ing the appropriate stocking relationship that pro- ing levels. Acker et al. (1998) and Zenner et al. (1998) vides for a healthy overstory and adequate growth describe the growth trade-offs for two-strata stands of the understory. This is often viewed as a simple in the Pacific Northwest, US. The slower growth of trade-off that is somewhat representative of the more understory trees has been cited as a reason multiaged complex trade-offs in stocking control of stands stands are inherently less productive than even-aged with multiple canopy strata. For a two-strata stand, stands (Assmann 1970), although such reasoning ig- ­Figure 4.3 demonstrates that an expectation for rapid nores the potential benefits of low overstory stock- understory growth can only be achieved with a cor- ing on overstory tree growth. responding decrease in the overstory stocking or In some forests, clumpy patterns of overstory growing space occupancy. Understory growth that is trees may be necessary to provide adequate light comparable to growth of trees growing in even-aged to the understory. Gersonde et al. (2004) used a high high overstory growth Figure 4.3 Trade-offs between age classes Overstory growth or canopy strata in a simple two-aged or Understory growth two-strata stand. An allocation of growing space to one age class reduces the potential of the other and represents a trade-off understory growth between providing enough space for the low low older age class to grow and ensuring that 02040 60 80 100 there is enough space for the younger age Overstory growing space occupied (%) class to persist (adapted from O’Hara 1998). 24 MULTIAGED SILVIcULTURE light model to characterize the light regimes in Sunflecks are brief periods of irradiance under multiaged conifer forests in California, US, and relatively closed forest canopy conditions (Chaz- found irregular canopies allowed more light to don and Pearcy 1991). They are an important part intermediate canopy strata. Battaglia et al. (2002) of the understory light regime in many forests be- described the enhanced light regime in stands of ag- cause they supplement diffuse light energy, which gregated patterns of longleaf pine overstory trees. may be more generally present. In some forest Although their treatments left similar amounts of types, sunflecks may account for up to 90% of the residual basal area, the light regimes were very dif- total PAR, but usually they are considerably less ferent because of the variable patterns of residual (Lieffers et al. 1999). Sunflecks are also highly dy- trees (Figure 4.4). The effect of these treatments is namic in that they may last only seconds and can to have different parts of the stand in different light vary daily and seasonally in both light quality and regimes or different positions in the diagram shown duration (Baldocchi and Collineau 1994). The con- in Figure 4.3. Some areas may be to the left, where trasts in light intensity from the sunfleck area to the understory light is more available, whereas others general forest floor can also be quite variable, and are further to the right, where the overstory density all sunflect radiation may not be used (Wayne and is higher. Whereas aggregated spatial patterns may Bazzaz 1993). As a result, trees vary in their ability create favorable light regimes in some situations, in to react to sunflecks due to differences in patterns of other cases, other variables may be important. For stomatal closure and other adaptations—such as in example, Peck et al. (2012) found no clear patterns tree architecture—to light regime. with three pine species in Minnesota, US. Other fac- Light quality is another important variable affect- tors, such as latitude, or variations in shade toler- ing understory dynamics in multiaged stands. At ance among species, may override the advantages one level, light quality might refer to the contrasts of having gaps overhead. Loftis (1990a, b) conclud- between direct beam light, diffuse light through an ed lower and mid-story shade was more important overhead canopy or high shade, or the combination in affecting oak regeneration in the southern Appa- of diffuse and direct light near the forest canopy or lachians, US. low shade (Chapman 1945; Oliver and Larson 1996; 150 100 120 90 Y 50 Y 60 30 0 0 0 60 120 050 100 X X Single Tree Large Group Figure 4.4 Spatial patterns for light in longleaf pine stands in Georgia, US. The figure on the left shows the result of a single tree selection treatment and on the right, that of a large group treatment. Dark patterns represent areas in poorer light regimes and light areas, the best light regimes (from Battaglia et al. 2002. The effect of spatially variable overstory on the understory light environment of an open-canopied longleaf pine forest. Can. J. For. Res., 32, 1984–1991, © Canadian Science Publishing or its licensors). DyNAmIcs Of mULTIAGED sTANDs 25 Leiffers et al. 1999). Light quality may also refer to the Table 4.1 Shade tolerance classes for selected North America proportion of the light spectrum available to plants. species (from Daniel et al. 1979). The structure of the forest can lead to a variety of Tolerance class Species different light qualities depending on whether the light passes through a forest canopy or through large Very tolerant American beech or small gaps (Endler 1993). The forest canopy can Balsam fir therefore affect the range of the light spectrum that Eastern hemlock is transmitted and thus benefit certain trees over oth- Sugar maple ers. For example, Lieffers et al. (1999) showed how Western hemlock the light quality—as represented by the ratio of red Western redcedar to far-red wavelengths—varied with light intensity to give conifers a general advantage at some light Tolerant Coast redwood intensities but not at others.
