Introduction to Operating System Prepared By
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
OES 2 SP3: Novell CIFS for Linux Administration Guide 9.2.1 Mapping Drives from a Windows 2000 Or XP Client
www.novell.com/documentation Novell CIFS Administration Guide Open Enterprise Server 2 SP3 May 03, 2013 Legal Notices Novell, Inc., makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc., reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. Further, Novell, Inc., makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc., reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to notify any person or entity of such changes. Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade laws of other countries. You agree to comply with all export control regulations and to obtain any required licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the Novell International Trade Service Web page (http://www.novell.com/info/exports/) for more information on exporting Novell software. -
Shared Resource Matrix Methodology: an Approach to Identifying Storage and Timing Channels
Shared Resource Matrix Methodology: An Approach to Identifying Storage and Timing Channels RICHARD A. KEMMERER University of California, Santa Barbara Recognizing and dealing with storage and timing channels when performing the security analysis of a computer system is an elusive task. Methods for discovering and dealing with these channels have mostly been informal, and formal methods have been restricted to a particular specification language. A methodology for discovering storage and timing channels that can be used through all phases of the software life cycle to increase confidence that all channels have been identified is presented. The methodology is presented and applied to an example system having three different descriptions: English, formal specification, and high-order language implementation. Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General--se- curity and protection; D.4.6 ]Operating Systems]: Security and Protection--information flow controls General Terms: Security Additional Key Words and Phrases: Protection, confinement, flow analysis, covert channels, storage channels, timing channels, validation 1. INTRODUCTION When performing a security analysis of a system, both overt and covert channels of the system must be considered. Overt channels use the system's protected data objects to transfer information. That is, one subject writes into a data object and another subject reads from the object. Subjects in this context are not only active users, but are also processes and procedures acting on behalf of the user. The channels, such as buffers, files, and I/O devices, are overt because the entity used to hold the information is a data object; that is, it is an object that is normally viewed as a data container. -
Shared Resource
Shared resource In computing, a shared resource, or network share, is a computer resource made available from one host to other hosts on a computer network.[1][2] It is a device or piece of information on a computer that can be remotely accessed from another computer transparently as if it were a resource in the local machine. Network sharing is made possible by inter-process communication over the network.[2][3] Some examples of shareable resources are computer programs, data, storage devices, and printers. E.g. shared file access (also known as disk sharing and folder sharing), shared printer access, shared scanner access, etc. The shared resource is called a shared disk, shared folder or shared document The term file sharing traditionally means shared file access, especially in the context of operating systems and LAN and Intranet services, for example in Microsoft Windows documentation.[4] Though, as BitTorrent and similar applications became available in the early 2000s, the term file sharing increasingly has become associated with peer-to-peer file sharing over the Internet. Contents Common file systems and protocols Naming convention and mapping Security issues Workgroup topology or centralized server Comparison to file transfer Comparison to file synchronization See also References Common file systems and protocols Shared file and printer access require an operating system on the client that supports access to resources on a server, an operating system on the server that supports access to its resources from a client, and an application layer (in the four or five layer TCP/IP reference model) file sharing protocol and transport layer protocol to provide that shared access. -
Resource Management in Multimedia Networked Systems
University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science May 1994 Resource Management in Multimedia Networked Systems Klara Nahrstedt University of Pennsylvania Ralf Steinmetz University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/cis_reports Recommended Citation Klara Nahrstedt and Ralf Steinmetz, "Resource Management in Multimedia Networked Systems ", . May 1994. University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-94-29. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/331 For more information, please contact [email protected]. Resource Management in Multimedia Networked Systems Abstract Error-free multimedia data processing and communication includes providing guaranteed services such as the colloquial telephone. A set of problems have to be solved and handled in the control-management level of the host and underlying network architectures. We discuss in this paper 'resource management' at the host and network level, and their cooperation to achieve global guaranteed transmission and presentation services, which means end-to-end guarantees. The emphasize is on 'network resources' (e.g., bandwidth, buffer space) and 'host resources' (e.g., CPU processing time) which need to be controlled in order to satisfy the Quality of Service (QoS) requirements set by the users of the multimedia networked system. The control of the specified esourr ces involves three actions: (1) properly allocate resources (end-to-end) during the multimedia call establishment, so that traffic can flow according to the QoS specification; (2) control resource allocation during the multimedia transmission; (3) adapt to changes when degradation of system components occurs. -
