Selecting and Scaling Earthquake Ground Motions for Performing Response-History Analyses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seismic Acceleration and Displacement Demand Profiles of Non-Structural Elements in Hospital Buildings
buildings Article Seismic Acceleration and Displacement Demand Profiles of Non-Structural Elements in Hospital Buildings Giammaria Gabbianelli 1 , Daniele Perrone 1,2,* , Emanuele Brunesi 3 and Ricardo Monteiro 1 1 University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy; [email protected] (G.G.); [email protected] (R.M.) 2 Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy 3 European Centre for Training and Research in Earthquake Engineering (EUCENTRE), 27100 Pavia, Italy; [email protected] * Correspondence: [email protected] Received: 23 October 2020; Accepted: 11 December 2020; Published: 15 December 2020 Abstract: The importance of non-structural elements in performance-based seismic design of buildings is presently widely recognized. These elements may significantly affect the functionality of buildings even for low seismic intensities, in particular for the case of critical facilities, such as hospital buildings. One of the most important issues to deal with in the seismic performance assessment of non-structural elements is the definition of the seismic demand. This paper investigates the seismic demand to which the non-structural elements of a case-study hospital building located in a medium–high seismicity region in Italy, are prone. The seismic demand is evaluated for two seismic intensities that correspond to the definition of serviceability limit states, according to Italian and European design and assessment guidelines. Peak floor accelerations, interstorey drifts, absolute acceleration, and relative displacement floor response spectra are estimated through nonlinear time–history analyses. The absolute acceleration floor response spectra are then compared with those obtained from simplified code formulations, highlighting the main shortcomings surrounding the practical application of performance-based seismic design of non-structural elements. -
Seismic Site Effects in a Deep Alluvial Basin : Numerical Analysis by the Boundary Element Method
SEISMIC SITE EFFECTS IN A DEEP ALLUVIAL BASIN : NUMERICAL ANALYSIS BY THE BOUNDARY ELEMENT METHOD J.F.Semblat1, A.M. Duval2, P. Dangla3 Abstract : The main purpose of the paper is the numerical analysis of seismic site effects in Caracas (Venezuela). The analysis is performed considering the Boundary Element Method in the frequency domain. A numerical model including a part of the local topography is considered, it involves a deep alluvial deposit on an elastic bedrock. The amplification of seismic motion (SH-waves, weak motion) is analyzed in terms of level, occuring frequency and location. In this specific site of Caracas, the amplification factor is found to reach a maximum value of 25. Site effects occur in the thickest part of the basin for low frequencies (below 1.0 Hz) and in two intermediate thinner areas for frequencies above 1.0 Hz. The influence of both incidence and shear wave velocities is also investigated. A comparison with microtremor recordings is presented afterwards. The results of both numerical and experimental approaches are in good agreement in terms of fundamental frequencies in the deepest part of the basin. The boundary element method appears to be a reliable and efficient approach for the analysis of seismic site effects. 1. SOME DIFFERENT ASPECTS OF EARTHQUAKE GEOTECHNICAL ENGINEERING Different types of analysis can be performed to investigate earthquake engineering problems. Depending on the purpose of the analysis, one can stress on the only structural aspect of the problem, the geotechnical point of view -
Prediction of Spectral Acceleration Response Ordinates Based on PGA Attenuation
Prediction of Spectral Acceleration Response Ordinates Based on PGA Attenuation a),c) b),c) Vladimir Graizer, M.EERI, and Erol Kalkan, M.EERI Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings. ͓DOI: 10.1193/1.3043904͔ INTRODUCTION Since it was first introduced by Biot (1933) and later conveyed to engineering appli- cations by Housner (1959) and Newmark et al. (1973), the ground motion response spectrum has often been utilized for purposes of recognizing the significant characteris- tics of accelerograms and evaluating the response of structures to earthquake ground shaking. -
Chapter R20 Probabilistic Seismic Hazard Analysis
