Ground Motion Simulation Based on Fault Rupture Modelling for Seismic

Total Page:16

File Type:pdf, Size:1020Kb

Ground Motion Simulation Based on Fault Rupture Modelling for Seismic Safety Reports Series This publication explains the principles which underlie strong ground motion simulation, describes various methods for simulating the Safety Reports Series motions and provides some examples using fault rupture modelling. The detailed guidelines and practical tools presented in this Safety No.85 Report will be of value to researchers, operating No.85 organizations, regulatory bodies, vendors and technical support organizations in the areas of seismic hazard evaluation of nuclear installations. The information provided will also be of great importance for seismic hazard assessments Assessment in Site Evaluation for Nuclear Installations Ground Motion Simulation Based on Fault Rupture Modelling for Seismic Hazard following the Fukushima Daiichi nuclear accident. Ground Motion Simulation Based on Fault Rupture Modelling for Seismic Hazard Assessment in Site Evaluation for Nuclear Installations INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–102315–5 ISSN 1020–6450 15-40261_PUB1689_cover.indd 1-3 2015-11-11 09:15:14 RELATED PUBLICATIONS IAEA SAFETY STANDARDS AND RELATED PUBLICATIONS SEISMIC HAZARDS IN SITE EVALUATION FOR NUCLEAR INSTALLATIONS IAEA SAFETY STANDARDS IAEA Safety Standards Series No. SSG-9 Under the terms of Article III of its Statute, the IAEA is authorized to establish or adopt STI/PUB/1448 (56 pp.; 2010) standards of safety for protection of health and minimization of danger to life and property, and ISBN 92–0–102910–2 Price: €29.00 to provide for the application of these standards. The publications by means of which the IAEA establishes standards are issued in the FUNDAMENTAL SAFETY PRINCIPLES IAEA Safety Standards Series. This series covers nuclear safety, radiation safety, transport IAEA Safety Standards Series No. SF-1 safety and waste safety. The publication categories in the series are Safety Fundamentals, STI/PUB/1273 (37 pp.; 2006) Safety Requirements and Safety Guides. ISBN 92–0–110706–4 Price: €25.00 Information on the IAEA’s safety standards programme is available on the IAEA Internet SITE EVALUATION FOR NUCLEAR INSTALLATIONS site IAEA Safety Standards Series No. NS-R-3 http://www-ns.iaea.org/standards/ STI/PUB/1177 (28 pp.; 2003) The site provides the texts in English of published and draft safety standards. The texts ISBN 92–0–112403–1 Price: €15.00 of safety standards issued in Arabic, Chinese, French, Russian and Spanish, the IAEA Safety Glossary and a status report for safety standards under development are also available. For further information, please contact the IAEA at: Vienna International Centre, PO Box 100, 1400 Vienna, Austria. All users of IAEA safety standards are invited to inform the IAEA of experience in their use (e.g. as a basis for national regulations, for safety reviews and for training courses) for the purpose of ensuring that they continue to meet users’ needs. Information may be provided via the IAEA Internet site or by post, as above, or by email to Offi [email protected]. RELATED PUBLICATIONS The IAEA provides for the application of the standards and, under the terms of Articles III and VIII.C of its Statute, makes available and fosters the exchange of information relating to peaceful nuclear activities and serves as an intermediary among its Member States for this purpose. Reports on safety in nuclear activities are issued as Safety Reports, which provide practical examples and detailed methods that can be used in support of the safety standards. Other safety related IAEA publications are issued as Emergency Preparedness and Response publications, Radiological Assessment Reports, the International Nuclear Safety Group’s INSAG Reports, Technical Reports and TECDOCs. The IAEA also issues reports on radiological accidents, training manuals and practical manuals, and other special safety related