The Surface/Subsurface Relationship Between Drainage and Buried Faults As Observed in the Andean Foreland of Central-Western Argentina

Total Page:16

File Type:pdf, Size:1020Kb

The Surface/Subsurface Relationship Between Drainage and Buried Faults As Observed in the Andean Foreland of Central-Western Argentina THE SURFACE/SUBSURFACE RELATIONSHIP BETWEEN DRAINAGE AND BURIED FAULTS AS OBSERVED IN THE ANDEAN FORELAND OF CENTRAL-WESTERN ARGENTINA Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Peter Andreas Enderlin, B.S. Graduate Program in Geological Sciences The Ohio State University 2010 Master’s Examination Committee: Dr. Lindsay Schoenbohm, Advisor Dr. Ian Howat Dr. Lawrence Krissek Copyright by Peter Andreas Enderlin 2010 ABSTRACT The Andean foreland of central-western Argentina (30°-35°S) is characterized by the interaction of the east-vergent, thick-skinned Sierras Pampeanas and the west-vergent, thin-skinned Precordillera. Blind thrust faults are associated with the transition between these structural provinces, and large earthquakes have resulted from their interplay beneath the cities of Mendoza and San Juan. This study develops and applies a geomorphic approach to reveal buried tectonic features at both the scale of individual structures and the regional-scale. We interpret changes in bank heights and sinuosity from three rivers located between the Cerro Salinas and Montecito anticlines to suggest the existence of a third, buried structure. Inflections in elevation swaths indicate these three structures may be connected by the southern continuation of the Cerro Salinas thrust, which would tie the three to the Sierras Pampeanas structural province. Regional- scale drainage in the Andean foreland shows that neither current- nor paleorivers have flowed across the Alto del Desaguadero area. Inflections in W-E and N-S elevation swaths across this area suggest the influence of tectonic forcing, possibly due to a rising basement structure similar to the Sierra Pie de Palo to the north. ii ACKNOWLEDGEMENTS First and foremost I thank my advisor, Dr. Lindsay Schoenbohm, for her guidance, encouragement, flexibility, and for giving me this opportunity. I would also like to thank my committee members, Dr. Ian Howat and Dr. Lawrence Krissek, as well as Dr. Terry Wilson, for their feedback, contributions and time. Thanks to my collegues in Argentina for their assitance: Dr. Carlos Costa and Emillio Ahumada, of the Universidad Nacional de San Luis and Dr. Jorge Baron of CEDIAC. Also, a big thank you goes to Cesar Distante for his help in the field, his humor, and his friendship. Finally, a very special thanks to my family for all their support, and to Ellyn McFadden for keeping me smiling through it all. Funding provided by NSF Grant #EAR-60014033 and by AAPG Ohio Geological Society Named Grant. iii VITA January 18, 1983…………………………………………………Born – Staten Island, NY 2001……………………………………………………….Morristown-Beard High School September 2004……………………………………………..Poster, GSA Annual Meeting 2005………………………....…B.S. Geology/Environmental Science, Dickinson College Graduated with Departmental Honors 2005-2006……………………Geologist, Science Applications International Corporation 2006-2008……………………Geologist, Langan Engineering & Environmental Services 2008-2009……………………...Graduate Teaching Associate, The Ohio State University May 2009………………………………… AAPG Ohio Geological Society Named Grant December 2009…………...…………………………………….Poster, AGU Fall Meeting 2009-present…………………....Graduate Research Associate, The Ohio State University FIELDS OF STUDY Major Field: Geological Sciences iv TABLE OF CONTENTS Abstract……………………………………………………………………………………ii Acknowledgements………………………………………………………………………iii Vita………………………………………………………………………………………..iv List of Tables…………………………………………………………………………….vii List of Figures…………………………………………………………………………...viii Chapters: 1. Introduction and Background……………………………………………………..1 1.1 Purpose………………………………………………………………………...1 1.2 Tectonic Setting……………………………………………………………….3 1.3 Climate………………………………………………………………………...9 1.4 Rivers………………………………………………………………………...11 1.5 River Response to Uplift……………………………………………………..14 2. The Cerro Salinas Thrust Case Study……………………………………………18 2.1 Methods………………………………………………………………………22 2.2 Results………………………………………………………………………..25 2.3 Discussion……………………………………………………………………32 3. Regional-Scale Drainage Deflection……………………………………………..38 3.1 River