An Introduction to Diophantine Equations: a Problem-Based Approach, 3 DOI 10.1007/978-0-8176-4549-6 1, © Springer Science+Business Media, LLC 2010 4 Part I

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to Diophantine Equations: a Problem-Based Approach, 3 DOI 10.1007/978-0-8176-4549-6 1, © Springer Science+Business Media, LLC 2010 4 Part I Titu Andreescu Dorin Andrica Ion Cucurezeanu AnE Introduction to Diophantine Equations A Problem-Based Approach Titu Andreescu Dorin Andrica School of Natural Sciences Faculty of Mathematics and Mathem atics and Computer Science University of Texas at Dallas Babeş -Bolyai University 800 W. Campbell Road Str. Kogalniceanu 1 Richardson, TX 75080, USA 3400 Cluj-Napoca, Romania [email protected] [email protected] and Ion Cucurezeanu King Saud University Faculty of Mathematics Department of Mathematics and Computer Science College of Science Ovidius University of Constanta Riyadh 11451, Saudi Arabia B-dul Mamaia, 124 [email protected] 900527 Constanta, Romania ISBN 978-0-8176-4548-9 e-ISBN 978-0-8176–4549-6 DOI 10.1007/978-0-8176-4549-6 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010934856 Mathematics Subject Classification (2010): 11D04, 11D09, 11D25, 11D41, 11D45, 11D61, 11D68, 11-06, 97U40 © Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer, software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Birkhäuser is part of Springer Science+Business Media www.birkhauser-science.com Preface Diophantus, the “father of algebra,” is best known for his book Arith- metica, a work on the solution of algebraic equations and the theory of numbers. However, essentially nothing is known of his life, and there has been much debate regarding precisely the years in which he lived. Diophantus did his work in the great city of Alexandria. At this time, Alexandria was the center of mathematical learning. The period from 250 bce to 350 ce in Alexandria is known as the Silver Age, also the Later Alexandrian Age. This was a time when mathe- maticians were discovering many ideas that led to our current con- ception of mathematics. The era is considered silver because it came after the Golden Age, a time of great development in the field of mathematics. This Golden Age encompasses the lifetime of Euclid. vi Preface The quality of mathematics from this period was an inspiration for the axiomatic methods of today’s mathematics. While it is known that Diophantus lived in the Silver Age, it is hard to pinpoint the exact years in which he lived. While many refer- ences to the work of Diophantus have been made, Diophantus himself made few references to other mathematicians’ work, thus making the process of determining the time that he lived more difficult. Diophantus did quote the definition of a polygonal number from the work of Hypsicles, who was active before 150 bce,sowecan conclude that Diophantus lived after that date. From the other end, Theon, a mathematician also from Alexandria, quoted the work of Diophantus in 350 ce. Most historians believe that Diophantus did most of his work around 250 ce. The greatest amount of information about Diophantus’s life comes from the possibly fictitious collection of riddles written by Metrodorus around 500 ce.Oneoftheseisas follows: His boyhood lasted 1/6 of his life; he married after 1/7 more; his beard grew after 1/12 more, and his son was born five years later; the son lived to half his father’s age, and the father died four years after the son. Diophantus was the first to employ symbols in Greek algebra. He used a symbol (arithmos) for an unknown quantity, as well as symbols for algebraic operations and for powers. Arithmetica is also significant for its results in the theory of numbers, such as the fact that no integer of the form 8n + 7 can be written as the sum of three squares. Preface vii Arithmetica is a collection of 150 problems that give approximate solutions to equations up to degree three. Arithmetica also contains equations that deal with indeterminate equations. These equations deal with the theory of numbers. The original Arithmetica is believed to have comprised 13 books, but the surviving Greek manuscripts contain only six. The others are considered lost works. It is possible that these books were lost in a fire that occurred not long after Diophantus finished Arithmetica. In what follows, we call a Diophantine equation an equation of the form f(x1,x2,...,xn)=0, (1) where f is an n-variable function with n ≥ 2. If f is a polynomial with integral coefficients, then (1) is an algebraic Diophantine equation. 