The Diophantine Equation X 2 + C = Y N : a Brief Overview
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unaccountable Numbers
Unaccountable Numbers Fabio Acerbi In memoriam Alessandro Lami, a tempi migliori HE AIM of this article is to discuss and amend one of the most intriguing loci corrupti of the Greek mathematical T corpus: the definition of the “unknown” in Diophantus’ Arithmetica. To do so, I first expound in detail the peculiar ter- minology that Diophantus employs in his treatise, as well as the notation associated with it (section 1). Sections 2 and 3 present the textual problem and discuss past attempts to deal with it; special attention will be paid to a paraphrase contained in a let- ter of Michael Psellus. The emendation I propose (section 4) is shown to be supported by a crucial, and hitherto unnoticed, piece of manuscript evidence and by the meaning and usage in non-mathematical writings of an adjective that in Greek math- ematical treatises other than the Arithmetica is a sharply-defined technical term: ἄλογος. Section 5 offers some complements on the Diophantine sign for the “unknown.” 1. Denominations, signs, and abbreviations of mathematical objects in the Arithmetica Diophantus’ Arithmetica is a collection of arithmetical prob- lems:1 to find numbers which satisfy the specific constraints that 1 “Arithmetic” is the ancient denomination of our “number theory.” The discipline explaining how to calculate with particular, possibly non-integer, numbers was called in Late Antiquity “logistic”; the first explicit statement of this separation is found in the sixth-century Neoplatonic philosopher and mathematical commentator Eutocius (In sph. cyl. 2.4, in Archimedis opera III 120.28–30 Heiberg): according to him, dividing the unit does not pertain to arithmetic but to logistic. -
Arithmetic Sequences, Diophantine Equations and the Number of the Beast Bryan Dawson Union University
Arithmetic Sequences, Diophantine Equations and the Number of the Beast Bryan Dawson Union University Here is wisdom. Let him who has understanding calculate the number of the beast, for it is the number of a man: His number is 666. -Revelation 13:18 (NKJV) "Let him who has understanding calculate ... ;" can anything be more enticing to a mathe matician? The immediate question, though, is how do we calculate-and there are no instructions. But more to the point, just who might 666 be? We can find anything on the internet, so certainly someone tells us. A quick search reveals the answer: according to the "Gates of Hell" website (Natalie, 1998), 666 refers to ... Bill Gates ill! In the calculation offered by the website, each letter in the name is replaced by its ASCII character code: B I L L G A T E S I I I 66 73 76 76 71 65 84 69 83 1 1 1 = 666 (Notice, however, that an exception is made for the suffix III, where the value of the suffix is given as 3.) The big question is this: how legitimate is the calculation? To answer this question, we need to know several things: • Can this same type of calculation be performed on other names? • What mathematics is behind such calculations? • Have other types of calculations been used to propose a candidate for 666? • What type of calculation did John have in mind? Calculations To answer the first two questions, we need to understand the ASCII character code. The ASCII character code replaces characters with numbers in order to have a numeric way of storing all characters. -
94 Erkka Maula
ORGANON 15 PROBLÊMES GENERAUX Erkka Maula (Finland) FROM TIME TO PLACE: THE PARADIGM CASE The world-order in philosophical cosmology can be founded upon time as well as .space. Perhaps the most fundamental question pertaining to any articulated world- view concerns, accordingly, their ontological and epistemological priority. Is the basic layer of notions characterized by temporal or by spatial concepts? Does a world-view in its development show tendencies toward the predominance of one set of concepts rather than the other? At the stage of its relative maturity, when the qualitative and comparative phases have paved the way for the formation of quantitative concepts: Which are considered more fundamental, measurements of time or measurements of space? In the comparative phase: Is the geometry of the world a geometry of motion or a geometry of timeless order? In the history of our own scientific world-view, there seems to be discernible an oscillation between time-oriented and space-oriented concept formation.1 In the dawn, when the first mathematical systems of astronomy and geography appear, shortly before Euclid's synthesis of the axiomatic thought, there were attempts at a geometry of motion. They are due to Archytas of Tarentum and Eudoxus of Cnidus, foreshadowed by Hippias of Elis and the Pythagoreans, who tend to intro- duce temporal concepts into geometry. Their most eloquent adversary is Plato, and after him the two alternative streams are often called the Heraclitean and the Parmenidean world-views. But also such later and far more articulated distinctions as those between the statical and dynamic cosmologies, or between the formalist and intuitionist philosophies of mathematics, can be traced down to the original Greek dichotomy, although additional concepts entangle the picture. -