Deflections…………………………………………………………….38 3.1.1 Methods…………………………………………………………….38 3.1.2 Results……………………………………………………………...42 3.1.3 Discussion………………………………………………………….50 3.2 Alto del Desaguadero………………………………………………………...52 3.2.1 Methods…………………………………………………………….52 3.2.2 Results……………………………………………………………...54 3.2.3 Discussion………………………………………………………….58 v 4. Conclusions………………………………………………………………………61 References………………………………………………………………………………..64 Appendix A: Drainage anomaly data…………………………………………………….69 vi LIST OF TABLES Table Page 2.1. Bank Heights of Rivers 1, 2, and 3………………………………………………….26 2.2. Sinuosity Indices of Rivers 1, 2, and 3……………………………………………...28 vii LIST OF FIGURES Figure Page 1.1. Global distribution of earthquakes caused by blind or buried thrust faults…………..2 1.2. Regional map of study area…………………………………………………………...4 1.3. Schematic drawing of flat slab and steep subduction regions in South America…….6 1.4. Cerro Salinas study area………………………………………………………………8 1.5. Distribution of annual precipitation of south-western South America……………...10 1.6. Current and paleodrainage of the study area………………………………………...12 1.7. Important drainage ditches and irrigation canals of Mendoza, circa 1761………….14 2.1. Interpretation of seismic profile 31017……………………………………………...20 2.2 Structural interpretation of the Cerro Salinas study area…………………………….21 2.3. Thrust-related tectonic topography curve…………………………………………...24 2.4. Bank height plot of Rivers 1 through 3……………………………………………...27 2.5. Sinuosity plot of Rivers 1 through 3………………………………………………...27 2.6. Elevation swath profiles across the projected Cerro Salinas thrust............................31 2.7. Schematic cross section inferred from seismic profile 31017………………………37 3.1. Example of HydroSHEDS stream-network vectors deviating from the ASTER imagery beyond the 2-km buffer……………………………………………………..40 viii 3.2. Tools used for stream deflection identification……………………………………..42 3.3. Trans-contour method identified anomalies, 5-km tool, 20-m contour interval, HydroSHEDS elevation model………………………………………………………44 3.4. Result comparison of different variables in a limited test area using the HydroSHEDS elevation model………………………………………………………45 3.5. Burrato-method identified anomalies, 5-km tool, 10-m contour interval, HydroSHEDS elevation model………………………………………………………47 3.6. Trans-contour method identified anomalies, 5-km tool, 20-m contour interval, ERSDAC elevation model…………………………………………………………..48 3.7. Burrato-method identified anomalies, 5-km tool, 10-m contour interval, ERSDAC elevation model………………………………………………………………………49 3.8. Alto del Desaguadero elevation swath and elevation inflection point locations……53 3.9. W-E elevation swath profiles across the Alto del Desaguadero…………………….55 3.10. N-S elevation swath profiles across the Alto del Desaguadero……………………57 ix CHAPTER 1: INTRODUCTION AND BACKGROUND 1.1 Purpose Blind thrust faults are faults that have not propagated to intersect the Earth’s surface. The growth of these faults has resulted in numerous moderate- to large-scale earthquakes throughout the world (Fig.1.1). The explicit danger with these earthquakes is that the buried faults are often not recognized until they rupture. Highly populated metropolitan areas, such as Los Angeles (pop. 10 million), that are situated in a tectonically active zone are constantly at risk of earthquakes. The most significant blind thrust earthquake (M 5.9) on record for Los Angeles was the Whittier Narrows earthquake, which occurred on October 1, 1987. This event resulted in 8 deaths, several hundred injuries, and over $360 million in property damages (Bilodeau et al., 2007; USGS website). The Andean foreland of central-western Argentina is among the most seismically active regions in the world (Siame et al., 2006). Underlying blind thrusts pose significant risk to the cities of Mendoza and San Juan as they are capable of generating large earthquakes. One of the largest on record, a magnitude 7.4 earthquake, occurred in 1944 under the city of San Juan, resulting in over 10,000 deaths (Siame et al., 2006). In 1861, a magnitude 7.0 earthquake practically destroyed the city of Mendoza (USGS website). Although 1 earthquakes cannot be prevented, monitoring stress in active faults can be used to indicate when an earthquake may occur. Figure 1.1 Locations of earthquakes caused by blind or buried thrust faults. Some dots represent more than one event. The area of interest