Recommended publications
  • The Anatomy of Spruce Needles '
    THE ANATOMY OF SPRUCE NEEDLES ' By HERBERT F. MARCO 2 Junior forester. Northeastern Forest Experiment Station,^ Forest Service, United States Department of Agriculture INTRODUCTION In 1865 Thomas (16) * made a comparative study of the anatomy of conifer leaves and fomid that the structural variations exhibited by the different species warranted taxonomic considération. Since that time leaf anatomy has become a fertile and interesting field of research. Nearly all genera of gymnosperms have received some attention, and the literature on this subject has become voluminous. A detailed review of the literature will not be attempted in this paper, since com- prehensive reviews have already been published by Fulling (6) and Lacassagne (11). FuUing's paper contains in addition an extensive bibliography on conifer leaf anatomy. Most workers in tMs field of research have confined their efforts to the study of the cross sections of needles. This is partly because longitudinal sections are difficult to obtain and partly because they present but little structural variation of value for identification. The workers who have studied both longitudinal and cross sections have restricted their descrii)tions of longitudinal sections either to specific tissues or to a few species of a large number of genera, and the descrip- tions, although comprehensive, leave much to be desired from the standpoint of detailed information and illustration. Domer (S) was perhaps the first to use sketches to augment keys to and descriptions of the native firs and spruces. His diagrammatic sketches portray the shape of the needles in cross section and the position of the resin canals. Durrell (4) went a step further and illustrated his notes on the North American conifers by camera-lucida drawing^ depicting the orientation and arrangement of the various needle tissues in cross section.
    [Show full text]
  • Ceratocystis Bhutanensis Sp. Nov., Associated with the Bark Beetle Ips Schmutzenhoferi on Picea Spinulosa in Bhutan
    STUDIES IN MYCOLOGY 50: 365–379. 2004. Ceratocystis bhutanensis sp. nov., associated with the bark beetle Ips schmutzenhoferi on Picea spinulosa in Bhutan Marelize van Wyk1*, Jolanda Roux1, Irene Barnes2, Brenda D. Wingfield2, Dal Bahadur Chhetri3, Thomas Kirisits4 and Michael J. Wingfield1 1Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa, 0002; 2Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa, 0002; 3Renewable Natural Resources Research Centre (RNR-RC), Yusipang, Council of Research & Extension, Ministry of Agriculture, P.O. Box No. 212, Thimphu, Bhutan; 4Institute of Forest Entomol- ogy, Forest Pathology and Forest Protection (IFFF), Department of Forest and Soil Sciences, BOKU – University of Natural Resources and Applied Life Sciences, Vienna, Hasenauerstrasse 38, A-1190, Vienna Austria * Correspondence: Marelize van Wyk, [email protected] Abstract: The Eastern Himalayan spruce bark beetle, Ips schmutzenhoferi, is a serious pest of Picea spinulosa and Pinus wallichiana in Bhutan. A study to identify the ophiostomatoid fungi associated with this bark beetle resulted in the isolation of a Ceratocystis sp. from I. schmutzenhoferi, collected from galleries on P. spinulosa. Morphological characteristics and comparisons of DNA sequence data were used to identify this fungus. Based on morphology, the Ceratocystis sp. from Bhutan resembled C. moniliformis and C. moniliformopsis, but was distinct from these species, both in micro-morphological characteristics, growth at different temperatures, as well as in the odour that it produces in culture. Comparisons of DNA sequences for the ITS regions of the rDNA operon, -tubulin and elongation factor 1- genes, confirmed that this fungus represents a taxon distinct from all other species of Ceratocystis.