0 0 0 n An n-uple (x1,x2,...,xn) ∈ Z satisfying (1) is called a solution to equation (1). An equation having one or more solutions is called solvable. Concerning a Diophantine equation three basic problems arise: Problem 1. Is the equation solvable? Problem 2. If it is solvable, is the number of its solutions finite or infinite? Problem 3. If it is solvable, determine all of its solutions. Diophantus’s work on equations of type (1) was continued by Chinese mathematicians (third century), Arabs (eight through twelfth centuries) and taken to a deeper level by Fermat, Euler, viii Preface Lagrange, Gauss, and many others. This topic remains of great importance in contemporary mathematics. This book is organized in two parts. The first contains three chapters. Chapter 1 introduces the reader to the main elementary methods in solving Diophantine equations, such as decomposition, modular arithmetic, mathematical induction, and Fermat’s infinite descent. Chapter 2 presents classical Diophantine equations, includ- ing linear, Pythagorean, higher-degree, and exponential equations, such as Catalan’s. Chapter 3 focuses on Pell-type equations, serving again as an introduction to this special class of quadratic Diophan- tine equations. Chapter 4 contains some advanced methods involv- ing Gaussian integers, quadratic rings, divisors of certain forms, and quadratic reciprocity. Throughout Part I, each of the sections con- tains representative examples that illustrate the theory. Part II contains complete solutions to all exercises in Part I. For several problems, multiple solutions are presented, along with useful comments and remarks. Many of the selected exercises and problems are original or have been given original solutions by the authors. The book is intended for undergraduates, high school students and teachers, mathematical contest (including Olympiad and Putnam) participants, as well as any person interested in mathematics. We would like to thank Richard Stong for his careful reading of the manuscript. His pertinent suggestions have been very useful in improving the text. June 2010 Titu Andreescu Dorin Andrica Ion Cucuruzeanu Contents Preface v I Diophantine Equations 1 I.1 Elementary Methods for Solving Diophantine Equations 3 1.1TheFactoringMethod................ 3 1.2 Solving Diophantine Equations Using Inequalities . 13 1.3TheParametricMethod................ 20 1.4TheModularArithmeticMethod.......... 29 1.5 The Method of Mathematical Induction . 36 1.6 Fermat’s Method of Infinite Descent (FMID) . 47 1.7 Miscellaneous Diophantine Equations . 58 x Contents I.2 Some Classical Diophantine Equations 67 2.1LinearDiophantineEquations............ 67 2.2 Pythagorean Triples and Related Problems . 76 2.3OtherRemarkableEquations............. 88 I.3 Pell-Type Equations 117 3.1 Pell’s Equation: History and Motivation . 118 3.2 Solving Pell’s Equation . .........121 3.3 The Equation ax2 − by2 =1 .............135 3.4 The Negative Pell’s Equation . .........140 I.4 Some Advanced Methods for Solving Diophantine Equations 147 4.1 The Ring Z[i]ofGaussianIntegers..........151 √ 4.2 The Ring of Integers of Q[ d] ............162 4.3 Quadratic Reciprocity and Diophantine Equations . 178 4.4DivisorsofCertainForms...............181 4.4.1 Divisors of a2 + b2 ...............182 4.4.2 Divisors of a2 +2b2 ..............186 4.4.3 Divisors of a2 − 2b2 ..............188 II Solutions to Exercises and Problems 191 II.1 Solutions to Elementary Methods for Solving Diophantine Equations 193 1.1TheFactoringMethod................193 1.2 Solving Diophantine Equations Using Inequalities . 202 1.3TheParametricMethod................213 Contents xi 1.4TheModularArithmeticMethod..........219 1.5 The Method of Mathematical Induction . 229 1.6 Fermat’s Method of Infinite Descent (FMID) . 239 1.7 Miscellaneous Diophantine Equations . 253 II.2 Solutions to Some Classical Diophantine Equations 265 2.1LinearDiophantineEquations............265 2.2 Pythagorean Triples and Related Problems . 273 2.3OtherRemarkableEquations.............278 II.3 Solutions to Pell-Type Equations 289 3.1 Solving Pell’s Equation by Elementary Methods . 