is boxed in red. Modified from Lettis et al. (1997). Blind thrust faults are difficult to monitor because they must first be identified. The identification of these faults has traditionally been limited to seismic exploration and/or the recognition of anticlinal hills above the projected fault tip. However, even if there is no topographic expression, blind thrust faults can be identified geomorphically (e.g. Burrato et al., 2003). Deviations in drainage patterns, such as longitudinal and lateral changes in stream gradient (i.e. river diversions, shifts in sinuosity, and gradient changes), as well as overall changes in basin shape, have been associated with tectonics. 2 Areas of low-gradient, such as the Andean foreland, are especially sensitive to vertical deformation. Furthermore, the rivers in this region flow from the Andes Mountains across active blind thrust faults before reaching the foreland. This presents an ideal study location to refine our methods for recognizing
Recommended publications
  • Field Guide to Neotectonics of the San Andreas Fault System, Santa Cruz Mountains, in Light of the 1989 Loma Prieta Earthquake
    Department of the Interior U.S. Geological Survey Field Guide to Neotectonics of the San Andreas Fault System, Santa Cruz Mountains, in Light of the 1989 Loma Prieta Earthquake | Q|s | Landslides (Quaternary) I yv I Vaqueros Sandstone (Oligocene) r-= I San Lorenzo Fm., Rices Mudstone I TSr I member (Eocene-Oligocene) IT- I Butano Sandstone, ' Pnil mudstone member (Eocene) Coseismic surface fractures, ..... dashed where discontinuous, dotted where projected or obscured ___ _ _ Contact, dashed where approximately located >"«»"'"" « « Fault, dotted where concealed V. 43? Strike and dip Strike and dip of of bedding overturned bedding i Vector Scale / (Horizontal Component of Displacement) OPEN-FILE REPORT 90-274 This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U. S. Government. Men to Park, California April 27, 1990 Department of the Interior U.S. Geological Survey Field Guide to Neotectonics of the San Andreas Fault System, Santa Cruz Mountains, in Light of the 1989 Loma Prieta Earthquake David P. Schwartz and Daniel J. Ponti, editors U. S. Geological Survey Menlo Park, CA 94025 with contributions by: Robert S. Anderson U.C. Santa Cruz, Santa Cruz, CA William R. Cotton William Cotton and Associates, Los Gatos, CA Kevin J. Coppersmith Geomatrix Consultants, San Francisco, CA Steven D. Ellen U. S. Geological Survey, Menlo Park, CA Edwin L. Harp U. S. Geological Survey, Menlo Park, CA Ralph A.
    [Show full text]
  • Neotectonics of the Polish Carpathians in the Light of Geomorphic Studies: a State of the Art
    Acta Geodyn. Geomater., Vol. 6, No. 3 (155), 291-308, 2009 NEOTECTONICS OF THE POLISH CARPATHIANS IN THE LIGHT OF GEOMORPHIC STUDIES: A STATE OF THE ART Witold ZUCHIEWICZ Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Kraków, Poland *Corresponding author‘s e-mail: [email protected] (Received January 2009, accepted March 2009) ABSTRACT Neotectonics of the Carpathians used to be studied extensively, particular attention being paid to the effects of large-scale domal uplifts and open folding above marginal zones of thrusts and imbricated map-scale folds, and rarely to the characteristics of young faulting. Neotectonic faults tend to be associated with the margins of the Orava-Nowy Targ Basin, superposed on the boundary between the Inner and Outer Western Carpathians, as well as with some regions within the Outer Carpathians. The size of Quaternary tilting of the Tatra Mts. on the sub-Tatric fault were estimated at 100 to 300 m, and recent vertical crustal movements of this area detected by repeated precise levelling are in the range of 0.4-1.0 mm/yr in rate. Minor vertical block movements of oscillatory character (0.5-1 mm/yr) were detected along faults cutting the Pieniny Klippen Belt owing to repeated geodetic measurements performed on the Pieniny geodynamic test area. In the western part of the Western Outer Carpathians, middle and late Pleistocene reactivation of early Neogene thrust surfaces was suggested. Differentiated mobility of reactivated as normal Miocene faults (oriented (N-S to NNW-SSE and NNE-SSW) in the medial portion of the Dunajec River drainage basin appears to be indicated by the results of long-profile analyses of deformed straths, usually of early and middle Pleistocene age.
