<<

Advances in Computer Science Research (ACSR), volume 76 7th International Conference on Education, Management, Information and Mechanical Engineering (EMIM 2017)

The Aerodynamic Performance of an Wing in

Haoyu Wang1, a and Yan Li2, b * 1School of Astronautics Beihang University Beijing, China 2School of Mechanical Electronic & Information Engineering, China University of Mining and Technology, Beijing, China [email protected], [email protected]

Keywords: Inflatable wing; Aerodynamic performance; The coefficient of lift; The coefficient of drag

Abstract. Thispaperexplorestheaerodynamicperformanceofaninflatablewinginaircraftusing boththeoreticalandexperimentalmethods.Thetheoreticalanalysisisbasedoninflatablestructures andtheexistingsimplevesselequationsforthenecessarystructuralanalysis.Thepresent work also conducted more detailed aerodynamic analyses of inflatable wing, and in particular considersthetrendsforcoefficientsofliftandcoefficientsofdrag,whichhelptounderstandwiththe varyingairfoilsangleofattackinpredictedthelifttodragratiobehavior.

Introduction Inadditiontomorphingwingaircraftanddeployablewingaircraft,inflatablewingaircraftwerealso investigated.Whileinflatablewingaircraftmayseemtobealesserknowntechnologythanothers,it hasbeenindevelopmentfordecade.Inflatablewingaircrafthavebeensuccessfullydemonstratedas earlyasthe1950’swiththeGoodyearInflatoplaneModelGA468[1].Theinflatoplanewasdesigned andbuiltin12weeks,withthegoalofbeingarescueplanethatwouldbeairdroppedbehindenemy lines.Theinflatablewingtookaboutfiveminutestoinflate.Thepilotwouldthenhandstartthe engine,andtakeofffromaturfrunway,requiringonly250feetbeforetheplanewasofftheground. Severalmodelsweremade,rangingfromasinglecapacity,totwopersoncapacityaircraft,eachwith a28footinflatablewing. Inflatablewingwasdevelopedandintegratedinaircraftdesigndecadesago[24],includingthe development of lighterthanair (LTA) vehicles, manned inflatable heavierthanair vehicles and UAVs. While LTA vehicles also include inflatable structures, our main focus herein is on the inflatablewingusedsolelyforliftgeneration.Inflatablewingsareapromisingmethodforaircraft designthatrequiredthewingtobestowedwhennotinuse.Inflatablewingsareconceptuallypossible foranywingspanandhavebeendevelopedwithawingspanassmallas15cm(6in)formissilefins andaslargeas9.14m(30ft)ormoreforLTAvehicles.Theabilityoftheinflatablewingtobestowed hasmanyincentives.Inflatablewingstructureshavethebenefitofanextremelylowpackingvolume withoutaffectingitstructuralintegrity.Thepackingvolumecanbemorethantentimessmallerthan theirdeployedvolume.Inflatablewingcanbefoldedandstowedinsidethefuselageandinflatedtoits designatedpressurewhenneeded. OklahomaStateUniversityandDr.JameyJacob[5]haveyearsofexperiencewhenitcomesto inflatablestructuresandinflatablewings.Whileanalyzinganinflatableairbeam,anonrigidbody, mayseemlikeadauntingtask,theequationsinvolvedattheirbasiclevelarefairlystraightforward. Usingsimplepressurevesselequations,thenecessaryequationforstructuralanalysisisderived.The equationcomesfrompressurevesseltheory.Whenaninflatablebeamexperiencesalargeenough moment,thebeambucklescausingthehoopstressatthatpointtogotozero. Severalreportswereutilizedinordertoevaluatetheairfoiloftheinflatablewing.Mostofthe reportsutilizedCFDinordertoevaluatedifferentinflatableairfoils,withdifferentnumbersofbaffles ranging in size and shape. From these reports, several trends were found when comparing the inflatableversionofanairfoil,totheiroriginalsmoothcounterpart.Itcanbeseenthatthecoefficient ofdragandthecoefficientofliftchangeswhentheinflatableairfoiliscomparedtoitssmoothversion.