Survey of Modern Mathematical Topics Inspired by History of Mathematics
Survey of Modern Mathematical Topics inspired by History of Mathematics Paul L. Bailey Department of Mathematics, Southern Arkansas University E-mail address: [email protected] Date: January 21, 2009 i Contents Preface vii Chapter I. Bases 1 1. Introduction 1 2. Integer Expansion Algorithm 2 3. Radix Expansion Algorithm 3 4. Rational Expansion Property 4 5. Regular Numbers 5 6. Problems 6 Chapter II. Constructibility 7 1. Construction with Straight-Edge and Compass 7 2. Construction of Points in a Plane 7 3. Standard Constructions 8 4. Transference of Distance 9 5. The Three Greek Problems 9 6. Construction of Squares 9 7. Construction of Angles 10 8. Construction of Points in Space 10 9. Construction of Real Numbers 11 10. Hippocrates Quadrature of the Lune 14 11. Construction of Regular Polygons 16 12. Problems 18 Chapter III. The Golden Section 19 1. The Golden Section 19 2. Recreational Appearances of the Golden Ratio 20 3. Construction of the Golden Section 21 4. The Golden Rectangle 21 5. The Golden Triangle 22 6. Construction of a Regular Pentagon 23 7. The Golden Pentagram 24 8. Incommensurability 25 9. Regular Solids 26 10. Construction of the Regular Solids 27 11. Problems 29 Chapter IV. The Euclidean Algorithm 31 1. Induction and the Well-Ordering Principle 31 2. Division Algorithm 32 iii iv CONTENTS 3. Euclidean Algorithm 33 4. Fundamental Theorem of Arithmetic 35 5. Infinitude of Primes 36 6. Problems 36 Chapter V. Archimedes on Circles and Spheres 37 1. Precursors of Archimedes 37 2. Results from Euclid 38 3. Measurement of a Circle 39 4. -
Solving Elliptic Diophantine Equations: the General Cubic Case
ACTA ARITHMETICA LXXXVII.4 (1999) Solving elliptic diophantine equations: the general cubic case by Roelof J. Stroeker (Rotterdam) and Benjamin M. M. de Weger (Krimpen aan den IJssel) Introduction. In recent years the explicit computation of integer points on special models of elliptic curves received quite a bit of attention, and many papers were published on the subject (see for instance [ST94], [GPZ94], [Sm94], [St95], [Tz96], [BST97], [SdW97], [ST97]). The overall picture before 1994 was that of a field with many individual results but lacking a comprehensive approach to effectively settling the el- liptic equation problem in some generality. But after S. David obtained an explicit lower bound for linear forms in elliptic logarithms (cf. [D95]), the elliptic logarithm method, independently developed in [ST94] and [GPZ94] and based upon David’s result, provided a more generally applicable ap- proach for solving elliptic equations. First Weierstraß equations were tack- led (see [ST94], [Sm94], [St95], [BST97]), then in [Tz96] Tzanakis considered quartic models and in [SdW97] the authors gave an example of an unusual cubic non-Weierstraß model. In the present paper we shall treat the general case of a cubic diophantine equation in two variables, representing an elliptic curve over Q. We are thus interested in the diophantine equation (1) f(u, v) = 0 in rational integers u, v, where f Q[x,y] is of degree 3. Moreover, we require (1) to represent an elliptic curve∈ E, that is, a curve of genus 1 with at least one rational point (u0, v0). 1991 Mathematics Subject Classification: 11D25, 11G05, 11Y50, 12D10. -
The Problem: the Theory of Ideas in Ancient Atomism and Gilles Deleuze
Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations 2013 The rP oblem: The Theory of Ideas in Ancient Atomism and Gilles Deleuze Ryan J. Johnson Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Johnson, R. (2013). The rP oblem: The Theory of Ideas in Ancient Atomism and Gilles Deleuze (Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/706 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. THE PROBLEM: THE THEORY OF IDEAS IN ANCIENT ATOMISM AND GILLES DELEUZE A Dissertation Submitted to the McAnulty College & Graduate School of Liberal Arts Duquesne University In partial fulfillment of the requirements for the degree of Doctor of Philosophy By Ryan J. Johnson May 2014 Copyright by Ryan J. Johnson 2014 ii THE PROBLEM: THE THEORY OF IDEAS IN ANCIENT ATOMISM AND GILLES DELEUZE By Ryan J. Johnson Approved December 6, 2013 _______________________________ ______________________________ Daniel Selcer, Ph.D Kelly Arenson, Ph.D Associate Professor of Philosophy Assistant Professor of Philosophy (Committee Chair) (Committee Member) ______________________________ John Protevi, Ph.D Professor of Philosophy (Committee Member) ______________________________ ______________________________ James Swindal, Ph.D. Ronald Polansky, Ph.D. Dean, McAnulty College & Graduate Chair, Department of Philosophy School of Liberal Arts Professor of Philosophy Professor of Philosophy iii ABSTRACT THE PROBLEM: THE THEORY OF IDEAS IN ANCIENT ATOMISM AND GILLES DELEUZE By Ryan J. Johnson May 2014 Dissertation supervised by Dr. -