    [Show full text]
  • Debris Flows Occurrence in the Semiarid Central Andes Under Climate Change Scenario
    geosciences Review Debris Flows Occurrence in the Semiarid Central Andes under Climate Change Scenario Stella M. Moreiras 1,2,* , Sergio A. Sepúlveda 3,4 , Mariana Correas-González 1 , Carolina Lauro 1 , Iván Vergara 5, Pilar Jeanneret 1, Sebastián Junquera-Torrado 1 , Jaime G. Cuevas 6, Antonio Maldonado 6,7, José L. Antinao 8 and Marisol Lara 3 1 Instituto Argentino de Nivología, Glaciología & Ciencias Ambientales, CONICET, Mendoza M5500, Argentina; [email protected] (M.C.-G.); [email protected] (C.L.); [email protected] (P.J.); [email protected] (S.J.-T.) 2 Catedra de Edafología, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza M5528AHB, Argentina 3 Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8320000, Chile; [email protected] (S.A.S.); [email protected] (M.L.) 4 Instituto de Ciencias de la Ingeniería, Universidad de O0Higgins, Rancagua 2820000, Chile 5 Grupo de Estudios Ambientales–IPATEC, San Carlos de Bariloche 8400, Argentina; [email protected] 6 Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad de La Serena, Coquimbo 1780000, Chile; [email protected] (J.G.C.); [email protected] (A.M.) 7 Departamento de Biología Marina, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile 8 Indiana Geological and Water Survey, Indiana University, Bloomington, IN 47404, USA; [email protected] * Correspondence: [email protected]; Tel.: +54-26-1524-4256 Citation: Moreiras, S.M.; Sepúlveda, Abstract: This review paper compiles research related to debris flows and hyperconcentrated flows S.A.; Correas-González, M.; Lauro, C.; in the central Andes (30◦–33◦ S), updating the knowledge of these phenomena in this semiarid region.
    [Show full text]
  • Where Does the Chilean Aconcagua River Come From? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments
    water Article Where Does the Chilean Aconcagua River Come from? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments Sebastián Andrés Crespo 1,* ,Céline Lavergne 2,3 , Francisco Fernandoy 4 , Ariel A. Muñoz 1, Leandro Cara 5 and Simón Olfos-Vargas 1 1 Instituto de Geografía, Facultad de Ciencias del Mar y Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile; [email protected] (A.A.M.); [email protected] (S.O.-V.) 2 Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2581782, Chile; [email protected] 3 HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso 234000, Chile 4 Laboratorio de Análisis Isotópico (LAI), Facultad de Ingeniería, Universidad Andrés Bello, Viña del Mar 2531015, Chile; [email protected] 5 Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA-CONICET), Mendoza 5500, Argentina; [email protected] * Correspondence: [email protected] Received: 1 August 2020; Accepted: 12 September 2020; Published: 21 September 2020 Abstract: The Aconcagua river basin (Chile, 32 ◦S) has suffered the effects of the megadrought over the last decade. The severe snowfall deficiency drastically modified the water supply to the catchment headwaters. Despite the recognized snowmelt contribution to the basin, an unknown streamflow buffering effect is produced by glacial, periglacial and groundwater inputs, especially in dry periods. Hence, each type of water source was characterized and quantified for each season, through the combination of stable isotope and ionic analyses as natural water tracers. The δ18O and electric conductivity were identified as the key parameters for the differentiation of each water source.
    [Show full text]
  • Examination of Exhumed Faults in the Western San Bernardino Mountains, California: Implications for Fault Growth and Earthquake Rupture
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2005 Examination of Exhumed Faults in the Western San Bernardino Mountains, California: Implications for Fault Growth and Earthquake Rupture Joseph R. Jacobs Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Geology Commons Recommended Citation Jacobs, Joseph R., "Examination of Exhumed Faults in the Western San Bernardino Mountains, California: Implications for Fault Growth and Earthquake Rupture" (2005). All Graduate Theses and Dissertations. 5246. https://digitalcommons.usu.edu/etd/5246 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. EXAMINATION OF EXHUMED FAULTS IN THE WESTERN SAN BERNARDINO MOUNTAINS, CALIFORNIA: IMPLICATIONS FOR FAULT GROWTH AND EARTHQUAKE RUPTURE by Joseph R. Jacobs A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Geology Approved: James P. Evans Susanne U. Janecke Major Professor Committee Member Peter T. Kolesar Laurens H. Smith, Jr. Committee Member Interim Dean of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2005 ii ABSTRACT Examination of Exhumed Faults in the Western San Bernardino Mountains, California: Implications for Fault Growth and Earthquake Rupture by Joseph R. Jacobs, Master of Science Utah State University, 2005 Major Professor: Dr. James P. Evans Department: Geology The late Miocene Cedar Springs fault system is a high-angle transpressional system in the Silverwood Lake area, western San Bernardino Mountains, southern California.