FERC Engineering Guidelines Risk-Informed Decision Making Chapter R20 Probabilistic Seismic Hazard Analysis Chapter 20, Seismic Hazard Analysis 2014 DRAFT Table of Contents Chapter R20 – Probabilistic Seismic Hazard Analysis .................................................. - 1 - R20.1 Purpose .............................................................................................................. - 1 - R20.2 Introduction ....................................................................................................... - 2 - R20.2.1 General Concepts ....................................................................................... - 2 - R20.2.2 Probabilistic vs. Deterministic Approach .................................................. - 2 - R20.2.3 Consistency of Seismic Loading Criteria ...... Error! Bookmark not defined. R20.2.4 PSHA Process ............................................................................................ - 3 - R20.2.5 Response Spectra Used for Fragility Analysis ........................................... - 4 - R20.2.6 Selecting Appropriate Seismic Loading..................................................... - 5 - R20.3 PSHA Data Requirements ................................................................................. - 5 - R20.3.1 PSHA Inputs ............................................................................................... - 5 - R20.3.2 General Guide on PSHA Data Collection .................................................. - 6 - R20.4 Seismic Source Identification .......................................................................... -
U. S. Department of the Interior Geological Survey
U. S. DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY USGS SPECTRAL RESPONSE MAPS AND THEIR RELATIONSHIP WITH SEISMIC DESIGN FORCES IN BUILDING CODES OPEN-FILE REPORT 95-596 1995 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. COVER: The zone type map is based on the 0.3 sec spectral response acceleration with a 10 percent chance of being exceeded in 50 year. Contours are based on Figure B1 in this report. Each zonal increase in darkness indicates a factor two increase in earthquake demand. The lightest shade indicates a demand < 5% g. The next shade is for demand > 10% g. Subsequent shades are for > 20% g, > 40% g, and > 80% g respectively. U. S. DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY USGS SPECTRAL RESPONSE MAPS AND THEIR RELATIONSHIP WITH SEISMIC DESIGN FORCES IN BUILDING CODES by E. V. Leyendecker1 , D. M. Perkins2, S. T. Algermissen3, P. C. Thenhaus4, and S. L. Hanson5 OPEN-FILE REPORT 95-596 1995 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1 Research Civil Engineer, U.S. Geological Survey, MS 966, Box 25046, DFC, Denver, CO, 80225 2 Geophysicist, U.S. Geological Survey, MS 966, Box 25046, DFC, Denver, CO, 80225 3 Associate and Senior Consultant, EQE International, 2942 Evergreen Parkway, Suite 302, Evergreen, CO, 80439 (with the U. -
Deriving SS and S1 Parameters from PGA Maps
Deriving SS and S1 Parameters from PGA Maps Z.A. Lubkowski, & B. Aluisi Arup, London, United Kingdom SUMMARY It has been recognised by SHARE (Seismic Hazard Harmonization in Europe) that the code requirement of multiple design levels, such as those required by EN 1473, PIANC etc, and the client’s needs for performance based seismic design, require many of the existing 475 year return period peak ground acceleration (PGA) hazard maps to be updated. This requirement should lead to the update of nationally determined Eurocode 8 code maps. The United States Geological Survey (USGS) already provide a useful web based tool, which defines PGA, SS and S1 coefficients for a return period of 2475 years from the Global Seismic Hazard Assessment Program (GSHAP) 475 year PGA maps and some other relevant resources. However, it has been shown, for example by the uses of Type 1 and Type 2 spectra in Eurocode 8, that the ratio between PGA and spectral ordinates is dependent on the predominant size of earthquakes in a given region. Lubkowski (2010) provided a methodology for converting 475 year PGA values to 2475 year values based on the level of seismicity. This paper will extend that study to provide a simple methodology to define the SS and S1 coefficients for a return period of 2475 years. Keywords: seismic hazard, code maps, design criteria 1. INTRODUCTION It has been recognised by SHARE (Seismic Hazard Harmonization in Europe) that the code requirement of multiple design levels, such as those required by EN 1473, PIANC etc, and the client’s needs for performance based seismic design, require many of the existing 475 year return period peak ground acceleration (PGA) hazard maps to be updated. -
Geospatial Assessment of the Post-Earthquake Hazard of the 2017 Pohang Earthquake Considering Seismic Site Effects
