Geomorphological, stratigraphic and geochronological evidence of fast Pleistocene coastal uplift in the westernmost part of the Corinth Gulf Rift (Greece) N. Palyvos (1)(*), M. Mancini (2), D. Sorel (3), F. Lemeille (4), D. Pantosti (1), R. Julia (5), M. Triantaphyllou (6), P.-M. DeMartini (1) (1) Istituto Nazionale di Geofisica e Vulcanologia, Sez. Sismologia e Tettonofisica, Active Tectonics Group,
[email protected],
[email protected] (*) now at Harokopio University, Geography Department,
[email protected] (2) CNR, Istituto di Geologia Ambientale e Geoingegneria, Area della Ricerca Roma 1, via Salaria km 29.3, C.P. 10, 00016 Monterotondo Scalo, Roma, Italy,
[email protected] (3) Université Paris-Sud, Centre d'Orsay, Faculty of Geology, 91405 Orsay Cedex,
[email protected] (4) Institut de Radioprotection et de Surete Nucléaire, Seismic Hazard Division, Fontenay- aux-roses Cedex,
[email protected] (5) Institute of Earth Sciences Jaume Almera, Barcelona 08028,
[email protected] (6) National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Department of Hist. Geology - Paleontology,
[email protected] Abstract Rapid extension and active normal faulting in the western extremity of the Gulf of Corinth are accompanied by intense coastal uplift. We investigate Pleistocene uplift west of Aigion, based on remains of marine coastal terraces and sedimentary sequences that we attempt to date by calcareous nannoplankton and U-series analyses. Initiation of net uplift in the study area was recent, caused by abandonment of an older rift-bounding normal fault zone and take-over by the presently active, coastal one. Take-over apparently coincides with an abrupt slow-down (or, termination) of secondary fault block tilting within the broader hangingwall block of the older zone, indicated by an angular unconformity that dates in the early part of MIS10 (~390-350 ka BP, preferably, in the earlier part of this period), based on nannoplankton and sequence-stratigraphic constraints.