    [Show full text]
  • MCBG Conifer Collection
    Mendocino Coast Botanical Gardens Conifer Collection Plant List as of 9/1/2016 Scientific Name Common Name Family Location Abies delavayi var. forrestii SILVER FIR PINACEAE ADMINB Abies durangensis DURANGO FIR PINACEAE E-504 Abies fargesii FARGES' FIR PINACEAE E-504 Abies forrestii var. smithii FORREST FIR PINACEAE E-507 Abies grandis GRAND FIR PINACEAE NATURAL Abies koreana KOREAN FIR PINACEAE E-301, E-301A Abies koreana 'Blauer Eskimo' PINACEAE E-108 Abies lasiocarpa 'Glacier' PINACEAE E-310A Abies nebrodensis SILICIAN FIR PINACEAE E-301A Abies pinsapo var. marocana MOROCCAN FIR PINACEAE E-504 Abies recurvata var. ernestii CHIEN-LU FIR PINACEAE E-509 Abies vejarii VEJAR FIR PINACEAE E-504 Araucaria angustifolia PARANA PINE ARAUCARIACEAE E-504 Athrotaxis cupressoides SMOOTH TASMANIAN CEDAR TAXODIACEAE E-508 Athrotaxis selaginoides KING BILLY PINE TAXODIACEAE E-502 Callitris rhomboidea PORT JACKSON PINE CUPRESSACEAE E-501 Callitris sp. CUPRESSACEAE E-501 Cedrus atlantica ATLAS CEDAR PINACEAE ADMINB Cedrus deodara DEODOR CEDAR PINACEAE E-401 Cedrus deodara 'Bush's Electra' DEODOR CEDAR PINACEAE E-405 Cedrus deodara 'Descanso Dwarf' DEODOR CEDAR PINACEAE E-504 Cedrus deodara 'Emerald Falls' PINACEAE E-108 Cedrus deodara 'Pendula' WEEPING DEODOR CEDAR PINACEAE S-1 Cedrus libani 'Sargentii' CEDAR OF LEBANON PINACEAE E-310C Cedrus libani 'Taurus' PINACEAE E-109 Cedrus libani var. brevifolia CYPRUS CEDAR PINACEAE E-301 Cephalotaxus harringtonia 'Fastigiata' JAPANESE PLUM YEW CEPHALOTAXACEAE ADMINB Chamaecyparis obtusa HINOKI CYPRESS CUPRESSACEAE
    [Show full text]
  • Download Royal Botanic Garden Edinburgh Collection Policy for The
    Collection Policy for the Living Collection David Rae (Editor), Peter Baxter, David Knott, David Mitchell, David Paterson and Barry Unwin 3908_Coll_policy.indd 1 21/9/06 3:24:25 pm 2 | ROYAL BOTANIC GARDEN EDINBURGH COLLECTION POLICY FOR THE LIVING COLLECTION Contents Regius Keeper’s Foreword 3 Section IV Collection types 22 Introduction 22 Introduction 3 Conservation collections 22 PlantNetwork Target 8 project 24 Purpose, aims and objectives 3 Scottish Plant Project 25 International Conifer Conservation Programme 25 Section I National and international context, National Council for the Conservation of Plants stakeholders and user groups 4 and Gardens (NCCPG) 25 Off-site collections 26 National and international context 4 Convention on Biological Diversity 4 Heritage or historic plants, plant collections or Global Strategy for Plant Conservation 4 landscape features 27 Plant Diversity Challenge 5 British native plants International Agenda for Botanic Gardens in Scottish Plants Project (formerly known as the Conservation 6 Scottish Rare Plants Project) 29 Action Plan for the Botanic gardens in the European Union & Planta Europa 6 Section V Acquisition and transfer 30 Convention on Trade in Endangered species of Introduction 30 Wild Flora and Fauna 8 Fieldwork 30 Global warming/outside influences 8 Index Seminum 31 Stakeholders and user groups 9 Other seed and plant catalogues 31 Research and conservation 9 Acquisition 31 Education and teaching 10 Repatriation 32 Interpretation 10 Policy for the short to medium term storage Phenology 10
    [Show full text]
  • A New Phylogeny for the Genus Picea from Plastid, Mitochondrial, and Nuclear Sequences ⇑ Jared D
