Research on Ancient Greek Mathematical Sciences, 1998–2012
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Diophantine Equation X 2 + C = Y N : a Brief Overview
Revista Colombiana de Matem¶aticas Volumen 40 (2006), p¶aginas31{37 The Diophantine equation x 2 + c = y n : a brief overview Fadwa S. Abu Muriefah Girls College Of Education, Saudi Arabia Yann Bugeaud Universit¶eLouis Pasteur, France Abstract. We give a survey on recent results on the Diophantine equation x2 + c = yn. Key words and phrases. Diophantine equations, Baker's method. 2000 Mathematics Subject Classi¯cation. Primary: 11D61. Resumen. Nosotros hacemos una revisi¶onacerca de resultados recientes sobre la ecuaci¶onDiof¶antica x2 + c = yn. 1. Who was Diophantus? The expression `Diophantine equation' comes from Diophantus of Alexandria (about A.D. 250), one of the greatest mathematicians of the Greek civilization. He was the ¯rst writer who initiated a systematic study of the solutions of equations in integers. He wrote three works, the most important of them being `Arithmetic', which is related to the theory of numbers as distinct from computation, and covers much that is now included in Algebra. Diophantus introduced a better algebraic symbolism than had been known before his time. Also in this book we ¯nd the ¯rst systematic use of mathematical notation, although the signs employed are of the nature of abbreviations for words rather than algebraic symbols in contemporary mathematics. Special symbols are introduced to present frequently occurring concepts such as the unknown up 31 32 F. S. ABU M. & Y. BUGEAUD to its sixth power. He stands out in the history of science as one of the great unexplained geniuses. A Diophantine equation or indeterminate equation is one which is to be solved in integral values of the unknowns. -
Unaccountable Numbers
Unaccountable Numbers Fabio Acerbi In memoriam Alessandro Lami, a tempi migliori HE AIM of this article is to discuss and amend one of the most intriguing loci corrupti of the Greek mathematical T corpus: the definition of the “unknown” in Diophantus’ Arithmetica. To do so, I first expound in detail the peculiar ter- minology that Diophantus employs in his treatise, as well as the notation associated with it (section 1). Sections 2 and 3 present the textual problem and discuss past attempts to deal with it; special attention will be paid to a paraphrase contained in a let- ter of Michael Psellus. The emendation I propose (section 4) is shown to be supported by a crucial, and hitherto unnoticed, piece of manuscript evidence and by the meaning and usage in non-mathematical writings of an adjective that in Greek math- ematical treatises other than the Arithmetica is a sharply-defined technical term: ἄλογος. Section 5 offers some complements on the Diophantine sign for the “unknown.” 1. Denominations, signs, and abbreviations of mathematical objects in the Arithmetica Diophantus’ Arithmetica is a collection of arithmetical prob- lems:1 to find numbers which satisfy the specific constraints that 1 “Arithmetic” is the ancient denomination of our “number theory.” The discipline explaining how to calculate with particular, possibly non-integer, numbers was called in Late Antiquity “logistic”; the first explicit statement of this separation is found in the sixth-century Neoplatonic philosopher and mathematical commentator Eutocius (In sph. cyl. 2.4, in Archimedis opera III 120.28–30 Heiberg): according to him, dividing the unit does not pertain to arithmetic but to logistic. -
Mathematical Discourse in Philosophical Authors: Examples from Theon of Smyrna and Cleomedes on Mathematical Astronomy
Mathematical discourse in philosophical authors: Examples from Theon of Smyrna and Cleomedes on mathematical astronomy Nathan Sidoli Introduction Ancient philosophers and other intellectuals often mention the work of mathematicians, al- though the latter rarely return the favor.1 The most obvious reason for this stems from the im- personal nature of mathematical discourse, which tends to eschew any discussion of personal, or lived, experience. There seems to be more at stake than this, however, because when math- ematicians do mention names they almost always belong to the small group of people who are known to us as mathematicians, or who are known to us through their mathematical works.2 In order to be accepted as a member of the group of mathematicians, one must not only have mastered various technical concepts and methods, but must also have learned how to express oneself in a stylized form of Greek prose that has often struck the uninitiated as peculiar.3 Be- cause of the specialized nature of this type of intellectual activity, in order to gain real mastery it was probably necessary to have studied it from youth, or to have had the time to apply oneself uninterruptedly.4 Hence, the private nature of ancient education meant that there were many educated individuals who had not mastered, or perhaps even been much exposed to, aspects of ancient mathematical thought and practice that we would regard as rather elementary (Cribiore 2001; Sidoli 2015). Starting from at least the late Hellenistic period, and especially during the Imperial and Late- Ancient periods, some authors sought to address this situation in a variety of different ways— such as discussing technical topics in more elementary modes, rewriting mathematical argu- ments so as to be intelligible to a broader audience, or incorporating mathematical material di- rectly into philosophical curricula. -