289 3.2 The Equation ax2 − by2 =1 .............298 3.3 The Negative Pell’s Equation . .........301 II.4 Solutions to Some Advanced Methods in Solving Diophantine Equations 309 4.1 The Ring Z[i]ofGaussianIntegers..........309 √ 4.2 The Ring of Integers of Q[ d] ............314 4.3 Quadratic Reciprocity and Diophantine Equations . 322 4.4DivisorsofCertainForms...............324 References 327 Glossary 331 Index 341 Part I Diophantine Equations I.1 Elementary Methods for Solving Diophantine Equations 1.1 The Factoring Method Given the equation f(x1,x2,...,xn) = 0, we write it in the equiva- lent form f1(x1,x2,...,xn)f2(x1,x2,...,xn) ···fk(x1,x2,...,xn)=a, where f1,f2,...,fk ∈ Z[X1,X2,...,Xn]anda ∈ Z.Giventheprime factorization of a, we obtain finitely many decompositions into k integer factors a1,a2,...,ak. Each such factorization yields a system of equations ⎧ ⎪ ⎪ f1(x1,x2,...,xn)=a1, ⎪ ⎨⎪ f2(x1,x2,...,xn)=a2, ⎪ . ⎪ . ⎪ ⎩⎪ fk(x1,x2,...,xn)=ak. Solving all such systems gives the complete set of solutions to (1).
Recommended publications
  • The Diophantine Equation X 2 + C = Y N : a Brief Overview
    Revista Colombiana de Matem¶aticas Volumen 40 (2006), p¶aginas31{37 The Diophantine equation x 2 + c = y n : a brief overview Fadwa S. Abu Muriefah Girls College Of Education, Saudi Arabia Yann Bugeaud Universit¶eLouis Pasteur, France Abstract. We give a survey on recent results on the Diophantine equation x2 + c = yn. Key words and phrases. Diophantine equations, Baker's method. 2000 Mathematics Subject Classi¯cation. Primary: 11D61. Resumen. Nosotros hacemos una revisi¶onacerca de resultados recientes sobre la ecuaci¶onDiof¶antica x2 + c = yn. 1. Who was Diophantus? The expression `Diophantine equation' comes from Diophantus of Alexandria (about A.D. 250), one of the greatest mathematicians of the Greek civilization. He was the ¯rst writer who initiated a systematic study of the solutions of equations in integers. He wrote three works, the most important of them being `Arithmetic', which is related to the theory of numbers as distinct from computation, and covers much that is now included in Algebra. Diophantus introduced a better algebraic symbolism than had been known before his time. Also in this book we ¯nd the ¯rst systematic use of mathematical notation, although the signs employed are of the nature of abbreviations for words rather than algebraic symbols in contemporary mathematics. Special symbols are introduced to present frequently occurring concepts such as the unknown up 31 32 F. S. ABU M. & Y. BUGEAUD to its sixth power. He stands out in the history of science as one of the great unexplained geniuses. A Diophantine equation or indeterminate equation is one which is to be solved in integral values of the unknowns.
    [Show full text]
  • Unaccountable Numbers
    Unaccountable Numbers Fabio Acerbi In memoriam Alessandro Lami, a tempi migliori HE AIM of this article is to discuss and amend one of the most intriguing loci corrupti of the Greek mathematical T corpus: the definition of the “unknown” in Diophantus’ Arithmetica. To do so, I first expound in detail the peculiar ter- minology that Diophantus employs in his treatise, as well as the notation associated with it (section 1). Sections 2 and 3 present the textual problem and discuss past attempts to deal with it; special attention will be paid to a paraphrase contained in a let- ter of Michael Psellus. The emendation I propose (section 4) is shown to be supported by a crucial, and hitherto unnoticed, piece of manuscript evidence and by the meaning and usage in non-mathematical writings of an adjective that in Greek math- ematical treatises other than the Arithmetica is a sharply-defined technical term: ἄλογος. Section 5 offers some complements on the Diophantine sign for the “unknown.” 1. Denominations, signs, and abbreviations of mathematical objects in the Arithmetica Diophantus’ Arithmetica is a collection of arithmetical prob- lems:1 to find numbers which satisfy the specific constraints that 1 “Arithmetic” is the ancient denomination of our “number theory.” The discipline explaining how to calculate with particular, possibly non-integer, numbers was called in Late Antiquity “logistic”; the first explicit statement of this separation is found in the sixth-century Neoplatonic philosopher and mathematical commentator Eutocius (In sph. cyl. 2.4, in Archimedis opera III 120.28–30 Heiberg): according to him, dividing the unit does not pertain to arithmetic but to logistic.