    Molecular Phylogenetics and Evolution 69 (2013) 717–727 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences ⇑ Jared D. Lockwood a,1, Jelena M. Aleksic´ b,1, Jiabin Zou c,1, Jing Wang c, Jianquan Liu c, Susanne S. Renner a, a Systematic Botany and Mycology, University of Munich (LMU), Menzinger Strasse 67, 80638 Munich, Germany b University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, 11010 Belgrade, Serbia c State Key Laboratory of Grassland Agro-ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China article info abstract Article history: Studies over the past ten years have shown that the crown groups of most conifer genera are only about Received 28 March 2013 15–25 Ma old. The genus Picea (spruces, Pinaceae), with around 35 species, appears to be no exception. In Revised 21 June 2013 addition, molecular studies of co-existing spruce species have demonstrated frequent introgression. Per- Accepted 5 July 2013 haps not surprisingly therefore previous phylogenetic studies of species relationships in Picea, based Available online 18 July 2013 mostly on plastid sequences, suffered from poor statistical support. We therefore generated mitochon- drial, nuclear, and further plastid DNA sequences from carefully sourced material, striking a balance Keywords: between alignability with outgroups and phylogenetic signal content. Motif duplications in mitochon- Molecular clocks drial introns were treated as characters in a stochastic Dollo model; molecular clock models were cali- Historical biogeography Mitochondrial nad introns brated with fossils; and ancestral ranges were inferred under maximum likelihood.
    [Show full text]
  • Sirococcus Shoot Blight on Picea Spinulosa in Bhutan
    For. Path. 37 (2007) 40–50 Ó 2007 The Authors Journal compilation Ó 2007 Blackwell Verlag, Berlin Sirococcus shoot blight on Picea spinulosa in Bhutan By T. Kirisits1,4,*, H. Konrad1,*, E. Halmschlager1, C. Stauffer1, M. J. Wingfield2 and D. B. Chhetri3 1Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), Department of Forest and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna (BOKU), Hasenauerstraße 38, A-1190 Vienna, Austria; 2Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Biological and Agricultural Sciences, University of Pretoria, Pretoria, South Africa; 3Renewable Natural Resources Research Centre (RNR-RC), Jakar, East Central Region, Council for RNR Research of Bhutan, Ministry of Agriculture, Royal Government of Bhutan, Bhutan. 4E-mail: [email protected] *These authors contributed equally to this work. Summary During a recent survey of forest tree diseases in Western and Central Bhutan, Sirococcus shoot blight and an associated Sirococcus sp. were found on saplings and mature trees of Eastern Himalayan spruce (Picea spinulosa). Based on morphological characteristics and DNA sequence comparisons of the ITS region of the rDNA operon, representative isolates from Bhutan were unequivocally identified as Sirococcus conigenus. The DNA sequence data also showed that these isolates belong to the P group of S. conigenus. To our best knowledge, this is the first report of Sirococcus shoot blight from the Himalayas or any other part of Asia. Sirococcus conigenus does not appear to cause dramatic damage at the moment, but this fungus has the potential to cause severe disease problems on P. spinulosa in Bhutan. 1 Introduction In contrast to many other countries in Southern Asia, the Kingdom of Bhutan has maintained the majority of its natural forests.