Implementing Eratosthenes' Discovery in the Classroom: Educational
Implementing Eratosthenes’ Discovery in the Classroom: Educational Difficulties Needing Attention Nicolas Decamp, C. de Hosson To cite this version: Nicolas Decamp, C. de Hosson. Implementing Eratosthenes’ Discovery in the Classroom: Educational Difficulties Needing Attention. Science and Education, Springer Verlag, 2012, 21 (6), pp.911-920. 10.1007/s11191-010-9286-3. hal-01663445 HAL Id: hal-01663445 https://hal.archives-ouvertes.fr/hal-01663445 Submitted on 18 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sci & Educ DOI 10.1007/s11191-010-9286-3 Implementing Eratosthenes’ Discovery in the Classroom: Educational Difficulties Needing Attention Nicolas De´camp • Ce´cile de Hosson Ó Springer Science+Business Media B.V. 2010 Abstract This paper presents a critical analysis of the accepted educational use of the method performed by Eratosthenes to measure the circumference of Earth which is often considered as a relevant means of dealing with issues related to the nature of science and its history. This method relies on a number of assumptions among which the parallelism of sun rays. The assumption of sun rays parallelism (if it is accurate) does not appear spontaneous for students who consider sun rays to be divergent. -
94 Erkka Maula
ORGANON 15 PROBLÊMES GENERAUX Erkka Maula (Finland) FROM TIME TO PLACE: THE PARADIGM CASE The world-order in philosophical cosmology can be founded upon time as well as .space. Perhaps the most fundamental question pertaining to any articulated world- view concerns, accordingly, their ontological and epistemological priority. Is the basic layer of notions characterized by temporal or by spatial concepts? Does a world-view in its development show tendencies toward the predominance of one set of concepts rather than the other? At the stage of its relative maturity, when the qualitative and comparative phases have paved the way for the formation of quantitative concepts: Which are considered more fundamental, measurements of time or measurements of space? In the comparative phase: Is the geometry of the world a geometry of motion or a geometry of timeless order? In the history of our own scientific world-view, there seems to be discernible an oscillation between time-oriented and space-oriented concept formation.1 In the dawn, when the first mathematical systems of astronomy and geography appear, shortly before Euclid's synthesis of the axiomatic thought, there were attempts at a geometry of motion. They are due to Archytas of Tarentum and Eudoxus of Cnidus, foreshadowed by Hippias of Elis and the Pythagoreans, who tend to intro- duce temporal concepts into geometry. Their most eloquent adversary is Plato, and after him the two alternative streams are often called the Heraclitean and the Parmenidean world-views. But also such later and far more articulated distinctions as those between the statical and dynamic cosmologies, or between the formalist and intuitionist philosophies of mathematics, can be traced down to the original Greek dichotomy, although additional concepts entangle the picture. -
On Some Borrowed and Misunderstood Problems in Greek Catoptrics
On Some Borrowed and Misunderstood Problems in Greek Catoptrics by ALEXANDERJONES Optics was one of the first sciences to which ancient Greek mathe- maticians attempted to apply the apparatus of geometry. They were most successful in describing geometrically certain phenomena of per- spective (as in Euclid’s Optics and parts of Pappus’s Collection, Book 6),less so in catoljtrics, the study of mirrors.’ The problems typically encountered in the surviving writings on catoptrics fall into two classes: those dealing with the reflection of rays cast from a luminous source such as the sun upon minors of plane or curved surface, and those involving the projection of lines of sight from the eye by way of a minor to an object. The most basic problem of the first class, to make a burning mirror, is solved correctly in Diocles’s On Burning Mirrors (ca. 200 B.C.) with both spherical and parabolic mirrors; other prob- lems were investigated by Diocles, by Anthemius (ca. A.D. 620) in his On Paradoxical Devices, and doubtless by other authors in the cen- turies between.2 In general these problems were amenable to geo- metrical treatment in antiquity because Hellenistic geometers were equipped to study the tangent lines to a wide range of curves (or the tangent planes to analogous surfaces) and the behaviour of straight lines in a given direction or through a given point .and inflected at the curve or surface at equal angles to the tangent at the point of in- cidence. Problems of the other class, in which it was required to make an ar- rangement of mirrors or a mirror with a special curvature, such that a *Institute for the History and Philosophy of Science and Technology, Victoria College, Univer- sity of Toronto, Toronto, Canada MSS 1K7. -