Novell Cluster Services,. for Linux. and Netware
Novell Cluster Services,. for Linux. and NetWare. ROB BASTIAANSEN SANDER VAN VUGT Novell PRESS. Novell. Published by Pearson Education, Inc. 800 East 96th Street, Indianapolis, Indiana 46240 USA Table of Contents Introduction 1 CHAPTER 1: Introduction to Clustering and High Availability 5 Novell Cluster Services Defined 5 Shared Disk Access 6 Secondary IP Addresses 7 Clustering Terminology 8 High-Availability Solutions Overview 12 Novell Cluster Services 12 Business Continuity Clustering 13 PolyServe Matrix Server 15 Heartbeat Subsystem for High-Availability Linux 16 When Not to Cluster Applications 16 Availability Defined 18 High Availability Defined 18 Calculating Average Downtime 21 Avoiding Downtime 22 Hardware 22 Environment 23 Software 23 Procedures 24 Novell Cluster Services Requirements 24 Hardware Requirements 24 Software Requirements 26 CHAPTER 2: Examining Novell Cluster Services Architecture 27 Novell Cluster Services Objects and Modules 27 Cluster eDirectory Objects 28 Cluster Modules 31 IH Novell Cluster Services for Linux and NetWare Heartbeats, Epoch Numbers, and the Split Brain Detector 35 Removing a Failing Slave Node 36 Removing a Failed Master Node 37 Summary 37 CHAPTER 3: Clustering Design 39 Cluster Design Guidelines 39 How Many Nodes to Choose 39 Using a Heartbeat LAN or Not 40 Use NIC Teaming 41 Choosing Storage Methods 42 Mirror the Split Brain Detector Partition 48 Selecting Applications to Run in a Cluster 48 eDirectory Cluster Guidelines 50 Creating a Failover Matrix 52 Application-Specific Design Guidelines -
Novell® Platespin® Recon 3.7.4 User Guide 5.6.4 Printing and Exporting Reports
www.novell.com/documentation User Guide Novell® PlateSpin® Recon 3.7.4 September 2012 Legal Notices Novell, Inc., makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc., reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. Further, Novell, Inc., makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc., reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to notify any person or entity of such changes. Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade laws of other countries. You agree to comply with all export control regulations and to obtain any required licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on exporting Novell software. -
Introduction to MS-DOS
1.Introduction to MS-DOS : MS-DOS (Microsoft Disk Operating System) was the Microsoft-marketed version of the first widely-installed operating system in personal computers. It was essentially the same operating system that (Bill Gates's) young company developed for IBM as Personal Computer - Disk Operating System in 1981. Most users of either DOS system simply referred to their system as Disk Operating System. Like PC-DOS, MS-DOS was (and still is) a non-graphical line-oriented command- driven operating system, with a relatively simple interface but not overly "friendly" user interface. Its prompt to enter a command looks like this: C:\> MS-DOS does not care about anything called an icon, wallpaper or screen saver. Rather than being considered as a Graphical User Interface (GUI) MS-DOS is what is known as a command-line interface. You type commands on what is called the command line. MS-DOS is a single-user, single-tasking computer operating system. In spite of its very small size and relative simplicity, it is one of the most successful operating systems that has been developed to date. In DOS, a file name consists of eight character followed by a 3 character file extension. The size of a file is restricted to a 4 byte file descriptor, which limits a file’s maximum size to approximately 4 billion characters. The first release of DOS could not read or write to disk drives so users could only read and write to a floppy disc. DOS was not a state of the art operating system, even for its time. -
Chapter 1. Origins of Mac OS X
1 Chapter 1. Origins of Mac OS X "Most ideas come from previous ideas." Alan Curtis Kay The Mac OS X operating system represents a rather successful coming together of paradigms, ideologies, and technologies that have often resisted each other in the past. A good example is the cordial relationship that exists between the command-line and graphical interfaces in Mac OS X. The system is a result of the trials and tribulations of Apple and NeXT, as well as their user and developer communities. Mac OS X exemplifies how a capable system can result from the direct or indirect efforts of corporations, academic and research communities, the Open Source and Free Software movements, and, of course, individuals. Apple has been around since 1976, and many accounts of its history have been told. If the story of Apple as a company is fascinating, so is the technical history of Apple's operating systems. In this chapter,[1] we will trace the history of Mac OS X, discussing several technologies whose confluence eventually led to the modern-day Apple operating system. [1] This book's accompanying web site (www.osxbook.com) provides a more detailed technical history of all of Apple's operating systems. 1 2 2 1 1.1. Apple's Quest for the[2] Operating System [2] Whereas the word "the" is used here to designate prominence and desirability, it is an interesting coincidence that "THE" was the name of a multiprogramming system described by Edsger W. Dijkstra in a 1968 paper. It was March 1988. The Macintosh had been around for four years. -
Characterizing Peer-Level Performance of Bittorrent
