DRAFT IDNDR Ground Motion Estimation Paper August 29, 2001 Earthquake Ground Motion Estimation Daniel R. H. O’Connell and Jon P. Ake U.S. Bureau of Reclamation, P.O. Box 25007 D-8330, Denver, CO 80225, USA;
[email protected] INTRODUCTION A primary goal of seismology is to estimate how the ground moves in response to an earthquake at specific locations of interest. When a building is subjected to ground shaking from an earthquake, elastic waves travel through the structure and the building begins to vibrate at various frequencies characteristic of the stiffness and shape of the building. Earthquakes generate ground motions over a wide range of frequencies, from static displacements to tens of cycles per second [Hertz (Hz)]. Most structures have resonant vibration frequencies in the 0.1 Hz to 10 Hz range. A structure is most sensitive to ground motions with frequencies near its natural resonant frequency. Damage to a building thus depends on its properties and the character of the earthquake ground motions, such as peak acceleration and velocity, duration, frequency content, kinetic energy, phasing, and spatial coherence. Realistic ground motion time histories are needed for nonlinear dynamic analysis of structures to engineer earthquake-resistant buildings and critical structures, such as dams, bridges, and lifelines. Ground motion estimation is predicated on the availability of detailed geological and geophysical information about locations, geometries, and rupture characteristics of earthquake faults. Such information is often not readily available. One most recognize that uncertainties about tectonics and the location and activity rates of faults is the dominant contribution to uncertainty in ground motion estimation.