The Problem: the Theory of Ideas in Ancient Atomism and Gilles Deleuze
Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations 2013 The rP oblem: The Theory of Ideas in Ancient Atomism and Gilles Deleuze Ryan J. Johnson Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Johnson, R. (2013). The rP oblem: The Theory of Ideas in Ancient Atomism and Gilles Deleuze (Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/706 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. THE PROBLEM: THE THEORY OF IDEAS IN ANCIENT ATOMISM AND GILLES DELEUZE A Dissertation Submitted to the McAnulty College & Graduate School of Liberal Arts Duquesne University In partial fulfillment of the requirements for the degree of Doctor of Philosophy By Ryan J. Johnson May 2014 Copyright by Ryan J. Johnson 2014 ii THE PROBLEM: THE THEORY OF IDEAS IN ANCIENT ATOMISM AND GILLES DELEUZE By Ryan J. Johnson Approved December 6, 2013 _______________________________ ______________________________ Daniel Selcer, Ph.D Kelly Arenson, Ph.D Associate Professor of Philosophy Assistant Professor of Philosophy (Committee Chair) (Committee Member) ______________________________ John Protevi, Ph.D Professor of Philosophy (Committee Member) ______________________________ ______________________________ James Swindal, Ph.D. Ronald Polansky, Ph.D. Dean, McAnulty College & Graduate Chair, Department of Philosophy School of Liberal Arts Professor of Philosophy Professor of Philosophy iii ABSTRACT THE PROBLEM: THE THEORY OF IDEAS IN ANCIENT ATOMISM AND GILLES DELEUZE By Ryan J. Johnson May 2014 Dissertation supervised by Dr. -
The Two Earths of Eratosthenes Author(S): Christián Carlos Carman and James Evans Source: Isis, Vol
University of Puget Sound Sound Ideas All Faculty Scholarship Faculty Scholarship 3-2015 The woT Earths of Eratosthenes James Evans University of Puget Sound, [email protected] Christián Carlos Carman Buenos Aires, Argentina Follow this and additional works at: http://soundideas.pugetsound.edu/faculty_pubs Citation Christián C. Carman and James Evans, “The wT o Earths of Eratosthenes,” Isis 106 (2015), 1-16. This Article is brought to you for free and open access by the Faculty Scholarship at Sound Ideas. It has been accepted for inclusion in All Faculty Scholarship by an authorized administrator of Sound Ideas. For more information, please contact [email protected]. The Two Earths of Eratosthenes Author(s): Christián Carlos Carman and James Evans Source: Isis, Vol. 106, No. 1 (March 2015), pp. 1-16 Published by: The University of Chicago Press on behalf of The History of Science Society Stable URL: http://www.jstor.org/stable/10.1086/681034 . Accessed: 08/12/2015 15:41 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and The History of Science Society are collaborating with JSTOR to digitize, preserve and extend access to Isis. -
Index Rerum Et Nominum Antiquorum
INDEX RERUM ET NOMINUM ANTIQUORUM For nomina antiqua see also index locorum potiorum. The numbers again refer to the location in the footnotes (abbreviated n, e.g. 47n156 means p. 47 note 156), in the complementary notes (abbreviated en, e.g. 129cn225 means p. 129 complementary note 225), and in the text (just the page number). The cross-references in the notes may also be of some help. Aelius Donatus see Donatus Archimedes 6n13, 13, 24, 24n81, Aelius Theon 56n185, 122cn5 37n127, 40, 41,41nl37, 43, 44,45- Aetius 47n156, 129cn225 8,45n148,48n158,48n159,53, atnov tlj~ £mypacplj~ see 53n177, 62n206,92, 103, 103n349, isagogical questions (title) 103n353, 113, 115, 115n382, 116, Albinus 12, 71, 72n250 117 Alcinous 99, 99n337, 107n364, Archytas of Tarentum 119n397 111, 112, 114, 120n400 Aristaeus mathematicus 10, Alexander of Aphrodisias 11n31, 21, 64 23n79, 107n364, 108n365, 111-2, Aristarchus of Samos 14 111-2n374, 112n375, 114, 126cn89 Aristotle 4nl0, 12, 13n39, 33n118, Alexander of Lycopolis on 34, 43,46,47, 47nl56, 48, 52, Demiurge 108, 108n365 56n185, 66n226, 67n227, 67n228, Alexander Polyhistor 1 02n343 68n229, 82n290,83n295,86-7,95, 0./..oyov see line(s) 103n353, 109, 111, 112n375, 114, Ammonius Hermiae 13, 20, 115-6, 118, 119, 123cn11, 124- 21n68,43,43n143,45,48,56,88, 5cn67, 131cn357 88n313,92, 129cn260, 130cn308 Aristoxeneans 73n255 avayvrocrt~, avaytvcOOKElV, see arithmetic 9n25, 19, 22, 24n80, reading (study) 29, 57, 61nl96, 79, 82-91, 83n295, an-Nayrizi see Anaritius 118, 120n403 an-Nadim see at N arithmology 19, 90 ava/..oy{a -
Antipodes: in Search of the Southern Continent Is a New History of an Ancient Geography