    [Show full text]
  • 15 Famous Greek Mathematicians and Their Contributions 1. Euclid
    15 Famous Greek Mathematicians and Their Contributions 1. Euclid He was also known as Euclid of Alexandria and referred as the father of geometry deduced the Euclidean geometry. The name has it all, which in Greek means “renowned, glorious”. He worked his entire life in the field of mathematics and made revolutionary contributions to geometry. 2. Pythagoras The famous ‘Pythagoras theorem’, yes the same one we have struggled through in our childhood during our challenging math classes. This genius achieved in his contributions in mathematics and become the father of the theorem of Pythagoras. Born is Samos, Greece and fled off to Egypt and maybe India. This great mathematician is most prominently known for, what else but, for his Pythagoras theorem. 3. Archimedes Archimedes is yet another great talent from the land of the Greek. He thrived for gaining knowledge in mathematical education and made various contributions. He is best known for antiquity and the invention of compound pulleys and screw pump. 4. Thales of Miletus He was the first individual to whom a mathematical discovery was attributed. He’s best known for his work in calculating the heights of pyramids and the distance of the ships from the shore using geometry. 5. Aristotle Aristotle had a diverse knowledge over various areas including mathematics, geology, physics, metaphysics, biology, medicine and psychology. He was a pupil of Plato therefore it’s not a surprise that he had a vast knowledge and made contributions towards Platonism. Tutored Alexander the Great and established a library which aided in the production of hundreds of books.
    [Show full text]
  • Fiboquadratic Sequences and Extensions of the Cassini Identity Raised from the Study of Rithmomachia
    Fiboquadratic sequences and extensions of the Cassini identity raised from the study of rithmomachia Tom´asGuardia∗ Douglas Jim´enezy October 17, 2018 To David Eugene Smith, in memoriam. Mathematics Subject Classification: 01A20, 01A35, 11B39 and 97A20. Keywords: pythagoreanism, golden ratio, Boethius, Nicomachus, De Arithmetica, fiboquadratic sequences, Cassini's identity and rithmomachia. Abstract In this paper, we introduce fiboquadratic sequences as a consequence of an extension to infinity of the board of rithmomachia. Fiboquadratic sequences approach the golden ratio and provide extensions of Cassini's Identity. 1 Introduction Pythagoreanism was a philosophical tradition, that left a deep influence over the Greek mathematical thought. Its path can be traced until the Middle Ages, and even to present. Among medieval scholars, which expanded the practice of the pythagoreanism, we find Anicius Manlius Severinus Boethius (480-524 A.D.) whom by a free translation of De Institutione Arithmetica by Nicomachus of Gerasa, preserved the pythagorean teaching inside the first universities. In fact, Boethius' book became the guide of study for excellence during quadriv- ium teaching, almost for 1000 years. The learning of arithmetic during the arXiv:1509.03177v3 [math.HO] 22 Nov 2016 quadrivium, made necessary the practice of calculation and handling of basic mathematical operations. Surely, with the mixing of leisure with this exercise, Boethius' followers thought up a strategy game in which, besides the training of mind calculation, it was used to preserve pythagorean traditions coming from the Greeks and medieval philosophers. Maybe this was the origin of the philoso- phers' game or rithmomachia. Rithmomachia (RM, henceforward) became the ∗Department of Mathematics.