    [Show full text]
  • Viii X the PHYLOGENETIC ANALYSIS of PICEA
    THE PHYLOGENETIC ANALYSIS OF PICEA ORIENTALIS POPULATIONS FROM NORTHEASTERN TURKEY WITH RESPECT TO NON-CODING trn AND matK REGIONS OF CHLOROPLAST GENOME A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY ALİ MURAT GÜLSOY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOLOGY x SEPTEMBER 2011 viii Approval of the thesis THE PHYLOGENETIC ANALYSIS OF PICEA ORIENTALIS POPULATIONS FROM NORTHEASTERN TURKEY WITH RESPECT TO NON-CODING trn AND matK REGIONS OF CHLOROPLAST GENOME submitted by ALİ MURAT GÜLSOY in partial fulfillment of the requirements for the degree of Master of Science in Biology Department, Middle East Technical University by, Prof. Dr. Canan Özgen Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Musa Doğan Head of the Department, Biology Prof. Dr. Zeki Kaya Supervisor, Biology Dept., METU Examining Committee Members Prof. Dr. Musa Doğan Biology Dept.,METU Prof. Dr. Zeki Kaya Biology Dept., METU Assoc. Prof. Dr.Sertaç Önde Biology Dept., METU Assist. Prof. Dr. Fatih Temel Faculty of Forestry, Artvin Çoruh University Dr. Burcu Çengel Ministry of Forestry and Water Affairs, FTSTBRD, Ankara Date: 07.09.2011 ii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last Name: ALİ MURAT GÜLSOY Signature : iii ABSTRACT THE PHYLOGENETIC ANALYSIS OF PICEA ORIENTALIS POPULATIONS FROM NORTHEASTERN TURKEY WITH RESPECT TO NON-CODING trn AND matK REGIONS OF CHLOROPLAST GENOME Gülsoy, Ali Murat M.Sc., Department of Biology Supervisor: Prof.
    [Show full text]
  • Spruces (Picea: Pinaceae) in the Yarlung Tsangpo Drainage of Southeast Tibet (Xizang, China) KEITH RUSHFORTH
    Spruces (Picea: Pinaceae) in the Yarlung Tsangpo drainage of southeast Tibet (Xizang, China) KEITH RUSHFORTH Abstract: An over-view of the genus Picea (Pinaceae) in China is given, with particular reference to the P. likiangensis group of species. This group is considered to include P. likiangensis (Franch.) E.Pritz. subspecies likiangensis, P. likiangensis subsp. balfouriana (Rehder & E.H.Wilson) Rushforth and P. purpurea Mast. The species of Picea occurring above 3000m in the drainage of the Yarlung tsangpo and its main tributary the Po Tsangpo, southeast Tibet (Xizang) is allied to P. likiangensis & P. purpurea but with some characters shared with P. spinulosa (Griff.) A.Henry from south of the Himalaya (which also occurs at lower elevations in the Yarlung Tsangpo drainage). The new combination P. linzhiensis (W.C.Cheng & L.K.Fu) Rushforth is made. A key to the species in the P. likiangensis and P. brachytyla groups is presented. 42 The genus Picea in China falls into six distinct groups of species. The simplest to consider is the grouping which includes P. neoveitchii Mast. This rare northern species from southern Gansu to Shanxi just west of Beijing has never, as far as I am aware been introduced into the west (one “introduction” produced another spruce). It forms a natural group with the Japanese Picea torano (Siebold ex K.Koch) Koehne and the rare Mexican species P. martinezii T.F.Patt. from Nuevo Leon. From a horticultural perspective these species are characterised by needles which are extremely sharp to the touch. Botanically, they are characterised by the rather large rounded cone scales and the rather flattened needles with two bands of stomata on the two sides; the unusual aspect is that the leaves on vegetative shoots are laterally compressed along the axis of the shoot (not dorsiventrally compressed as in other flat-leaved spruces).