ANTIPODES In Search of the Southern Continent AVAN JUDD STALLARD Antipodes: In Search of the Southern Continent is a new history of an ancient geography. It reassesses the evidence for why Europeans believed a massive southern continent existed, About the author and why they advocated for its Avan Judd Stallard is an discovery. When ships were equal historian, writer of fiction, and to ambitions, explorers set out to editor based in Wimbledon, find and claim Terra Australis— United Kingdom. As an said to be as large, rich and historian he is concerned with varied as all the northern lands both the messy detail of what combined. happened in the past and with Antipodes charts these how scholars “create” history. voyages—voyages both through Broad interests in philosophy, the imagination and across the psychology, biological sciences, high seas—in pursuit of the and philology are underpinned mythical Terra Australis. In doing by an abiding curiosity about so, the question is asked: how method and epistemology— could so many fail to see the how we get to knowledge and realities they encountered? And what we purport to do with how is it a mythical land held the it. Stallard sees great benefit gaze of an era famed for breaking in big picture history and the free the shackles of superstition? synthesis of existing corpuses of That Terra Australis did knowledge and is a proponent of not exist didn’t stop explorers greater consilience between the pursuing the continent to its sciences and humanities. Antarctic obsolescence, unwilling He lives with his wife, and to abandon the promise of such dog Javier. -
On the Shoulders of Hipparchus a Reappraisal of Ancient Greek Combinatorics
Arch. Hist. Exact Sci. 57 (2003) 465–502 Digital Object Identifier (DOI) 10.1007/s00407-003-0067-0 On the Shoulders of Hipparchus A Reappraisal of Ancient Greek Combinatorics F. Acerbi Communicated by A. Jones 1. Introduction To write about combinatorics in ancient Greek mathematics is to write about an empty subject. The surviving evidence is so scanty that even the possibility that “the Greeks took [any] interest in these matters” has been denied by some historians of mathe- matics.1 Tranchant judgments of this sort reveal, if not a cursory scrutiny of the extant sources, at least a defective acquaintance with the strong selectivity of the process of textual transmission the ancient mathematical corpus has been exposed to–afactthat should induce, about a sparingly attested field of research, a cautious attitude rather than a priori negative assessments.2 (Should not the onus probandi be required also when the existence in the past of a certain domain of research is being denied?) I suspect that, behind such a strongly negative historiographic position, two different motives could have conspired: the prejudice of “ancient Greek mathematicians” as geometri- cally-minded and the attempt to revalue certain aspects of non-western mathematics by tendentiously maintaining that such aspects could not have been even conceived by “the Greeks”. Combinatorics is the ideal field in this respect, since many interesting instances of combinatorial calculations come from other cultures,3 whereas combina- torial examples in the ancient Greek mathematical corpus have been considered, as we have seen, worse than disappointing, and in any event such as to justify a very negative attitude. -
Atmospheric Refraction: a History
Atmospheric refraction: a history Waldemar H. Lehn and Siebren van der Werf We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of uniform density up to a sharp upper transition to the ether, at which the refraction occurred. Alhazen and Witelo transmitted his knowledge to medieval Europe. The first accurate measurements were made by Tycho Brahe in the 16th century. Finally, Kepler, who was aware of unusually strong refractions, used the Ptolemaic model to explain the first documented and recognized mirage (the Novaya Zemlya effect). © 2005 Optical Society of America OCIS codes: 000.2850, 010.4030. 1. Introduction the term catoptrics became reserved for reflection Atmospheric refraction, which is responsible for both only, and the term dioptrics was adopted to describe astronomical refraction and mirages, is a subject that the study of refraction.2 The latter name was still in is widely dispersed through the literature, with very use in Kepler’s time. few works dedicated entirely to its exposition. The same must be said for the history of refraction. Ele- ments of the history are scattered throughout numer- 2. Early Greek Theories ous references, many of which are obscure and not Aristotle (384–322 BC) was one of the first philoso- readily available. It is our objective to summarize in phers to write about vision. He considered that a one place the development of the concept of atmo- transparent medium such as air or water was essen- spheric refraction from Greek antiquity to the time of tial to transmit information to the eye, and that vi- Kepler, and its use to explain the first widely known sion in a vacuum would be impossible.