Copyright © 2017, the Authors. Published by Atlantis Press. 12 This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). Advances in Computer Science Research (ACSR), volume 76

Thisdecreaseinliftcoefficientisafunctionoftheairfoilsangleofattack,andtolesserextentthe coefficientofdragisaswell.Howmuchthecoefficientofdragandliftisaffected,is also very dependentoftheReynoldsnumberthattheaircraftisflyingat.Inflatableairfoilstendtohavean advantageoversmootherairfoilsatlowerReynoldsnumbers,asthe“bumps”triptheairflowand delaythestallaffectssothattheyoccurathigheranglesofattack[68]. Conversely,onemajorconcerntotheinflatablewingdesignisthelackofrollcontrolactuator comparedwithconventionalrigidwingdesignthathasflapandailerons.Thisproblemcanbetackled inseveralways.Oneoptionisaservoactuationtechniqueusedtodeformthewingshapetoprovide roll control, since inflatable wings are deformable by nature. In order to determine the wings capabilities,someinitialinformationwasrequired.Studieswereconductedtodeterminethewings aerodynamicperformanceanditsstoredvolume. Therefore,theobvioustrendshowsthatthickerwingmaterial,longerwingspanandlargerchord lengthincreasecompactedvolume,withtheseadvantages,inflatablewingedaircraftcanbebeneficial formilitaryoperationthathaslimitedstoragespaceatcombatzone.Thus,howcaninflatablewing designmaintainitsstructuralrigidityagainstbendingloadoranyaerodynamicloadduringflight?The focusofthepresentpaperistoevaluatetheaerodynamicperformance.

Theoretical Aerodynamic Performance Inflatablewinginflatestheentirewingwiththeinflationsystem.Sincethewingdoesnothaveany structuralelementstomaintainthestiffness,ithastohavehighinflationpressure.Itisveryimportant tomaintaintheinflationpressureofthewingandbecausetheairpressurekeepsthewinginshapeand theeffectoftheinflationpressureontheinflatablewinghasbeendiscussedelsewhere[9].Thewing alsohastomaintainitspressureathighaltitudesanduntilthetotalmissioniscompleted. Thesurfaceoftheresultantinflatedstructurehasabumpyappearance,asinflatablestructures approximatetheshape of a cylinder upon inflation. An example of inflatable wing cross section demonstratesthatthewingappearstobeaseriesofintersectingcylindersbeamwiththefabricspar positioninbetweentheintersectionsofthecylinders.Ristheradiusofcurvatureofthetube.The inflatablebeamassumedtobeastraightsection.Inanairstructurethereisapropertycalledhoop stress.Theclassicequationforhoopstresscreatedbyaninternalpressureonathinwallcylindrical pressurevesselis

σ = Pr 2t (1) Wheretisthewallthickness,Pistheinternalpressureandristheradius.Thewallissignificantly thinnerthantheotherdimensions,whichimpliesthatthedifferencebetweeninnerandouterradiusis small.Thisequationshowsthatthebiggerthediameterofthetubethegreaterthestressonthefabric foranygivenpressure.Thereforeasmalldiametertubecanwithstandgreaterpressureinsideandstill havethesameamountofstressonthefabric.Nowthinkaboutalonginflatedtube.Ifthebasefabric stretches,itwilltakemorepressureinsideofthetubetokeepitridged,becausethefabriccanstretch alongtheoutsideofthebendinthetube.Thisiswhysomeinflatablestructuresneverseemtoattain thesamerigidityasothers. Thehoopstresscanberelatedtothebendingmomentusing

Pr M r σ = = 0 2tπ r3 t (2) WhereM0,istherootbendingmoment.Thefabricthicknessdoesnotplayamajorrolesinceboth sidesoftheequationsaremultipliedbythefabricthickness.Rewritingequation(2)yields:

2M P = 0 π r3 (3)

13 Advances in Computer Science Research (ACSR), volume 76

Thus,largerdiametertubesareextremelybeneficialwhenusedoninflatablewingstosupport bendingload.Theseexplainthebenefitofhavingalargerdiametercylindricalsparatthequarter chordtosupportthewingloadatoperatingcondition.Sincethebaffledwingconsistsofaseriesof hollowedtubeswithvaryingradiiofcurvaturerunningfromtheleadingedgetothetrailingedge,each tubeactsaslikeanindividualsparthatprovidesadditionalresistancetowingbendingloads. Assumption was made that wrinkling will occur when the compressive stress due to bending becomesaslargeasthe tensile stress due to internal overpressure. The wrinkling load is always obtainedwhentheresultantstresscancelsontheupperorthelowergenerativeofthetube.Inthis location,thetotalstressinthetubewillbecomezero.Itisassumedthatthefabriccannotsustain compressivestressandtherefore,wrinklingwilloccur.Wrinklingcanbeexpectedattheattachment pointoratlocationclosesttotherootofthewing.Collapseloadisdefinedwhenthewholeresultant stresscancelsononeofthesegenerative. The primary consideration for failure in an inflatable structure is the maximum sustainable bendingmomentorcollapseload.Todeterminetheloadcarryingcapabilityofasimplifiedinflatable beamdesign,webeginwiththeEulerBernoullibeamequationthatrelatesthebeamdeflectionwith appliedmomentandappliedmomentandmaterialpropertiesonacantileverbeam[26].