Diophantine Equations 1 Exponential Diophantine Equations
Number Theory Misha Lavrov Diophantine equations Western PA ARML Practice October 4, 2015 1 Exponential Diophantine equations Diophantine equations are just equations we solve with the constraint that all variables must be integers. These are generally really hard to solve (for example, the famous Fermat's Last Theorem is an example of a Diophantine equation). Today, we will begin by focusing on a special kind of Diophantine equation: exponential Diophantine equations. Here's an example. Example 1. Solve 5x − 8y = 1 for integers x and y. These can still get really hard, but there's a special technique that solves them most of the time. That technique is to take the equation modulo m. In this example, if 5x − 8y = 1, then in particular 5x − 8y ≡ 1 (mod 21). But what do the powers of 5 and 8 look like modulo 21? We have: • 5x ≡ 1; 5; 4; 20; 16; 17; 1; 5; 4;::: , repeating every 6 steps. • 8y ≡ 1; 8; 1; 8;::: , repeating every 2 steps. So there are only 12 possibilities for 5x − 8y when working modulo 21. We can check them all, and we notice that 1 − 1; 1 − 8; 5 − 1; 5 − 8;:::; 17 − 1; 17 − 8 are not ever equal to 1. So the equation has no solutions. Okay, but there's a magic step here: how did we pick 21? Example 2. Solve 5x − 8y = 1 for integers x and y, but in a way that's not magic. There are several rules to follow for picking the modulus m. The first is one we've already broken: Rule 1: Choose m to be a prime or a power of a prime. -
Archimedes' Cattle Problem
Archimedes’ Cattle Problem D. Joyce, Clark University January 2006 Brief htistory. L. E. Dickson describes the history of Archimede’s Cattle Problem in his History of the Theory of Numbers,1 briefly summarized here. A manuscript found in the Herzog August Library at Wolfenb¨uttel,Germany, was first described in 1773 by G. E. Lessing with a German translation from the Greek and a mathematical commentary by C. Leiste.2 The problem was stated in a Greek epigram in 24 verses along with a solution of part of the problem, but not the last part about square and triangular numbers. Leiste explained how the partial solution may have been derived, but he didn’t solve the last part either. That was first solved by A. Amthor in 1880.3 Part 1. We can solve the first part of the problem with a little algebra and a few hand com- putations. It is a multilinear Diophantine problem with four variables and three equations. If thou art diligent and wise, O stranger, compute the number of cattle of the Sun, who once upon a time grazed on the fields of the Thrinacian isle of Sicily, divided into four herds of different colours, one milk white, another a glossy black, a third yellow and the last dappled. In each herd were bulls, mighty in number according to these proportions: Understand, stranger, that the white bulls were equal to a half and a third of the black together with the whole of the yellow, while the black were equal to the fourth part of the dappled and a fifth, together with, once more, the whole of the yellow. -
On the Shoulders of Hipparchus a Reappraisal of Ancient Greek Combinatorics
Arch. Hist. Exact Sci. 57 (2003) 465–502 Digital Object Identifier (DOI) 10.1007/s00407-003-0067-0 On the Shoulders of Hipparchus A Reappraisal of Ancient Greek Combinatorics F. Acerbi Communicated by A. Jones 1. Introduction To write about combinatorics in ancient Greek mathematics is to write about an empty subject. The surviving evidence is so scanty that even the possibility that “the Greeks took [any] interest in these matters” has been denied by some historians of mathe- matics.1 Tranchant judgments of this sort reveal, if not a cursory scrutiny of the extant sources, at least a defective acquaintance with the strong selectivity of the process of textual transmission the ancient mathematical corpus has been exposed to–afactthat should induce, about a sparingly attested field of research, a cautious attitude rather than a priori negative assessments.2 (Should not the onus probandi be required also when the existence in the past of a certain domain of research is being denied?) I suspect that, behind such a strongly negative historiographic position, two different motives could have conspired: the prejudice of “ancient Greek mathematicians” as geometri- cally-minded and the attempt to revalue certain aspects of non-western mathematics by tendentiously maintaining that such aspects could not have been even conceived by “the Greeks”. Combinatorics is the ideal field in this respect, since many interesting instances of combinatorial calculations come from other cultures,3 whereas combina- torial examples in the ancient Greek mathematical corpus have been considered, as we have seen, worse than disappointing, and in any event such as to justify a very negative attitude. -
Alexandrian Greek Mathematics, Ca. 300 BCE to 300 CE After Euclid Had