publications. Security related publications are issued in the IAEA Nuclear Security Series. The IAEA Nuclear Energy Series comprises informational publications to encourage and assist research on, and the development and practical application of, nuclear energy for peaceful purposes. It includes reports and guides on the status of and advances in technology, and on experience, good practices and practical examples in the areas of nuclear power, the nuclear fuel cycle, radioactive waste management and decommissioning. www.iaea.org/books 15-40261_PUB1689_cover.indd 4-6 2015-11-11 09:15:15 GROUND MOTION SIMULATION BASED ON FAULT RUPTURE MODELLING FOR SEISMIC HAZARD ASSESSMENT IN SITE EVALUATION FOR NUCLEAR INSTALLATIONS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GERMANY PAKISTAN ALBANIA GHANA PALAU ALGERIA GREECE PANAMA ANGOLA GUATEMALA PAPUA NEW GUINEA ANTIGUA AND BARBUDA GUYANA PARAGUAY ARGENTINA HAITI PERU ARMENIA HOLY SEE PHILIPPINES AUSTRALIA HONDURAS POLAND AUSTRIA HUNGARY PORTUGAL AZERBAIJAN ICELAND QATAR BAHAMAS INDIA REPUBLIC OF MOLDOVA BAHRAIN INDONESIA ROMANIA BANGLADESH IRAN, ISLAMIC REPUBLIC OF RUSSIAN FEDERATION BELARUS IRAQ RWANDA BELGIUM IRELAND SAN MARINO BELIZE ISRAEL SAUDI ARABIA BENIN ITALY BOLIVIA, PLURINATIONAL JAMAICA SENEGAL STATE OF JAPAN SERBIA BOSNIA AND HERZEGOVINA JORDAN SEYCHELLES BOTSWANA KAZAKHSTAN SIERRA LEONE BRAZIL KENYA SINGAPORE BRUNEI DARUSSALAM KOREA, REPUBLIC OF SLOVAKIA BULGARIA KUWAIT SLOVENIA BURKINA FASO KYRGYZSTAN SOUTH AFRICA BURUNDI LAO PEOPLE’S DEMOCRATIC SPAIN CAMBODIA REPUBLIC SRI LANKA CAMEROON LATVIA SUDAN CANADA LEBANON SWAZILAND CENTRAL AFRICAN LESOTHO SWEDEN REPUBLIC LIBERIA SWITZERLAND CHAD LIBYA SYRIAN ARAB REPUBLIC CHILE LIECHTENSTEIN TAJIKISTAN CHINA LITHUANIA THAILAND COLOMBIA LUXEMBOURG THE FORMER YUGOSLAV CONGO MADAGASCAR REPUBLIC OF MACEDONIA COSTA RICA MALAWI TOGO CÔTE D’IVOIRE MALAYSIA TRINIDAD AND TOBAGO CROATIA MALI TUNISIA CUBA MALTA TURKEY CYPRUS MARSHALL ISLANDS UGANDA CZECH REPUBLIC MAURITANIA UKRAINE DEMOCRATIC REPUBLIC MAURITIUS UNITED ARAB EMIRATES OF THE CONGO MEXICO UNITED KINGDOM OF DENMARK MONACO GREAT BRITAIN AND DJIBOUTI MONGOLIA DOMINICA MONTENEGRO NORTHERN IRELAND DOMINICAN REPUBLIC MOROCCO UNITED REPUBLIC ECUADOR MOZAMBIQUE OF TANZANIA EGYPT MYANMAR UNITED STATES OF AMERICA EL SALVADOR NAMIBIA URUGUAY ERITREA NEPAL UZBEKISTAN ESTONIA NETHERLANDS VANUATU ETHIOPIA NEW ZEALAND VENEZUELA, BOLIVARIAN FIJI NICARAGUA REPUBLIC OF FINLAND NIGER VIET NAM FRANCE NIGERIA YEMEN GABON NORWAY ZAMBIA GEORGIA OMAN ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. IAEA SAFETY REPORTS SERIES No. 85 GROUND MOTION SIMULATION BASED ON FAULT RUPTURE MODELLING FOR SEISMIC HAZARD ASSESSMENT IN SITE EVALUATION FOR NUCLEAR INSTALLATIONS INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2015 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books © IAEA, 2015 Printed by the IAEA in Austria November 2015 STI/PUB/1689 IAEA Library Cataloguing in Publication Data Ground motion simulation based on fault rupture modelling for seismic hazard assessment in site evaluation for nuclear installations. — Vienna : International Atomic Energy Agency, 2015. p. ; 24 cm. — (Safety reports series, ISSN 1020–6450 ; no. 85) STI/PUB/1689 ISBN 978–92–0–102315–5 Includes bibliographical references. 1. Nuclear facilities — Safety measures. 2. Nuclear facilities — Location. 3. Earthquake hazard analysis. 4. Earthquake simulators. 5. Earthquake prediction. I. International Atomic Energy Agency. II. Series. IAEAL 15–01000 COPYRIGHT NOTICE FOREWORD All IAEA scientific and technical publications are protected by the terms of IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site the Universal Copyright Convention as adopted in 1952 (Berne) and as revised Evaluation for Nuclear Installations, issued in 2010, covers all aspects relating in 1972 (Paris). The copyright has since been extended by the World Intellectual to seismic hazards. One of major revisions in SSG-9 is a recommendation to Property Organization (Geneva) to include electronic and virtual intellectual use fault rupture modelling for ground motion simulation in cases where nearby property. Permission to use whole or parts of texts contained in IAEA publications faults contribute significantly to the seismic hazard for nuclear installations. in printed or electronic form must be obtained and is usually subject to royalty The overall process of the methodology is described in SSG-9; however, more agreements. Proposals for non-commercial