    [Show full text]
  • Hypatia of Alexandria A. W. Richeson National Mathematics Magazine
    Hypatia of Alexandria A. W. Richeson National Mathematics Magazine, Vol. 15, No. 2. (Nov., 1940), pp. 74-82. Stable URL: http://links.jstor.org/sici?sici=1539-5588%28194011%2915%3A2%3C74%3AHOA%3E2.0.CO%3B2-I National Mathematics Magazine is currently published by Mathematical Association of America. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/maa.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Sun Nov 18 09:31:52 2007 Hgmdnism &,d History of Mdtbenzdtics Edited by G.
    [Show full text]
  • Arithmetic Sequences, Diophantine Equations and the Number of the Beast Bryan Dawson Union University
    Arithmetic Sequences, Diophantine Equations and the Number of the Beast Bryan Dawson Union University Here is wisdom. Let him who has understanding calculate the number of the beast, for it is the number of a man: His number is 666. -Revelation 13:18 (NKJV) "Let him who has understanding calculate ... ;" can anything be more enticing to a mathe­ matician? The immediate question, though, is how do we calculate-and there are no instructions. But more to the point, just who might 666 be? We can find anything on the internet, so certainly someone tells us. A quick search reveals the answer: according to the "Gates of Hell" website (Natalie, 1998), 666 refers to ... Bill Gates ill! In the calculation offered by the website, each letter in the name is replaced by its ASCII character code: B I L L G A T E S I I I 66 73 76 76 71 65 84 69 83 1 1 1 = 666 (Notice, however, that an exception is made for the suffix III, where the value of the suffix is given as 3.) The big question is this: how legitimate is the calculation? To answer this question, we need to know several things: • Can this same type of calculation be performed on other names? • What mathematics is behind such calculations? • Have other types of calculations been used to propose a candidate for 666? • What type of calculation did John have in mind? Calculations To answer the first two questions, we need to understand the ASCII character code. The ASCII character code replaces characters with numbers in order to have a numeric way of storing all characters.
    [Show full text]
  • Cambridge University Press 978-1-108-48147-2 — Scale, Space and Canon in Ancient Literary Culture Reviel Netz Index More Information
    Cambridge University Press 978-1-108-48147-2 — Scale, Space and Canon in Ancient Literary Culture Reviel Netz Index More Information Index Aaker, Jennifer, 110, 111 competition, 173 Abdera, 242, 310, 314, 315, 317 longevity, 179 Abel, N. H., 185 Oresteia, 197, 200, 201 Academos, 189, 323, 324, 325, 337 papyri, 15 Academy, 322, 325, 326, 329, 337, 343, 385, 391, Persians, 183 399, 404, 427, 434, 448, 476, 477–8, 512 portraits, 64 Achilles Tatius, 53, 116, 137, 551 Ptolemaic era, 39 papyri, 16, 23 Aeschylus (astronomer), 249 Acta Alexandrinorum, 87, 604 Aesop, 52, 68, 100, 116, 165 adespota, 55, 79, 81–5, 86, 88, 91, 99, 125, 192, 194, in education, 42 196, 206, 411, 413, 542, 574 papyri, 16, 23 Adkin, Neil, 782 Aethiopia, 354 Adrastus, 483 Aetia, 277 Adrastus (mathematician), 249 Africa, 266 Adrianople, 798 Agatharchides, 471 Aedesius (martyr), 734, 736 Agathocles (historian), 243 Aegae, 479, 520 Agathocles (peripatetic), 483 Aegean, 338–43 Agathon, 280 Aegina, 265 Agias (historian), 373 Aelianus (Platonist), 484 agrimensores, 675 Aelius Aristides, 133, 657, 709 Ai Khanoum, 411 papyri, 16 Akhmatova, Anna, 186 Aelius Herodian (grammarian), 713 Albertus Magnus, 407 Aelius Promotus, 583 Albinus, 484 Aenesidemus, 478–9, 519, 520 Alcaeus, 49, 59, 61–2, 70, 116, 150, 162, 214, 246, Aeolia, 479 see also Aeolian Aeolian, 246 papyri, 15, 23 Aeschines, 39, 59, 60, 64, 93, 94, 123, 161, 166, 174, portraits, 65, 67 184, 211, 213, 216, 230, 232, 331 Alcidamas, 549 commentaries, 75 papyri, 16 Ctesiphon, 21 Alcinous, 484 False Legation, 22 Alcmaeon, 310