    [Show full text]
  • Tesis Doctoral
    UNIVERSIDAD NACIONAL DEL SUR TESIS DE DOCTOR EN BIOLOGÍA Estudio Sistemático de Micromicetes de la Región Andino-patagónica Romina M. Sánchez BAHIA BLANCA AR GENTINA 2011 PREFACIO Esta Tesis se presenta como parte de los requisitos para optar al grado Académico de Doctor en Biología, de la Universidad Nacional del Sur y no ha sido presentada previamente para la obtención de otro título en esta Universidad u otra. La misma contiene los resultados obtenidos en investigaciones llevadas a cabo en el ámbito del Departamento de Biología, Bioquímica y Farmacia durante el período comprendido entre el 2006 y el 2011, bajo la dirección de la Dra. María Virginia Bianchinotti, Universidad Nacional del Sur, y la co-dirección de la Dra. Andrea Irene Romero, Facultad de Ciencias Exactas y Naturales, UBA. Firma del Alumno UNIVERSIDAD NACIONAL DEL SUR Secretaría General de Posgrado y Educación Continua La presente tesis ha sido aprobada el .…/.…/.….. , mereciendo la calificación de ......(……………………). i AGRADECIMIENTOS A la Dra. Ma. Virginia Bianchinotti por su dedicación, bondad y cariño en la dirección de esta tesis, por abrirme las puertas de su laboratorio y biblioteca personal, por su confianza incondicional y su aliento permanente, y especialmente por brindarme su amistad. A la Dra. Andrea I. Romero por guiarme y alentarme en el estudio de los ascomicetes, por la lectura crítica del manuscrito y principalmente por recibirme en su laboratorio, su hogar y su familia. Al Dr. Mario Rajchenberg por su guía, su apoyo y sus consejos incondicionales, por facilitarme las instalaciones de su laboratorio y abrirme las puertas de su hogar. Al Dr.
    [Show full text]
  • Picea Abies ) in Bulgaria
    FIRST RECORD OF SIROCOCCUS CONIGENUS ON NORWAY SPRUCE (PICEA ABIES ) IN BULGARIA Maria Dobreva 1, Margarita Georgieva 2, Pencho Dermendzhiev 1, Vasil Velinov 1, Rumen Nachev 1, Georgi Georgiev 2 1Forest Protection Station - Plovdiv 2Forest Research Institute – Sofia Bulgarian Academy of Sciences Abstract: Damages on Norway spruce ( Picea abies (L.) Karst) seedlings, associated with a fungal pathogen Sirococcus conigenus (Pers.) Cannon et Minter (Ascomycota, Diaportales, Gnomoniaceae), were established for first time in Bulgaria. In 2016, shoot blight disease was noticed on 4-year old seedlings in a nursery of Training and Experimental Forest Range, Yundola Vill., Southwest Bulgaria. Currently, the pathogen is not widespread in Bulgaria, but it has potential to cause intense problems on the conifer species growing in nurseries, young plantations, mature stands and ornamental trees. Key words: Sirococcus conigenus, Picea abies, shoot blight disease Sirococcus conigenus (DC.) P. Cannon et Minter (Ascomycota, Diaportales, Gnomoniaceae) (syn. S. strobilinus G. Preuss) is an asexually reproducing fungus causing shoot blight and death of seedlings of many conifer hosts throughout the Northern hemisphere (Halmschlager et al., 2007). Sirococcus shoot blight disease was described for first time in 1890 in Germany on current-year shoots of Norway spruce ( Picea abies (L.) Karst.) (Hartig, 1890). Subsequently, the disease was reported on a wide range of conifer hosts from genera Picea , Pinus , Larix , Tsuga , Pseudotsuga in Europe and North America (Peace, 1962; Sutherland et al., 1987; Butin, 1995; Smith et al., 2003; Sinclair, Lyon, 2005), and recently on Picea spinulosa (Griff.) Henry in Bhutan, South Asia (Kirisits et al., 2007). In 2008, two new species from Sirococcus genus were recognized – S.