Alexandrian Greek Mathematics, ca. 300 BCE to 300 CE After Euclid had codified and extended earlier mathematical knowledge in the Elements, mathe- matics continued to develop – both as a discipline in itself and as a tool for the rational investigation of the physical world. We shall read about the measurements of the size of the Earth by Eratosthenes (and others) by means of Euclidean geometry. Principles of optics and mechanics were established and mechanisms were designed and built using mathematical principles. The concepts of conic sec- tions and tangents to curves were discovered and exploited. Trigonometry began and was used to calculate the distance from the Earth to the Moon and to the Sun, and other facts of astronomy were derived. It was still necessary to make observations and collect them in tables, but the underlying general principles were sought. Some of the important names of the period are Archimedes, Apollonius (conic sections, circles), Aristarchus (astronomy), Diophantus (number theory), Eratosthenes, Heron (areas, approximations), Hipparchus (plane and spherical trigonometry), Menelaus (geometry, spherical trigonometry), Pappus (geometry), and Claudius Ptolemy (trigonometry, astronomy). We shall consider some of their accomplishments. Why is it that unlike the study of the history of law or drama or geography, the study of European mathematics before the Dark Ages focuses exclusively on the Greeks? Eventually, Hellenistic Greece lost its control of the far-flung territories and Rome ascended. During the centuries of the flourishing and fading of the great Roman empire, almost no new math- ematics was created. (Roman numerals did provide a better notation for doing integer arithmetic than did the Greek alphabetic cipher numerals, and they remained in use until late in the Medieval period.) Indeed the Romans took pride in not knowing much mathematics or science or the prin- ciples underlying technology, and they cared not at all for original research. -
Math Circles Diophantine Equations and the Euclidean Algorithm
Math Circles Diophantine Equations and the Euclidean Algorithm Colin Curtis August 9, 2020 Definition: A Diophantine equation is an equation of the form ax + by = c, where x; y are variables that we are trying to solve for. In other words, we are trying to find x and y that solve the given equation. Definition: The greatest common divisor (gcd) of two numbers a and b, denoted gcd(a; b), is the greatest number that divides both a and b. Example: gcd(5; 10) = 5. We see this just through simple observation. gcd(12; 7) = 1 since 7 is a prime number. Important Fact: if c = gcd(a; b), then there exist integers x and y such that ax + by = c. This is important because it guarantees the existence of a solution to the Diophantine equation ax + by = c if and only if c = gcd(a; b). Problem 1: Try to find integer solutions to the Diophantine equation 2x + 3y = 0. What about 2x + 3y = 1? Or 2x + 3y = 31? Think about how you can get the third equation from the second equation. Problem 2: Suppose we have a solution (x0; y0) to the Diophantine equa- tion ax + by = 1. Let n be an arbitrary integer. Show there is a solution to the Diophantine equation ax + by = n. Can you give a solution? hint: think about the previous problem. Euclidean Algorithm: Suppose we are trying to calculate gcd(a; b), with a ≥ b. Then write 1. a = q0b + ro, where q0 is the quotient and r0 is the remainder. 2. -
Effective Methods for Diophantine Problems
Diophantine problems Michael Bennett Introduction What we know Effective methods for Diophantine problems Case studies Michael Bennett University of British Columbia BIRS Summer School : June 2012 Diophantine problems Michael What are Diophantine equations? Bennett Introduction According to Hilbert, a Diophantine equation is an equation of What we know the form Case studies D(x1; : : : ; xm) = 0; where D is a polynomial with integer coefficients. Hilbert's 10th problem : Determination of the solvability of a Diophantine equation. Given a diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers. Diophantine problems Michael Bennett What are Diophantine equations? (take 2) Introduction What we know A few more opinions : Case studies Wikipedia pretty much agrees with Hilbert Mordell, in his book \Diophantine Equations", never really defines the term (!) Wolfram states \A Diophantine equation is an equation in which only integer solutions are allowed". Diophantine problems Michael Bennett Introduction Back to Hilbert's 10th problem What we know Case studies Determination of the solvability of a Diophantine equation. Given a diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers. But . Hilbert's problem is still open over Q (and over OK for most number fields) It is not yet understood what happens if the number of variables is \small" Diophantine problems Michael Bennett Matiyasevich's Theorem Introduction (building on work of Davis, Putnam and Robinson) is that, in What we know Case studies general, no such process exists.