    [Show full text]
  • 94 Erkka Maula
    ORGANON 15 PROBLÊMES GENERAUX Erkka Maula (Finland) FROM TIME TO PLACE: THE PARADIGM CASE The world-order in philosophical cosmology can be founded upon time as well as .space. Perhaps the most fundamental question pertaining to any articulated world- view concerns, accordingly, their ontological and epistemological priority. Is the basic layer of notions characterized by temporal or by spatial concepts? Does a world-view in its development show tendencies toward the predominance of one set of concepts rather than the other? At the stage of its relative maturity, when the qualitative and comparative phases have paved the way for the formation of quantitative concepts: Which are considered more fundamental, measurements of time or measurements of space? In the comparative phase: Is the geometry of the world a geometry of motion or a geometry of timeless order? In the history of our own scientific world-view, there seems to be discernible an oscillation between time-oriented and space-oriented concept formation.1 In the dawn, when the first mathematical systems of astronomy and geography appear, shortly before Euclid's synthesis of the axiomatic thought, there were attempts at a geometry of motion. They are due to Archytas of Tarentum and Eudoxus of Cnidus, foreshadowed by Hippias of Elis and the Pythagoreans, who tend to intro- duce temporal concepts into geometry. Their most eloquent adversary is Plato, and after him the two alternative streams are often called the Heraclitean and the Parmenidean world-views. But also such later and far more articulated distinctions as those between the statical and dynamic cosmologies, or between the formalist and intuitionist philosophies of mathematics, can be traced down to the original Greek dichotomy, although additional concepts entangle the picture.
    [Show full text]
  • Survey of Modern Mathematical Topics Inspired by History of Mathematics
    Survey of Modern Mathematical Topics inspired by History of Mathematics Paul L. Bailey Department of Mathematics, Southern Arkansas University E-mail address: [email protected] Date: January 21, 2009 i Contents Preface vii Chapter I. Bases 1 1. Introduction 1 2. Integer Expansion Algorithm 2 3. Radix Expansion Algorithm 3 4. Rational Expansion Property 4 5. Regular Numbers 5 6. Problems 6 Chapter II. Constructibility 7 1. Construction with Straight-Edge and Compass 7 2. Construction of Points in a Plane 7 3. Standard Constructions 8 4. Transference of Distance 9 5. The Three Greek Problems 9 6. Construction of Squares 9 7. Construction of Angles 10 8. Construction of Points in Space 10 9. Construction of Real Numbers 11 10. Hippocrates Quadrature of the Lune 14 11. Construction of Regular Polygons 16 12. Problems 18 Chapter III. The Golden Section 19 1. The Golden Section 19 2. Recreational Appearances of the Golden Ratio 20 3. Construction of the Golden Section 21 4. The Golden Rectangle 21 5. The Golden Triangle 22 6. Construction of a Regular Pentagon 23 7. The Golden Pentagram 24 8. Incommensurability 25 9. Regular Solids 26 10. Construction of the Regular Solids 27 11. Problems 29 Chapter IV. The Euclidean Algorithm 31 1. Induction and the Well-Ordering Principle 31 2. Division Algorithm 32 iii iv CONTENTS 3. Euclidean Algorithm 33 4. Fundamental Theorem of Arithmetic 35 5. Infinitude of Primes 36 6. Problems 36 Chapter V. Archimedes on Circles and Spheres 37 1. Precursors of Archimedes 37 2. Results from Euclid 38 3. Measurement of a Circle 39 4.
    [Show full text]
  • Did Hypatia Know About Negative Numbers?