    [Show full text]
  • Response of the Endangered Red Panda Ailurus Fulgens Fulgens to Anthropogenic Disturbances, and Its Distribution in Phrumsengla National Park, Bhutan
    Response of the Endangered red panda Ailurus fulgens fulgens to anthropogenic disturbances, and its distribution in Phrumsengla National Park, Bhutan P EMA D ENDUP,ELLEN C HENG,CHOKI L HAM and U GYEN T ENZIN Abstract Across much of Asia protected areas have a dual The red panda Ailurus fulgens, a cat-sized arboreal mam- objective of conserving biodiversity and supporting rural mal of Himalayan temperate forests, may be one such spe- and indigenous livelihoods. For the red panda Ailurus ful- cies. Categorized as Endangered on the IUCN Red List, an gens and other sensitive species of concern, even limited estimated , mature individuals are distributed among anthropogenic disturbance may influence their use of pro- five Asian countries (Glatston et al., ). Red pandas have tected areas. We quantified the prevalence of timber collec- been confirmed in districts in Bhutan, districts in tion and livestock grazing, and their impacts on red panda Nepal, three states in India, one state in Myanmar, and habitat use, in Phrumsengla National Park, Bhutan. Red three provinces in China (Dorji et al., ; Glatston et al., pandas used sites with at least % bamboo cover, as evi- ). denced by presence of their faecal pellets. They avoided As with many species for which few data beyond pres- sites disturbed by livestock, regardless of bamboo availabil- ence/absence are available, conservation of the red panda ity. Timber collection itself was not an important predictor is frequently measured in terms of protected area coverage. of red panda presence but bamboo may be harvested oppor- In India and China c. and % of potential red panda habi- tunistically from sites where timber is collected.
    [Show full text]
  • Sb 18(2)' 2017-049-052
    Silva Balcanica, 18(2)/2017 FIRST record OF SIROCOccus CONIGENUS ON norway spruce (PICEA ABIES) IN Bulgaria Maria Dobreva1, Margarita Georgieva2, Pencho Dermendzhiev1, Vasil Velinov1, Rumen Nachev1, Georgi Georgiev2 1Forest Protection Station - Plovdiv 2Forest Research Institute – Sofia Bulgarian Academy of Sciences Abstract Damages on Norway spruce (Picea abies (L.) Karst) seedlings, associated with a fungal pathogen Sirococcus conigenus (Pers.) Cannon et Minter (Ascomycota, Diaportales, Gnomoniaceae), were established for first time in Bulgaria. In 2016, shoot blight disease was noticed on 4-year old seedlings in a nursery of Training and Experimental Forest Range, Yundola Vill., Southwest Bulgaria. Currently, the pathogen is not widespread in Bulgaria, but it has potential to cause intense problems on the conifer species growing in nurseries, young plantations, mature stands and ornamental trees. Key words: Sirococcus conigenus, Picea abies, shoot blight disease Sirococcus conigenus (DC.) P. Cannon et Minter (Ascomycota, Diaportales, Gnomoniaceae) (syn. S. strobilinus G. Preuss) is an asexually reproducing fungus causing shoot blight and death of seedlings of many conifer hosts throughout the Northern hemisphere (Halmschlager et al., 2007). Sirococcus shoot blight disease was described for first time in 1890 in Germany on current-year shoots of Norway spruce (Picea abies (L.) Karst.) (Hartig, 1890). Subsequently, the disease was reported on a wide range of conifer hosts from genera Picea, Pinus, Larix, Tsuga, Pseudotsuga in Europe and North America (Peace, 1962; Sutherland et al., 1987; Butin, 1995; Smith et al., 2003; Sinclair, Lyon, 2005), and recently on Picea spinulosa (Griff.) Henry in Bhutan, South Asia (Kirisits et al., 2007). In 2008, two new species from Sirococcus genus were recognized – S.
    [Show full text]