Russo-Ch1-Intr.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The History of Egypt Under the Ptolemies
UC-NRLF $C lb EbE THE HISTORY OF EGYPT THE PTOLEMIES. BY SAMUEL SHARPE. LONDON: EDWARD MOXON, DOVER STREET. 1838. 65 Printed by Arthur Taylor, Coleman Street. TO THE READER. The Author has given neither the arguments nor the whole of the authorities on which the sketch of the earlier history in the Introduction rests, as it would have had too much of the dryness of an antiquarian enquiry, and as he has already published them in his Early History of Egypt. In the rest of the book he has in every case pointed out in the margin the sources from which he has drawn his information. » Canonbury, 12th November, 1838. Works published by the same Author. The EARLY HISTORY of EGYPT, from the Old Testament, Herodotus, Manetho, and the Hieroglyphieal Inscriptions. EGYPTIAN INSCRIPTIONS, from the British Museum and other sources. Sixty Plates in folio. Rudiments of a VOCABULARY of EGYPTIAN HIEROGLYPHICS. M451 42 ERRATA. Page 103, line 23, for Syria read Macedonia. Page 104, line 4, for Syrians read Macedonians. CONTENTS. Introduction. Abraham : shepherd kings : Joseph : kings of Thebes : era ofMenophres, exodus of the Jews, Rameses the Great, buildings, conquests, popu- lation, mines: Shishank, B.C. 970: Solomon: kings of Tanis : Bocchoris of Sais : kings of Ethiopia, B. c. 730 .- kings ofSais : Africa is sailed round, Greek mercenaries and settlers, Solon and Pythagoras : Persian conquest, B.C. 525 .- Inarus rebels : Herodotus and Hellanicus : Amyrtaus, Nectanebo : Eudoxus, Chrysippus, and Plato : Alexander the Great : oasis of Ammon, native judges, -
Water, Air and Fire at Work in Hero's Machines
Water, air and fire at work in Hero’s machines Amelia Carolina Sparavigna Dipartimento di Fisica, Politecnico di Torino Corso Duca degli Abruzzi 24, Torino, Italy Known as the Michanikos, Hero of Alexandria is considered the inventor of the world's first steam engine and of many other sophisticated devices. Here we discuss three of them as described in his book “Pneumatica”. These machines, working with water, air and fire, are clear examples of the deep knowledge of fluid dynamics reached by the Hellenistic scientists. Hero of Alexandria, known as the Mechanicos, lived during the first century in the Roman Egypt [1]. He was probably a Greek mathematician and engineer who resided in the city of Alexandria. We know his work from some of writings and designs that have been arrived nowadays in their Greek original or in Arabic translations. From his own writings, it is possible to gather that he knew the works of Archimedes and of Philo the Byzantian, who was a contemporary of Ctesibius [2]. It is almost certain that Heron taught at the Museum, a college for combined philosophy and literary studies and a religious place of cult of Muses, that included the famous Library. For this reason, Hero claimed himself a pupil of Ctesibius, who was probably the first head of the Museum of Alexandria. Most of Hero’s writings appear as lecture notes for courses in mathematics, mechanics, physics and pneumatics [2]. In optics, Hero formulated the Principle of the Shortest Path of Light, principle telling that if a ray of light propagates from a point to another one within the same medium, the followed path is the shortest possible. -
The Mechanical Problems in the Corpus of Aristotle
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications, Classics and Religious Studies Department Classics and Religious Studies July 2007 The Mechanical Problems in the Corpus of Aristotle Thomas Nelson Winter University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/classicsfacpub Part of the Classics Commons Winter, Thomas Nelson, "The Mechanical Problems in the Corpus of Aristotle" (2007). Faculty Publications, Classics and Religious Studies Department. 