2 ( ) d y = M x dx2 E I w (4) EwistheYoung'smodulusofthematerial,Mistheappliedmoment,andIisthecrosssectional momentofinertia.AccordingtoSimpsonet.al[10],theILCDoverbaffledesignmaximizesthearea momentofinertiaofthecrosssection;thusminimizingtheinflationpressurerequiredtoreduce deflectionandpreventbuckling.Equation(4)clearlyshowstherelations.Mainet.almodifiedthis withrespecttoaninflatedfabrictubetodeveloparelationforthebendingmomentequationfora singleinflatedfabricsparforspacebasedinflatedstructures[1112].

2 d y M π Pr3 = M <()1 − 2v dx2 Eπ r3 t i for 2 (5)

2 3 M− 2 v Pr sinθ 3 d y = t 0 π Pr 2 3 >() − dx E r ()π− θ + sin θ cos θ  M 1 2vt i  0 0 0  for 2 (6) WhereMisthebendingmoment.Elisthelongitudinalfabrictensilemodulus,risthebeamradius, andθ0isthewrinkleangle.Therelationincludestheimpactofwrinklingandaccountsforthebiaxial stressinthebeamfabricandtheimpactthatithasonthewrinklingthresholdofthebeamaswellas thebeam'spostwrinklingbendingbehavior.Themodelwaswellvalidatedagainstexperimentaldata offabricbeamsunderloads.Astheloadincreases,thebeamdeflectsinalinearmanner.Oncethe wrinklingthresholdisreached,therelationbecomesnonlinear.Soonafter,thebeambuckles.This willscaledependinguponthetypeofstructureinvolved.Whilebucklingisthefailuremode,theonset ofwrinklingindicatesthemaximumdesignloadandwillbeusedforthedesignlimit.Itshouldbe noted that unlike metal or composite rigid structures that will either plastically deform or crack, respectively, once the yield stress is reached, the inflatable beam will bend, but then will return undamagedtoitsoriginalstateaftertheloadisreducedorremoved.

Aircraft Experiments Duetothepeculiarwingairfoil,Simpsonet.al[10]hasinvestigatedtheaerodynamicperformanceof an inflatable design for MARS aircraft. tunnel tests combined with smoke visualization methodswereconductedonrigidmodelofthe"bumpy"profileoftheinflatablerigidizabledesign withthatoftheideal"smooth"profile.Theinitialconsiderationwastoimprovetheaerodynamic performancebyplacingaskinoverthewingtoreducetheperturbationofthebafflesandtoprovidea sharpertrailingedge. At low Re case, the surface perturbation improved the flow over the wing

14 Advances in Computer Science Research (ACSR), volume 76 surface.TheidealE398airfoilperformedpoorlycomparedwithinflatableprofile.AtAOAof0and Re=25x103,flowseparationoccursveryclosetotheleadingedgefortheidealwingandthereisno reattachment.Forthesameconditions,thebumpyprofileshowsattachedflowandthestreamlines adjacenttothesurfacearenotdistinctlyclear.Thisisduetothebumpstrippingtheflowtopromote transitiontoturbulenceearlier.Itcanbeobservedthatthepositionoftheseparationregionisshifted furtherdownstreamofthelaminarseparationpoint,duetotheadditionalbumps. Insomecases,peoplehaveusedthesegeneralizationsandsimplyestimatedtheCLandCddataby modifyingthedataobtainedfromprogramslikeXFoil,thatutilizespaneltheorytoanalyzeanairfoil andproduceCLandCdinformationofasmoothairfoil.Inothercases,theyhaveutilizedXfoil,and modifiedanairfoiltohaveatripplacedtowardstheleadingedgeorthetrailingedgetosimulatean inflatableairfoil[8].Itisimportanttonote,thatonecannotsimplyputa“bumpy”airfoilintoXfoilor Profiliandhaveitanalyzedinordertoproducethisdata.Thisisbecausebothprogramsutilizesa iterativepaneltheoryanalysistechniqueforeachpanel,andtheiterationsareincapableofconverging duetothelargechangesinCLandCd. In order to produce this vital information, the other people started to attempt to simulate the inflatablewingusingProfili,bymakingsmootherversionsofthesame“bumpy”airfoilsinhopesthat theprogramwouldbeabletoconverge.Resultswereobtained,thoughtheresearchpeopledidnot considerthemtrustworthy,andinsteadusedthemmoreasgeneralguidelinesthatshouldprove similartotheactualairfoildata. Inthethispaper,theDynamicStudyofanInflatableairfoilNACA4309,dataisgivenforhow theirCLandCddatachangeasafunctionofangleofattack,whencomparedtotheiridealairfoil counterparts,inadditiontotherawdataobtainedfromtheirCFDanalysis.ThischangeinCLandCd informationwasthenappliedtothedataobtainedusingXfoilfortheidealsmoothairfoilbyuseofa percentchangecalculationfromthedatafromthetwosets.Fromthisdataanalysis,thefollowingCL andCdinformationwasobtained,showninFig.1andFig.2Thecoefficientofdragapproximately doubles,whilethecoefficientofliftdecreasesslightly.Duringtheearlydesignphaseofthisaircraft,it wasestimatedthatthecruisingspeednumberofapproximately30m/s.Howmuchthelifttodragratio isaffected,showninFig.3itcanbeseenthatthelifttodragratioapproximatelyincreasewiththe angleofattackincrease,andreachedtothepeak(20.1)attheαof3o.Thedatausedforthecoefficient ofmomentwasnotalteredinanywaybetweentheidealandinflatableairfoil,asnoinformationwas availableinthevariousreports,onhowthiscoefficientisaffectedininflatableairfoils.