Recommended publications
  • Seismic Site Effects in a Deep Alluvial Basin : Numerical Analysis by the Boundary Element Method
    SEISMIC SITE EFFECTS IN A DEEP ALLUVIAL BASIN : NUMERICAL ANALYSIS BY THE BOUNDARY ELEMENT METHOD J.F.Semblat1, A.M. Duval2, P. Dangla3 Abstract : The main purpose of the paper is the numerical analysis of seismic site effects in Caracas (Venezuela). The analysis is performed considering the Boundary Element Method in the frequency domain. A numerical model including a part of the local topography is considered, it involves a deep alluvial deposit on an elastic bedrock. The amplification of seismic motion (SH-waves, weak motion) is analyzed in terms of level, occuring frequency and location. In this specific site of Caracas, the amplification factor is found to reach a maximum value of 25. Site effects occur in the thickest part of the basin for low frequencies (below 1.0 Hz) and in two intermediate thinner areas for frequencies above 1.0 Hz. The influence of both incidence and shear wave velocities is also investigated. A comparison with microtremor recordings is presented afterwards. The results of both numerical and experimental approaches are in good agreement in terms of fundamental frequencies in the deepest part of the basin. The boundary element method appears to be a reliable and efficient approach for the analysis of seismic site effects. 1. SOME DIFFERENT ASPECTS OF EARTHQUAKE GEOTECHNICAL ENGINEERING Different types of analysis can be performed to investigate earthquake engineering problems. Depending on the purpose of the analysis, one can stress on the only structural aspect of the problem, the geotechnical point of view
    [Show full text]
  • Geospatial Assessment of the Post-Earthquake Hazard of the 2017 Pohang Earthquake Considering Seismic Site Effects
    International Journal of Geo-Information Article Geospatial Assessment of the Post-Earthquake Hazard of the 2017 Pohang Earthquake Considering Seismic Site Effects Han-Saem Kim 1 , Chang-Guk Sun 2,* and Hyung-Ik Cho 1 1 Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Korea; [email protected] (H.-S.K.); [email protected] (H.-I.C.) 2 Geological Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Korea * Correspondence: [email protected]; Tel.: +82-42-868-3265 Received: 15 July 2018; Accepted: 5 September 2018; Published: 10 September 2018 Abstract: The 2017 Pohang earthquake (moment magnitude scale: 5.4) was South Korea’s second strongest earthquake in decades, and caused the maximum amount of damage in terms of infrastructure and human injuries. As the epicenters were located in regions with Quaternary sediments, which involve distributions of thick fill and alluvial geo-layers, the induced damages were more severe owing to seismic amplification and liquefaction. Thus, to identify the influence of site-specific seismic effects, a post-earthquake survey framework for rapid earthquake damage estimation, correlated with seismic site effects, was proposed and applied in the region of the Pohang earthquake epicenter. Seismic zones were determined on the basis of ground motion by classifying sites using the multivariate site classification system. Low-rise structures with slight and moderate earthquake damage were noted to be concentrated in softer sites owing to the low focal depth of the site, topographical effects, and high frequency range of the mainshocks. Keywords: geo-data; seismic site effects; post-earthquake survey; earthquake impact; 2017 Pohang earthquakes 1.