International Journal of Geo-Information Article Geospatial Assessment of the Post-Earthquake Hazard of the 2017 Pohang Earthquake Considering Seismic Site Effects Han-Saem Kim 1 , Chang-Guk Sun 2,* and Hyung-Ik Cho 1 1 Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Korea; [email protected] (H.-S.K.); [email protected] (H.-I.C.) 2 Geological Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Korea * Correspondence: [email protected]; Tel.: +82-42-868-3265 Received: 15 July 2018; Accepted: 5 September 2018; Published: 10 September 2018 Abstract: The 2017 Pohang earthquake (moment magnitude scale: 5.4) was South Korea’s second strongest earthquake in decades, and caused the maximum amount of damage in terms of infrastructure and human injuries. As the epicenters were located in regions with Quaternary sediments, which involve distributions of thick fill and alluvial geo-layers, the induced damages were more severe owing to seismic amplification and liquefaction. Thus, to identify the influence of site-specific seismic effects, a post-earthquake survey framework for rapid earthquake damage estimation, correlated with seismic site effects, was proposed and applied in the region of the Pohang earthquake epicenter. Seismic zones were determined on the basis of ground motion by classifying sites using the multivariate site classification system. Low-rise structures with slight and moderate earthquake damage were noted to be concentrated in softer sites owing to the low focal depth of the site, topographical effects, and high frequency range of the mainshocks. Keywords: geo-data; seismic site effects; post-earthquake survey; earthquake impact; 2017 Pohang earthquakes 1. -
Final Report 2019 Update to the Site-Specific Seismic Hazard Analyses and Development of Seismic Design Ground Motions for Stanford University
Final Report 2019 Update to the Site-Specific Seismic Hazard Analyses and Development of Seismic Design Ground Motions for Stanford University Prepared for: Stanford University Land, Buildings and Real Estate 415 Broadway, Third Floor Redwood City, CA 94063 Prepared by: Lettis Consultants International, Inc. Patricia Thomas and Ivan Wong 1000 Burnett Ave., Suite 350 Concord, CA 94520 and Pacific Engineering and Analysis Walt Silva and Robert Darragh 856 Seaview Dr. El Cerrito, CA 94530 15 January 2020 15 January 2020 Ms. Michelle DeWan Associate Director, Project Manager Stanford University Land, Buildings and Real Estate Redwood City, CA 94063 Mr. Harry Jones, II, SE Stanford Seismic Advisory Committee DCI Engineers 131 17th St., Suite 605 Denver, CO 80202 SUBJECT: 2019 Update of the Site-Specific Seismic Hazard Analyses and Seismic Design Ground Motions for Stanford University, Stanford, California LCI Project No. 1834.0000 Dear Ms. DeWan and Mr. Jones, Lettis Consultants International, Inc. (LCI) is pleased to submit this report that presents our final site-specific seismic hazard results and seismic design ground motions for the Stanford campus. It has been our pleasure to work with the Stanford Seismic Advisory Committee and Stanford University on this project. Please do not hesitate to contact us with any questions or comments that you may have regarding this report. You may contact us directly at (925) 482- 0360. Respectfully, Patricia Thomas, Ph.D., Senior Engineering Seismologist [email protected] Ivan Wong, Senior Principal -
Chapter 12 – Geotechnical Seismic Analysis
Chapter 12 GEOTECHNICAL SEISMIC ANALYSIS GEOTECHNICAL DESIGN MANUAL January 2019 Geotechnical Design Manual GEOTECHNICAL SEISMIC ANALYSIS Table of Contents Section Page 12.1 Introduction ..................................................................................................... 12-1 12.2 Geotechnical Seismic Analysis ....................................................................... 12-1 12.3 Dynamic Soil Properties.................................................................................. 12-2 12.3.1 Soil Properties ..................................................................................... 12-2 12.3.2 Site Stiffness ....................................................................................... 12-2 12.3.3 Equivalent Uniform Soil Profile Period and Stiffness ........................... 12-3 12.3.4 V*s,H Variation Along a Project Site ...................................................... 12-5 12.3.5 South Carolina Reference V*s,H ........................................................... 12-6 12.4 Project Site Classification ............................................................................... 12-7 12.5 Depth-To-Motion Effects On Site Class and Site Factors ................................ 12-9 12.6 SC Seismic Hazard Analysis .......................................................................... 12-9 12.7 Acceleration Response Spectrum ................................................................. 12-10 12.7.1 Effects of Rock Stiffness WNA vs. ENA ........................................... -
Macroseismic Effects Highlight Site Response in Rome and Its Geological Signature