Figure1.CLvsα;NACA4309,V=30m/sFigure2.CDvsα;NACA4309,V=30m/s

15 Advances in Computer Science Research (ACSR), volume 76

Figure3.CL/CDvsα;NACA4309,V=30m/s

Summary This paper explores aerodynamic analysis of an inflatable wing, the inflatable wing aircraft experimentsweremadetoevaluateaerodynamicperformance.First,ageneralNACA4309wing basedondataanalysisisderivedfromsimulationanalysis.ThefollowingCLandCdinformationwas obtained. The coefficient of drag approximately doubles, while the coefficient of lift decreases slightly.Next,itcanbeseenthatthelifttodragratioapproximatelyincreasewiththeangleofattack increase,andreachedtothepeak(20.1)attheαof3o.

Acknowledgements ThisresearchwassupportedbytheFundofAerospaceinnovation(No.CASC0105)andtheNational NaturalScienceFoundationofChina(No.61503018).

References [1] JameyDJacob,AndrewSimpson,andSuzanneSmith,"DesignandFlightTestingofInflatable WingswithWingWarping,"UniversityofKentucky,Lexington,KY,05WAC61,2005. [2] CorySudduthandJameyDJacob.Flighttestingofahybridrocket/inflatablewingUAV.AIAA 2013035851stAIAAAerospace Sciences Meeting including the New Horizons Forum and AerospaceExposition.Grapevine(Dallas/Ft.WorthRegion),Texas,January710,2013. [3] RachelK.Norris,WadeJ.Pulliam.Historicalperspectiveoninflatablewingstructures.AIAA 2009214550thAIAA/ASME/ASCE/AHS/ASCStructures,StructuralDynamics,andMaterials Conference.PalmSprings,California,May47,2009. [4] JameyD.Jacob,SuzanneW.Smith.DesignofHALEaircraftusinginflatablewings.AIAA 200816746thAIAAAerospaceSciencesMeetingandExhibit.Reno,Nevada,January710, 2008. [5] GlenBrown,RoyHaggard,andBrookNorton,"InflatableStructuresforDeployableWings," VertigoInc.,LakeElsinore,CA,AIAA20012068,2001. [6] Richard Innes, "Computation Fluid Dynamic Study of Flow Over an Inflatable Aerofoil," LoughboroughUniversity,2006. [7] MarsTeam,"DesignandFlightTestingofaMarsAircraftPrototypeUsingInflatable Wings,"OklahomaStateUniverisity,Stillwater,2007. [8] RaymondP.LeBeau,SuzanneW.SmithDanielA.Reasor,"FlightTestingandSimulationofa MarsAircraftDesignUsingInflatableWings,"Stillwate

16 Advances in Computer Science Research (ACSR), volume 76

[9] Gaddam,P.,Hill,J.,andJacob,J.D.“AerostructuralInteractionandOptimizationofInflatable Wings”,AIAA20104610,40thFluidDynamicsConferenceandExhibit,28June1July2010, Chicago,IL. [10]A.Simpson,“Designandevaluationofinflatablewingsforuavs,”ph.ddissertation,University ofKentucky,Lexington,2008. [11]J.Main,A.Strauss,andS.Peterson,“Beamtypebendingofspacebasedinflatedmembrane structures,”JournalofAerospaceEngineering,1995. [12]J.Main,A.Strauss,andS.Peterson,“Loaddeflectionbehaviorofspacebasedinflatablefabric beams,”JournalofAerospaceEngineering,1994.

17