    [Show full text]
  • Seismic Resilience Report Is Located on the Seismic Resilience Sharepoint Site
    REPORT SEISMIC RESILIENCE FIRST BIENNIAL REPORT The Metropolitan Water District of Southern California 700 N. Alameda Street, Los Angeles, California 90012 Report No. 1551 February 2018 The Metropolitan Water District of Southern California Seismic Resilience First Biennial Report SEISMIC RESILIENCE FIRST BIENNIAL REPORT Prepared By: The Metropolitan Water District of Southern California 700 North Alameda Street Los Angeles, California 90012 Report Number 1551 February 2018 Report No. 1551 – February 2018 iii The Metropolitan Water District of Southern California Seismic Resilience First Biennial Report Copyright © 2018 by The Metropolitan Water District of Southern California. The information provided herein is for the convenience and use of employees of The Metropolitan Water District of Southern California (MWD) and its member agencies. All publication and reproduction rights are reserved. No part of this publication may be reproduced or used in any form or by any means without written permission from The Metropolitan Water District of Southern California. Any use of the information by any entity other than Metropolitan is at such entity's own risk, and Metropolitan assumes no liability for such use. Prepared under the direction of: Gordon Johnson Chief Engineer Prepared by: Robb Bell Engineering Services Don Bentley Water Resource Management Winston Chai Engineering Services David Clark Engineering Services Greg de Lamare Engineering Services Ray DeWinter Administrative Services Edgar Fandialan Water Resource Management Ricardo Hernandez
    [Show full text]
  • Macroseismic Effects Highlight Site Response in Rome and Its Geological Signature
    Macroseismic effects highlight site response in Rome and its geological signature Paola Sbarraa), Valerio De Rubeisa), Emiliano Di Luziob), Marco Mancinic), Massimiliano Moscatellic), Francesco Stiglianoc), Patrizia Tosia) and Roberto Vallonec) a) Istituto Nazionale di Geofisica e Vulcanologia, Roma, Via di Vigna Murata, 605 Roma, Italy 00143 b) Istituto per le Tecnologie Applicate ai Beni Culturali (ITABC). Consiglio Nazionale delle Ricerche Area della Ricerca Roma RM1 –Montelibretti, Via Salaria km 29.300, Monterotondo Stazione – Roma, Italy C.P. 10 - 00015 c) Istituto di Geologia Ambientale e Geoingegneria (IGAG). Consiglio Nazionale delle Ricerche Area della Ricerca di Roma RM 1 – Montelibretti, Via Salaria km 29.300, Monterotondo Stazione – Roma, Italy C.P. 10 – 00015 The final publication is available at springerlink.com Corresponding (first) author: Paola Sbarra Phone: +39 0651860276 Fax: +39 065041181 Mailing address: [email protected] ABSTRACT A detailed analysis of the earthquake effects on the urban area of Rome has been conducted for the L’Aquila sequence, which occurred in April 2009, by using an on-line macroseismic questionnaire. Intensity residuals calculated using the mainshock and four aftershocks are analyzed in the light of a very accurate and original geological reconstruction of the subsoil of Rome based on a large amount of wells. The aim of this work is to highlight ground motion amplification areas and to find a correlation with the geological settings at a sub-regional scale, putting in evidence the extreme complexity of the phenomenon and the difficulty of making a simplified model. Correlations between amplification areas and both near-surface and deep geology were found.