68. https://digitalcommons.unl.edu/classicsfacpub/68 This Article is brought to you for free and open access by the Classics and Religious Studies at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Classics and Religious Studies Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Th e Mechanical Problems in the Corpus of Aristotle Th omas N. Winter Lincoln, Nebraska • 2007 Translator’s Preface. Who Wrote the Mechanical Problems in the Aristotelian Corpus? When I was translating the Mechanical Problems, which I did from the TLG Greek text, I was still in the fundamentalist authorship mode: that it survives in the corpus of Aristotle was then for me prima facie Th is paper will: evidence that Aristotle was the author. And at many places I found in- 1) off er the plainest evidence yet that it is not Aristotle, and — 1 dications that the date of the work was apt for Aristotle. But eventually, 2) name an author. I saw a join in Vitruvius, as in the brief summary below, “Who Wrote Th at it is not Aristotle does not, so far, rest on evidence. -
From Ancient Greece to Byzantium
Proceedings of the European Control Conference 2007 TuA07.4 Kos, Greece, July 2-5, 2007 Technology and Autonomous Mechanisms in the Mediterranean: From Ancient Greece to Byzantium K. P. Valavanis, G. J. Vachtsevanos, P. J. Antsaklis Abstract – The paper aims at presenting each period are then provided followed by technology and automation advances in the accomplishments in automatic control and the ancient Greek World, offering evidence that transition from the ancient Greek world to the Greco- feedback control as a discipline dates back more Roman era and the Byzantium. than twenty five centuries. II. CHRONOLOGICAL MAP OF SCIENCE & TECHNOLOGY I. INTRODUCTION It is worth noting that there was an initial phase of The paper objective is to present historical evidence imported influences in the development of ancient of achievements in science, technology and the Greek technology that reached the Greek states from making of automation in the ancient Greek world until the East (Persia, Babylon and Mesopotamia) and th the era of Byzantium and that the main driving force practiced by the Greeks up until the 6 century B.C. It behind Greek science [16] - [18] has been curiosity and was at the time of Thales of Miletus (circa 585 B.C.), desire for knowledge followed by the study of nature. when a very significant change occurred. A new and When focusing on the discipline of feedback control, exclusively Greek activity began to dominate any James Watt’s Flyball Governor (1769) may be inherited technology, called science. In subsequent considered as one of the earliest feedback control centuries, technology itself became more productive, devices of the modern era. -
Table of Contents More Information
Cambridge University Press 978-0-521-76376-9 - The Mechanical Hypothesis in Ancient Greek Natural Philosophy Sylvia Berryman Table of Contents More information Contents List of illustrations page vii Acknowledgements viii Introduction 1 1 Mechanics and the mechanical: some problems of terminology 9 The critics of prevailing usage 11 Some candidate definitions of the ‘mechanistic’ 15 2 ‘Mechanistic’ thought before mechanics? 21 Divine versus human technology 24 Working artifacts before the fourth century 29 Ancient atomism and the machine analogy 34 The ‘shortfalls’ of ancient technology 39 The ‘exclusion’ of ancient mechanics 43 3 Mechanics in the fourth century 54 The scope of ancient Greek mechanics 55 Archytas and the foundation of mechanics 87 Aristotle’s ‘mechanics’ of motion 97 Conclusion 104 4 The theory and practice of ancient Greek mechanics 105 The Aristotelian Mechanica 106 Ctesibius 115 Archimedes 117 Philo of Byzantium 123 v © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-76376-9 - The Mechanical Hypothesis in Ancient Greek Natural Philosophy Sylvia Berryman Table of Contents More information vi Contents Vitruvius 130 Hero of Alexandria 134 Pappus of Alexandria 143 Models of the heavens 146 5 Ancient Greek mechanics continued: the case of pneumatics 155 Pneumatic technology in the post-classical period 157 Ancient Greek pneumatic theory 165 The status of mechanics revisited: natural or artificial? 170 6 The philosophical reception of mechanics in antiquity 177 Mechanical theory in natural philosophy 179 The theory of pneumatics in natural philosophy 191 Pneumatics and medical theory 197 Working artifacts and the notion of a self-mover 201 Mechanical analogies for the functioning of organisms 205 Working artifacts in astronomy 216 Mechanical analogies in cosmology 220 Conclusion 231 Appendix: Ancient mechanics and the mechanical in the seventeenth century 236 Bibliography 250 Index of passages 274 General index 282 © Cambridge University Press www.cambridge.org. -