    Did Hypatia Know about Negative Numbers? Hypatia lived in Alexandria in the 4th-5th century AD. She was one of the most remarkable women in history. Her father Theon, presumably the last member of the Museum, instructed her in mathematics, philosophy and clas- sical Greek literature. With time she herself became a brilliant teacher of Neoplatonic philosophy and mathematics. Numerous young aspirants from wealthy Christian and pagan families came to Alexandria with the sole pur- pose of joining the sophisticated inner circle of her students. Theon and Hyptia edited several of the major mathematical treatises avail- able in their time: Arithmetica by Diophantus, Almagest by Ptolemy, Conics by Appolonius of Perga, and Elements by Euclid. A significant part of this work, in particular on the most difficult and demanding Arithmetica, she did alone. To some of these treatises she added commentaries and exemplary exercises. A charismatic figure in the city’s intellectual life and a close friend to many important officials, Hypatia had a significant influence on the Alexandrian elite and politics. She was admired for her knowledge, wisdom, righteousness and personal charm. Her public lectures for the Alexandrian intelligentsia attracted a great deal of interest. However, her elevated social position and popularity did not prevent her from becoming the victim of a brutal murder in 415 AD by the fanatic mob who accused her of conducting forbidden magical practices. Groundless rumors about Hypatia’s dealings with witchcraft were most likely inspired by her political enemies. Bishop Cyril was certainly one of them, but the allegations concerning his direct involvement have never been proven.
    [Show full text]
  • Solving Elliptic Diophantine Equations: the General Cubic Case
    ACTA ARITHMETICA LXXXVII.4 (1999) Solving elliptic diophantine equations: the general cubic case by Roelof J. Stroeker (Rotterdam) and Benjamin M. M. de Weger (Krimpen aan den IJssel) Introduction. In recent years the explicit computation of integer points on special models of elliptic curves received quite a bit of attention, and many papers were published on the subject (see for instance [ST94], [GPZ94], [Sm94], [St95], [Tz96], [BST97], [SdW97], [ST97]). The overall picture before 1994 was that of a field with many individual results but lacking a comprehensive approach to effectively settling the el- liptic equation problem in some generality. But after S. David obtained an explicit lower bound for linear forms in elliptic logarithms (cf. [D95]), the elliptic logarithm method, independently developed in [ST94] and [GPZ94] and based upon David’s result, provided a more generally applicable ap- proach for solving elliptic equations. First Weierstraß equations were tack- led (see [ST94], [Sm94], [St95], [BST97]), then in [Tz96] Tzanakis considered quartic models and in [SdW97] the authors gave an example of an unusual cubic non-Weierstraß model. In the present paper we shall treat the general case of a cubic diophantine equation in two variables, representing an elliptic curve over Q. We are thus interested in the diophantine equation (1) f(u, v) = 0 in rational integers u, v, where f Q[x,y] is of degree 3. Moreover, we require (1) to represent an elliptic curve∈ E, that is, a curve of genus 1 with at least one rational point (u0, v0). 1991 Mathematics Subject Classification: 11D25, 11G05, 11Y50, 12D10.
    [Show full text]
  • Diophantus of Alexandria
    Diophantus of Alexandria Diophantus of Alexandria played a major role in the development of algebra and was a considerable influence on later number theorists. Diophantine analysis, which is closely related to algebraic geometry, has experienced a resurgence of interest in the past half century. Diophantus worked before the introduction of modern algebraic notation, but he moved from rhetorical algebra to syncopated algebra, where abbreviations are used. Prior to Diophantus’ time the steps in solving a problem were written in words and complete sentences, like a piece of prose, or a philosophical argument. Diophantus employed a symbol to represent the unknown quantity in his equations, but as he had only one symbol he could not use more than one unknown at a time. His work, while not a system of symbols, was nevertheless an important step in the right direction. François Viète, influenced by Napier, Descartes and John Wallis, introduced symbolic algebra into Europe in the 16th century when he used letters to represent both constants and variables. Claims that Diophantus lived from about 200 to 284 and spent time at Alexandria are based on detective work in finding clues to the times he flourished in his and others’ writings. Theon of Alexandria quoted Diophantus in 365 and his work was the subject of a commentary written by Theon’s daughter Hypatia at the beginning of the 5th century, which unfortunately is lost. The most details concerning Diophantus’ life are found in the Greek Anthology, compiled by Metrodorus around 500. Diophantus is often referred to as the “father of algebra,” but this is stretching things as many of his methods for solving linear and quadratic equations can be traced back to the Babylonians.
    [Show full text]