    [Show full text]
  • Stress Triggering in Thrust and Subduction Earthquakes and Stress
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, B02303, doi:10.1029/2003JB002607, 2004 Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults Jian Lin Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA Ross S. Stein U.S. Geological Survey, Menlo Park, California, USA Received 30 May 2003; revised 24 October 2003; accepted 20 November 2003; published 3 February 2004. [1] We argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which we illustrate by a suite of representative models and by detailed examples. Whereas slip on surface-cutting thrust faults drops the stress in most of the adjacent crust, slip on blind thrust faults increases the stress on some nearby zones, particularly above the source fault. Blind thrusts can thus trigger slip on secondary faults at shallow depth and typically produce broadly distributed aftershocks. Short thrust ruptures are particularly efficient at triggering earthquakes of similar size on adjacent thrust faults. We calculate that during a progressive thrust sequence in central California the 1983 Mw = 6.7 Coalinga earthquake brought the subsequent 1983 Mw = 6.0 Nun˜ez and 1985 Mw = 6.0 Kettleman Hills ruptures 10 bars and 1 bar closer to Coulomb failure. The idealized stress change calculations also reconcile the distribution of seismicity accompanying large subduction events, in agreement with findings of prior investigations. Subduction zone ruptures are calculated to promote normal faulting events in the outer rise and to promote thrust-faulting events on the periphery of the seismic rupture and its downdip extension.
    [Show full text]
  • Strong Ground Motion
    The Lorna Prieta, California, Earthquake of October 17, 1989-Strong Ground Motion ROGER D. BORCHERDT, Editor STRONG GROUND MOTION AND GROUND FAILURE Thomas L. Holzer, Coordinator U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1551-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Manuscript approved for publication, October 6, 1993 Text and illustrations edited by George A. Havach Library of Congress catalog-card No. 92-32287 For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 CONTENTS Page A1 Strong-motion recordings ---................................. 9 By A. Gerald Brady and Anthony F. Shakal Effect of known three-dimensional crustal structure on the strong ground motion and estimated slip history of the earthquake ................................ 39 By Vernon F. Cormier and Wei-Jou Su Simulation of strong ground motion ....................... 53 By Jeffry L. Stevens and Steven M. Day Influence of near-surface geology on the direction of ground motion above a frequency of 1 Hz----------- 61 By John E. Vidale and Ornella Bonamassa Effect of critical reflections from the Moho on the attenuation of strong ground motion ------------------ 67 By Paul G. Somerville, Nancy F. Smith, and Robert W. Graves Influences of local geology on strong and weak ground motions recorded in the San Francisco Bay region and their implications for site-specific provisions ----------------- --------------- 77 By Roger D.
    [Show full text]
  • Numerical Analysis of Seismic Site Effects in Loess Region of Western China Under Strong Earthquake Excitations
    Hindawi Shock and Vibration Volume 2020, Article ID 3918352, 12 pages https://doi.org/10.1155/2020/3918352 Research Article Numerical Analysis of Seismic Site Effects in Loess Region of Western China under Strong Earthquake Excitations Tuo Chen,1,2 Zhijian Wu ,3 Yanhu Mu,2 Ping Wang,4 and Qiyin Zhu1 1State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China 2State Key Laboratory of Frozen Soil Engineering, Chinese Academy of Sciences, Lanzhou 730000, China 3College of Transportation Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 210009, China 4Lanzhou Institute of Seismology, CEA, Lanzhou 730000, China Correspondence should be addressed to Zhijian Wu; [email protected] Received 28 October 2019; Accepted 8 August 2020; Published 25 August 2020 Academic Editor: Ivo Cali`o Copyright © 2020 Tuo Chen et al. ,is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ,e Loess Plateau is one of the most tectonically and seismically active areas in the world. Observations from past strong earthquakes, particularly the Minxian–Zhangxian and Wenchuan earthquakes, have shown distinctive evidence of seismic site effects in the mountainous area of southeastern Gansu province. In this study, seismic damage in the loess areas of southeastern Gansu province induced by these earthquakes was investigated and briefly described. Different types of ground motion were selected, and the one-dimensional equivalent linear method was used for numerical analysis of the ground motion effects in the loess regions.