Queen Arsinoë II, the Maritime Aphrodite and Early Ptolemaic Ruler Cult
ΑΡΣΙΝΟΗ ΕΥΠΛΟΙΑ Queen Arsinoë II, the Maritime Aphrodite and Early Ptolemaic Ruler Cult Carlos Francis Robinson Bachelor of Arts (Hons. 1) A thesis submitted for the degree of Master of Philosophy at The University of Queensland in 2019 Historical and Philosophical Inquiry Abstract Queen Arsinoë II, the Maritime Aphrodite and Early Ptolemaic Ruler Cult By the early Hellenistic period a trend was emerging in which royal women were deified as Aphrodite. In a unique innovation, Queen Arsinoë II of Egypt (c. 316 – 270 BC) was deified as the maritime Aphrodite, and was associated with the cult titles Euploia, Akraia, and Galenaië. It was the important study of Robert (1966) which identified that the poets Posidippus and Callimachus were honouring Arsinoë II as the maritime Aphrodite. This thesis examines how this new third-century BC cult of ‘Arsinoë Aphrodite’ adopted aspects of Greek cults of the maritime Aphrodite, creating a new derivative cult. The main historical sources for this cult are the epigrams of Posidippus and Callimachus, including a relatively new epigram (Posidippus AB 39) published in 2001. This thesis demonstrates that the new cult of Arsinoë Aphrodite utilised existing traditions, such as: Aphrodite’s role as patron of fleets, the practice of dedications to Aphrodite by admirals, the use of invocations before sailing, and the practice of marine dedications such as shells. In this way the Ptolemies incorporated existing religious traditions into a new form of ruler cult. This study is the first attempt to trace the direct relationship between Ptolemaic ruler cult and existing traditions of the maritime Aphrodite, and deepens our understanding of the strategies of ruler cult adopted in the early Hellenistic period. -
On Some Borrowed and Misunderstood Problems in Greek Catoptrics
On Some Borrowed and Misunderstood Problems in Greek Catoptrics by ALEXANDERJONES Optics was one of the first sciences to which ancient Greek mathe- maticians attempted to apply the apparatus of geometry. They were most successful in describing geometrically certain phenomena of per- spective (as in Euclid’s Optics and parts of Pappus’s Collection, Book 6),less so in catoljtrics, the study of mirrors.’ The problems typically encountered in the surviving writings on catoptrics fall into two classes: those dealing with the reflection of rays cast from a luminous source such as the sun upon minors of plane or curved surface, and those involving the projection of lines of sight from the eye by way of a minor to an object. The most basic problem of the first class, to make a burning mirror, is solved correctly in Diocles’s On Burning Mirrors (ca. 200 B.C.) with both spherical and parabolic mirrors; other prob- lems were investigated by Diocles, by Anthemius (ca. A.D. 620) in his On Paradoxical Devices, and doubtless by other authors in the cen- turies between.2 In general these problems were amenable to geo- metrical treatment in antiquity because Hellenistic geometers were equipped to study the tangent lines to a wide range of curves (or the tangent planes to analogous surfaces) and the behaviour of straight lines in a given direction or through a given point .and inflected at the curve or surface at equal angles to the tangent at the point of in- cidence. Problems of the other class, in which it was required to make an ar- rangement of mirrors or a mirror with a special curvature, such that a *Institute for the History and Philosophy of Science and Technology, Victoria College, Univer- sity of Toronto, Toronto, Canada MSS 1K7. -
A Short History of Greek Mathematics