Macroseismic effects highlight site response in Rome and its geological signature Paola Sbarraa), Valerio De Rubeisa), Emiliano Di Luziob), Marco Mancinic), Massimiliano Moscatellic), Francesco Stiglianoc), Patrizia Tosia) and Roberto Vallonec) a) Istituto Nazionale di Geofisica e Vulcanologia, Roma, Via di Vigna Murata, 605 Roma, Italy 00143 b) Istituto per le Tecnologie Applicate ai Beni Culturali (ITABC). Consiglio Nazionale delle Ricerche Area della Ricerca Roma RM1 –Montelibretti, Via Salaria km 29.300, Monterotondo Stazione – Roma, Italy C.P. 10 - 00015 c) Istituto di Geologia Ambientale e Geoingegneria (IGAG). Consiglio Nazionale delle Ricerche Area della Ricerca di Roma RM 1 – Montelibretti, Via Salaria km 29.300, Monterotondo Stazione – Roma, Italy C.P. 10 – 00015 The final publication is available at springerlink.com Corresponding (first) author: Paola Sbarra Phone: +39 0651860276 Fax: +39 065041181 Mailing address: [email protected] ABSTRACT A detailed analysis of the earthquake effects on the urban area of Rome has been conducted for the L’Aquila sequence, which occurred in April 2009, by using an on-line macroseismic questionnaire. Intensity residuals calculated using the mainshock and four aftershocks are analyzed in the light of a very accurate and original geological reconstruction of the subsoil of Rome based on a large amount of wells. The aim of this work is to highlight ground motion amplification areas and to find a correlation with the geological settings at a sub-regional scale, putting in evidence the extreme complexity of the phenomenon and the difficulty of making a simplified model. Correlations between amplification areas and both near-surface and deep geology were found. -
Strong Ground Motion
The Lorna Prieta, California, Earthquake of October 17, 1989-Strong Ground Motion ROGER D. BORCHERDT, Editor STRONG GROUND MOTION AND GROUND FAILURE Thomas L. Holzer, Coordinator U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1551-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Manuscript approved for publication, October 6, 1993 Text and illustrations edited by George A. Havach Library of Congress catalog-card No. 92-32287 For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 CONTENTS Page A1 Strong-motion recordings ---................................. 9 By A. Gerald Brady and Anthony F. Shakal Effect of known three-dimensional crustal structure on the strong ground motion and estimated slip history of the earthquake ................................ 39 By Vernon F. Cormier and Wei-Jou Su Simulation of strong ground motion ....................... 53 By Jeffry L. Stevens and Steven M. Day Influence of near-surface geology on the direction of ground motion above a frequency of 1 Hz----------- 61 By John E. Vidale and Ornella Bonamassa Effect of critical reflections from the Moho on the attenuation of strong ground motion ------------------ 67 By Paul G. Somerville, Nancy F. Smith, and Robert W. Graves Influences of local geology on strong and weak ground motions recorded in the San Francisco Bay region and their implications for site-specific provisions ----------------- --------------- 77 By Roger D. -
Numerical Analysis of Seismic Site Effects in Loess Region of Western China Under Strong Earthquake Excitations
Hindawi Shock and Vibration Volume 2020, Article ID 3918352, 12 pages https://doi.org/10.1155/2020/3918352 Research Article Numerical Analysis of Seismic Site Effects in Loess Region of Western China under Strong Earthquake Excitations Tuo Chen,1,2 Zhijian Wu ,3 Yanhu Mu,2 Ping Wang,4 and Qiyin Zhu1 1State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China 2State Key Laboratory of Frozen Soil Engineering, Chinese Academy of Sciences, Lanzhou 730000, China 3College of Transportation Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 210009, China 4Lanzhou Institute of Seismology, CEA, Lanzhou 730000, China Correspondence should be addressed to Zhijian Wu; [email protected] Received 28 October 2019; Accepted 8 August 2020; Published 25 August 2020 Academic Editor: Ivo Cali`o Copyright © 2020 Tuo Chen et al. ,is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ,e Loess Plateau is one of the most tectonically and seismically active areas in the world. Observations from past strong earthquakes, particularly the Minxian–Zhangxian and Wenchuan earthquakes, have shown distinctive evidence of seismic site effects in the mountainous area of southeastern Gansu province. In this study, seismic damage in the loess areas of southeastern Gansu province induced by these earthquakes was investigated and briefly described. Different types of ground motion were selected, and the one-dimensional equivalent linear method was used for numerical analysis of the ground motion effects in the loess regions.