    [Show full text]
  • Seismic Site Effects for Shallow and Deep Alluvial Basins: In-Depth Motion and Focusing Effect
    Seismic Site Effects for Shallow and Deep Alluvial Basins: In-Depth Motion and Focusing Effect J.F. Semblat, P. Dangla, M. Kham, Laboratoire Central des Ponts et Chaussées, 58, bd Lefebvre, 75732 PARIS Cedex 15, France, [email protected] A.M. Duval, CETE Méditerranée, Seismic Risk Team, Nice, France Abstract : The main purpose of the paper is the analysis of seismic site effects in various alluvial basins. The analysis is performed considering a numerical approach (Boundary Element Method). Two main cases are considered : a shallow deposit in the centre of Nice (France) [1] and a deep irregular basin in Caracas (Venezuela) [2]. The amplification of seismic motion is analysed in terms of level, occuring frequency and location. For both sites, the amplification factor is found to reach maximum values of 20 (weak motion). Site effects nevertheless have very different features concerning the frequency dependence and the location of maximum amplification. For the shallow deposit in Nice, the amplification factor is very small for low frequencies and fastly increases above 1.0 Hz. The irregular Caracas basin gives a much different frequency dependence with many different peaks at various frequencies. The model for Caracas deep alluvial basin also includes a part of the local topography such as the nearest mountain. One can estimate seismic site effects due to both velocity contrast (between the basin and the bedrock) and local topography of the site. Furthermore, the maximum amplification is located on the surface for Nice, whereas some strong amplification areas also appear inside the basin itself in the case of Caracas. One investigates the influence of this focusing effect on the motion vs depth dependence.
    [Show full text]
  • Ambient Vibrations Measurements and 1D Site Response Modelling As a Tool for Soil and Building Properties Investigation
    geosciences Article Ambient Vibrations Measurements and 1D Site Response Modelling as a Tool for Soil and Building Properties Investigation Sebastiano Imposa 1,* ID , Giuseppe Lombardo 1 ID , Francesco Panzera 1,2 ID and Sabrina Grassi 1 ID 1 Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Catania, Corso Italia 57, 95129 Catania, Italy; [email protected] (G.L.); [email protected] (F.P.); [email protected] (S.G.) 2 Swiss Seismological Service (SED), Swiss Federal Institute of Technology in Zurich (ETH Zurich), Sonneggstrasse 5, 8092 Zurich, Switzerland * Correspondence: [email protected]; Tel.: +39-095-7195701 Received: 21 December 2017; Accepted: 2 March 2018; Published: 6 March 2018 Abstract: The safety of historic buildings heritage is an important task that becomes more substantial when it is directed to educational purposes. The present study aims at evaluating the dynamic features of the Benedettini complex, a historic monastery located in downtown Catania, which is at present the headquarters of the humanistic studies department of the University of Catania. Both the building’s complex response to a seismic input and the soil-structure interaction were investigated using ambient noise recordings. The results point out a multiple dynamic behaviour of the monastery structure that shows several oscillation modes, whereas the identification of a single natural frequency can be observed in some sites where the structure can more freely oscillate. This observation is also confirmed by the variability of computed damping values that appear linked to the different rigidity of the structure, as a function of the either the longitudinal or transversal orientation of the investigated structural elements.
    [Show full text]
  • Loss Estimates for a Puente Hills Blind-Thrust Earthquake in Los Angeles, California
    Loss Estimates for a Puente Hills Blind-Thrust Earthquake in Los Angeles, California a) b) c) Edward H. Field, M.EERI, Hope A. Seligson, M.EERI, Nitin Gupta, c) c) d) Vipin Gupta, Thomas H. Jordan, and Kenneth W. Campbell, M.EERI Based on OpenSHA and HAZUS-MH, we present loss estimates for an earthquake rupture on the recently identified Puente Hills blind-thrust fault beneath Los Angeles. Given a range of possible magnitudes and ground mo- tion models, and presuming a full fault rupture, we estimate the total eco- nomic loss to be between $82 and $252 billion. This range is not only con- siderably higher than a previous estimate of $69 billion, but also implies the event would be the costliest disaster in U.S. history. The analysis has also pro- vided the following predictions: 3,000–18,000 fatalities, 142,000–735,000 displaced households, 42,000–211,000 in need of short-term public shelter, and 30,000–99,000 tons of debris generated. Finally, we show that the choice of ground motion model can be more influential than the earthquake magni- tude, and that reducing this epistemic uncertainty (e.g., via model improve- ment and/or rejection) could reduce the uncertainty of the loss estimates by up to a factor of two. We note that a full Puente Hills fault rupture is a rare event (once every ϳ3,000 years), and that other seismic sources pose signifi- cant risk as well. [DOI: 10.1193/1.1898332] INTRODUCTION Recent seismologic and geologic studies have revealed a dangerous fault system, the Puente Hills blind thrust, buried directly beneath Los Angeles, California (Shaw and Shearer 1999, Shaw et al.