Cambridge Library Co ll e C t i o n Books of enduring scholarly value Classics From the Renaissance to the nineteenth century, Latin and Greek were compulsory subjects in almost all European universities, and most early modern scholars published their research and conducted international correspondence in Latin. Latin had continued in use in Western Europe long after the fall of the Roman empire as the lingua franca of the educated classes and of law, diplomacy, religion and university teaching. The flight of Greek scholars to the West after the fall of Constantinople in 1453 gave impetus to the study of ancient Greek literature and the Greek New Testament. Eventually, just as nineteenth-century reforms of university curricula were beginning to erode this ascendancy, developments in textual criticism and linguistic analysis, and new ways of studying ancient societies, especially archaeology, led to renewed enthusiasm for the Classics. This collection offers works of criticism, interpretation and synthesis by the outstanding scholars of the nineteenth century. A Short History of Greek Mathematics James Gow’s Short History of Greek Mathematics (1884) provided the first full account of the subject available in English, and it today remains a clear and thorough guide to early arithmetic and geometry. Beginning with the origins of the numerical system and proceeding through the theorems of Pythagoras, Euclid, Archimedes and many others, the Short History offers in-depth analysis and useful translations of individual texts as well as a broad historical overview of the development of mathematics. Parts I and II concern Greek arithmetic, including the origin of alphabetic numerals and the nomenclature for operations; Part III constitutes a complete history of Greek geometry, from its earliest precursors in Egypt and Babylon through to the innovations of the Ionic, Sophistic, and Academic schools and their followers. -
6 X 10. Three Lines .P65
Cambridge University Press 978-0-521-83746-0 - Archytas of Tarentum: Pythagorean, Philosopher and Mathematician King Carl A. Huffman Index More information Select index of Greek words and phrases discussed in the text delf»v/delf, 64, 123, 125, 154 galnh, 66, 75, 491, 494–500, 504–05, 515 kanqa, 341 gr, 122–23 ll»triov, 194–95 gewmetrw, 567 nagka©wv, 396 gewmetrik, 232–33, 244 ndocov, 39–40 gewmetrik»v, 244 na©sqhtov, 449 nakmptw, 538 de»menoi, 217–18 naklw, 476–77 dicr»nou , 291 nakÅptw, 322 diagignÛskw, 58–59, 149–51 nalog©a, 179–81, 503, 529–37, 538; toÓ sou, diagnÛmen, xiv, 149 529–37 dignwsiv, 58–59, 149–51 nlogon, 179 digramma, 396, 566 namon, 291 d©aita, partn d©aitan , 300–01 nastrof, 123, 155 diallttw, 215 nepistmwn, 193–94 disthma, 166–67, 169, 181, 458 n»moiov, tn»moia , 436, 441–43 diatrib, 228–32 ntere©dw, 561 dunmenoi, 217–18 ntreisma, 297 dÅnamiv, 446 nt©lhyiv, 451 dusmcanov, 79, 348, 375, 379 nÛmalov, 513–15 nwmal»thv, 513 gg©gnomai, 539 »ristov, 511 e²dov, 93, 123, 226, 238, 250–51, 567; pqeia, 600, 603 (prÛtiston), 122 pantizw, 113, 156 e«kÛn, 601 planv, 542–43 kle©pw, 247 podeiktikäv, 375, 379 mp»diov, 335 p»deixiv, 71, 232, 237–38, mfusw, 113, 160 248–49 n aÉt, 222 podcomai, 503–04 nant©ov, 445 porov, 195 nargv, 71, 233, 236–37, 238, 246–47 pofrssw, 160 narm»zw, 351 riqmhtik, 240–44 xeur©skw, 193, 195, 196–200, 202 rmon©a, tperª tn rmon©an , 565 peiskwmzw, 314, 322 rc, 358, 500, 502, 598 piqumhtik»v, 93 rc kaª mhtr»poliv, 69 p©stamai, 196–200 %rcÅtav, 619 pistmwn, 193–94 stronomik»v, 244 pistthv, 389 aÎxh, 80, 386 pitelw, 72, 237–38, 247, 249 aÉt¼v fa, 55 pitmnw, 587 stÛ, 96 banausourg©a, 380 scatov oÉran»v, 87 638 © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-83746-0 - Archytas of Tarentum: Pythagorean, Philosopher and Mathematician King Carl A. -
Atmospheric Refraction: a History
Atmospheric refraction: a history Waldemar H. Lehn and Siebren van der Werf We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of uniform density up to a sharp upper transition to the ether, at which the refraction occurred. Alhazen and Witelo transmitted his knowledge to medieval Europe. The first accurate measurements were made by Tycho Brahe in the 16th century. Finally, Kepler, who was aware of unusually strong refractions, used the Ptolemaic model to explain the first documented and recognized mirage (the Novaya Zemlya effect). © 2005 Optical Society of America OCIS codes: 000.2850, 010.4030. 