Characterizing Peer-level Performance of BitTorrent DRP Report Amir H. Rasti ABSTRACT 1. INTRODUCTION BitTorrent is one of the most popular Peer-to-Peer During the past few years, peer-to-peer appli- (P2P) content distribution applications over the cations have become very popular on the In- Internet that significantly contributes in network ternet. BitTorrent in one of the most popu- traffic. lar peer-to-peer applications providing scalable peer-to-peer content distribution over the In- In BitTorrent, a file is divided into segments ternet. Some recent studies [8] have shown that and participating peers contribute their outgoing BitTorrent is accountable for approximately bandwidth by providing their available segments 35% of the Internet traffic. BitTorrent is a to other peers while obtaining their missing peers scalable peer-to-peer content distribution sys- from others. Characterization of BitTorrent is use- tem that enables one-to-many distribution of ful in determining its performance bottlenecks as large files without requiring a large access link well as its impact on the network. bandwidth at the source. Similar to other peer- In this study, we try to address the following two to-peer systems, it uses resources of participat- key questions through measurement: (i) What are ing peers to increase the capacity of the system. the main factors that affect observed performance The main shared resource in BitTorrent is the by individual peers in BitTorrent?, and (ii) What up-link bandwidth of individual peers. The file are the contributions of these factors on the per- being distributed is divided into a large number formance of individual peers? To address these of segments. -
Server I/O Networks Past, Present, and Future Renato John Recio Chief Architect, IBM Eserver I/O IBM Systems Group, Austin, Texas [email protected]
Server I/O Networks Past, Present, and Future Renato John Recio Chief Architect, IBM eServer I/O IBM Systems Group, Austin, Texas [email protected] Abstract • Low latency - the total time required to transfer the first bit of a message from the local application to the remote appli- Enterprise and technical customers place a diverse set of cation, including the transit times spent in intermediate requirements on server I/O networks. In the past, no single switches and I/O adapters. network type has been able to satisfy all of these requirements. As • High throughput - the number of small block transactions a result several fabric types evolved and several interconnects performed per second. The size and rate of small block I/O emerged to satisfy a subset of the requirements. Recently several depends on the workload and fabric type. A first level technologies have emerged that enable a single interconnect to be approximation of the I/O block size and I/O throughput rates required for various I/O workloads can be found in used as more than one fabric type. This paper will describe the “I/O Workload Characteristics of Modern Servers” [4]. requirements customers place on server I/O networks; the various • High bandwidth - the number of bytes per second sup- fabric types and interconnects that have been used to satisfy those ported by the network. Typically, used to gauge perfor- requirements; the technologies that are enabling network mance for large block data transfers. Peek bandwidth convergence; and how these new technologies are being deployed describes the bandwidth provided by a given link; whereas on various network families. -
NFS Gateway for Netware 6 Administration Guide October 22, 2003
Novell Confidential Manual (99a) 11 September 2003 Novell * NFS Gateway for NetWare® 6 www.novell.com ADMINISTRATION GUIDE October 22, 2003 Novell Confidential Manual (99a) 11 September 2003 Legal Notices Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to notify any person or entity of such changes. You may not export or re-export this product in violation of any applicable laws or regulations including, without limitation, U.S. export regulations or the laws of the country in which you reside. Copyright © 2003 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or transmitted without the express written consent of the publisher. U.S. Patent No. 5,157,663; 5,349,642; 5,455,932; 5,553,139; 5,553,143; 5,572,528; 5,594,863; 5,608,903;5,633,931; 5,652,859; 5,671,414; -
Microsoft Plays Hardball: Use of Exclusionary Pricing and Technical
Antitrust Bulletin, XL:2, Summer 1995, 265-315 MICROSOFT PLAYS HARDBALL: The Use of Exclusionary Pricing and Technical Incompatibility to Maintain Monopoly Power in Markets for Operating System Software† by KENNETH C. BASEMAN* FREDERICK R. WARREN-BOULTON* and GLENN A. WOROCH** May 1995 ___________________ * Principals, MiCRA: Microeconomic Consulting and Research Associates, Inc., Washington, DC. ** University of California, Berkeley. † Forthcoming, Antitrust Bulletin, June 1995. We would like to express our appreciation for helpful comments and other assistance to Sturge Sobin, Linnet Harlan, Paul Dennis and the participants at the Columbia Business School's Institute for Tele-Information's Seminar on Sustaining Competition in Network Industries through Regulating and Pricing Access, especially Janusz Ordover and Bobby Willig. TABLE OF CONTENTS I. INTRODUCTION AND SUMMARY ................................... 1 II. BACKGROUND .................................................... 3 A. THE MARKET FOR PERSONAL COMPUTER OPERATING SYSTEMS ............................................................ 3 TABLE: NEW SHIPMENTS OF PERSONAL COMPUTER OPERATING SYSTEMS .............................................. 8 B. MICROSOFT'S PRACTICES ..................................... 9 III. FIRST-DEGREE PRICE DISCRIMINATION vs. INEFFICIENT SUBSTITUTION ................................................... 15 A. FIRST-DEGREE PRICE DISCRIMINATION ........................ 16 B. INEFFICIENT SUBSTITUTION ................................. 20 IV. ANTIFRAUD AND ANTIPIRACY