    [Show full text]
  • Nonlinear Analysis on Seismic Site Response of Fuzhou Basin, China by Guoxing Chen, Dandan Jin, Jiao Zhu, Jian Shi, and Xiaojun Li
    Bulletin of the Seismological Society of America, Vol. 105, No. 2A, pp. 928–949, April 2015, doi: 10.1785/0120140085 Nonlinear Analysis on Seismic Site Response of Fuzhou Basin, China by Guoxing Chen, Dandan Jin, Jiao Zhu, Jian Shi, and Xiaojun Li Abstract Based on the parallel computing cluster platform of the ABAQUS soft- ware, a large-scale 2D finite-element refined nonlinear modeling approach was used to study seismic site effects in the Fuzhou basin, such as peak ground acceleration (PGA), spectral acceleration, duration, and acceleration transfer functions. A 1D equivalent linear wave propagation analysis was conducted also, with Proshake for supplemen- tation and calibration. The simulation results demonstrated the following. (1) PGA am- plification factors exhibited spatial variation characteristics that varied both laterally and with depth and exhibited a nonmonotonic decreasing characteristic with soil depth. From the 2D results, a greater motion amplification and focusing effect for some shal- low soil layers was observed where there was significant fluctuation of the underlying bedrock interface. The moderate- and long-period ground-motion components were obviously amplified, but were was less pronounced in the 1D result. (2) For low-, moderate-, and high-level earthquakes, the surface PGA amplification factors were 1.4–2.5, 1.3–2.0, and 1.1–2.0, respectively, and the predominant periods of the basin were 0.35–0.65 s, 0.40–0.75 s, and 0.50–1.05 s, respectively. (3) Ground-motion durations were prolonged to different degrees, which were closely related to the char- acteristics of seismic bedrock motions.
    [Show full text]
  • Seismic Site Effects and Seismic Risk in the Montreal Area - the Influence of Marine Clays
    Ninth Canadian Conference on Earthquake Engineering Ottawa, Ontario, Canada 26-29 June 2007 SEISMIC SITE EFFECTS AND SEISMIC RISK IN THE MONTREAL AREA - THE INFLUENCE OF MARINE CLAYS L. Chouinard1 and P. Rosset2 ABSTRACT In Canada, Montreal is ranked second for seismic risk after Vancouver considering its population and regional seismic hazard. The city is largely built on recent unconsolidated marine and river deposits that are known to amplify seismic waves and a large proportion of its infrastructure is old and deteriorated. The conjunction of site effects and vulnerable infrastructures could result in significant damage if a major earthquake, such as a repeat of the magnitude 6 event of 1732, would occur in proximity to the city. In order to improve estimates of seismic hazards, a seismic microzonation of the city was performed by combining field investigations using ground ambient noise records (H/V method) and numerical simulations of seismic wave propagation. Field investigations were performed at over 700 locations distributed across the Island of Montreal to estimate the fundamental frequency of resonance of soil deposits. Numerical simulations were performed using compiled data from over 2000 boreholes to obtain estimates of the spectral response of soil deposits and site amplifications. The resulting seismic microzonation maps are the most detailed and comprehensive to date for Montreal. Critical areas are identified along the southeast shore of the St-Laurent River as well as west of downtown. Both are well correlated with the presence of thick marine clay deposits. The maps have been used in collaboration with the Sécurité Civile of Montreal to develop seismic hazard mitigation plans for critical infrastructures such as water filtration plants and to validate emergency response plans through earthquake simulation exercises.
    [Show full text]