1. Introduction the term catoptrics became reserved for reflection Atmospheric refraction, which is responsible for both only, and the term dioptrics was adopted to describe astronomical refraction and mirages, is a subject that the study of refraction.2 The latter name was still in is widely dispersed through the literature, with very use in Kepler’s time. few works dedicated entirely to its exposition. The same must be said for the history of refraction. Ele- ments of the history are scattered throughout numer- 2. Early Greek Theories ous references, many of which are obscure and not Aristotle (384–322 BC) was one of the first philoso- readily available. It is our objective to summarize in phers to write about vision. He considered that a one place the development of the concept of atmo- transparent medium such as air or water was essen- spheric refraction from Greek antiquity to the time of tial to transmit information to the eye, and that vi- Kepler, and its use to explain the first widely known sion in a vacuum would be impossible. -
Some Readings in the Early History of Light
Paul Avery PHY 3400 Aug. 23, 1999 Some Readings in the Early History of Light The Greeks In optics, Euclid's textbook (called the Optics) set the precedent. Euclid postulated visual rays to be straight lines, and he defined the apparent size of an object in terms of the angle formed by the rays drawn from the top and the bottom of the object to the observer's eye. He then proved, for example, that nearer objects appear larger and appear to move faster and showed how to measure the height of distant objects from their shadows or reflected images, and so on. Other textbooks set out theorems on the phenomena of reflection and refraction (the field called catoptrics). The most extensive survey of optical phenomena is a treatise attributed to the astronomer Ptolemy (2nd century AD), which survives only in the form of an incomplete Latin translation (12th century) based on a lost Arabic translation. It covers the fields of geometric optics and catoptrics, as well as experimental areas, such as binocular vision, and more general philosophical principles (the nature of light, vision, and colour). Of a somewhat different sort are the studies of burning mirrors by Diocles (late 2nd century BC), who proved that the surface that reflects the rays from the Sun to a single point is a paraboloid of revolution. Constructions of such devices remained of interest as late as the 6th century AD, when Anthemius of Tralles, best known for his work as architect of the Hagia Sophia at Constantinople, compiled a survey of remarkable mirror configurations. -
Optics History As Effective Instrument for Education in Optics and Photonics
ETOP 2009 1 Optics history as effective instrument for education in optics and photonics S.K. Stafeef and M.G. Tomilin St.-Petersburg University of Information Technologies, Mechanics and Optics, St.- Petersburg, 197101, Kronverksky Pr. 49, Russia ABSTRACT The education problem in optics and photonics is to draw young generation on the side of light, optical science and technology. The main goal is to prove the slogan that “physics is a small part of optics”: during the thousand years optics formulated the clear worldview for humanity. In fact optics is itself presents multidisciplinary collection of independent scientific arias from one hand and was a generator of new fields of knowledge from the other hand. Optics and photonics are the regions where the fundamental problems of our reality have to be solved. The mentioned functions belonged to optics during the period of civilizations development. This is a basic idea of books serial by S. Stafeev and M. Tomilin “Five Millennium of Optics” including 3 volumes. The first volume devoted to optics prehistory was edit in 2006 in Russian. Its main chapters devoted to relations between Sun and Life, the beginnings of human intelligence, megalithic viewfinders, gnomons and ancient temples orientation, archaic optical materials and elements. It also consist the optical riddles of that period. The volume II is devoted to Greek and Roman antiquity and is in the process of publishing. It consist the chapters on the beginning of optics, mathematical fundaments and applied optics evolution. Volume III would be devoted to Medieval and Renaissance optics history. The materials are used at our university in a course “The Modern Natural Science Conceptions” for students and graduate students.