    [Show full text]
  • Seismic Resilience Report Is Located on the Seismic Resilience Sharepoint Site
    REPORT SEISMIC RESILIENCE FIRST BIENNIAL REPORT The Metropolitan Water District of Southern California 700 N. Alameda Street, Los Angeles, California 90012 Report No. 1551 February 2018 The Metropolitan Water District of Southern California Seismic Resilience First Biennial Report SEISMIC RESILIENCE FIRST BIENNIAL REPORT Prepared By: The Metropolitan Water District of Southern California 700 North Alameda Street Los Angeles, California 90012 Report Number 1551 February 2018 Report No. 1551 – February 2018 iii The Metropolitan Water District of Southern California Seismic Resilience First Biennial Report Copyright © 2018 by The Metropolitan Water District of Southern California. The information provided herein is for the convenience and use of employees of The Metropolitan Water District of Southern California (MWD) and its member agencies. All publication and reproduction rights are reserved. No part of this publication may be reproduced or used in any form or by any means without written permission from The Metropolitan Water District of Southern California. Any use of the information by any entity other than Metropolitan is at such entity's own risk, and Metropolitan assumes no liability for such use. Prepared under the direction of: Gordon Johnson Chief Engineer Prepared by: Robb Bell Engineering Services Don Bentley Water Resource Management Winston Chai Engineering Services David Clark Engineering Services Greg de Lamare Engineering Services Ray DeWinter Administrative Services Edgar Fandialan Water Resource Management Ricardo Hernandez
    [Show full text]
  • Snowmelt Mathematical Simulation with Different Climatic Scenarios in the Tupungato River Basin, Mendoza, Argentina
    126 Remote Sensing and Hydrology 2000 (Proceedings of a symposium held at Santa Fe, New Mexico, USA, April 2000). IAHS Publ. no. 267, 2001. Snowmelt mathematical simulation with different climatic scenarios in the Tupungato River basin, Mendoza, Argentina JORGE MAZA INA Centra Regional Andino, Belgrano (oeste), 210-5500 Mendoza, Argentina e-mail: [email protected] FEDERICO CAZORZI Dipartamenlo Territorio e Sistemi Agro-Forestali, University of Padova, Via Romea, 1-35020 Legnaro, Padova, Italy PATRICIA LOPEZ, LUIS FORNERO, ADRIAN VARGAS & JOSE ZULUAGA INA Centro Regional Andino, Belgrano (oeste), 210-5500 Mendoza, Argentina Abstract The impact of climate change on water resource availability in the Mendoza River oasis, Argentina where 1 000 000 inhabitants live and 80 000 ha of crops are irrigated was assessed. The snow coverage depletion curve was obtained from the NEVE model using Landsat-TM images for calibration. The possible evidence of climate change and its severity was analysed. The results obtained from the SRM model showed an important peak flow and runoff volume variation. Key words Argentina; climate change; NEVE model; snowmelt; SRM model INTRODUCTION The area under study is the Tupungato River basin (1858 km2, and 4251 m a.m.s.l. average elevation), a tributary of the Mendoza River in Argentina, located at 70° W and 33°S. The major source of streamflow is snowmelt that takes place between September and February with a negligible precipitation contribution. The objective of this study was to assess the influence of climatic change on the snowmelt-runoff process. METHOD NEVE (CaZorzi & Dalla Fontana, 1996) is a morpho-energetic model of apparent sun motion with a very simple distributed snowmelt rate algorithm.
    [Show full text]
  • Curriculum Vitae
    Curriculum vitae RNDr. Petra Štěpančíková, Ph.D. Born 1976 in Valašské Meziříčí, Czech Republic Academic history: 2001 MSc. graduated in Physical Geography, Faculty of Science, Charles University, Prague 2005 RNDr. degree in Physical Geography, Faculty of Science, Charles University, Prague 2007 PhD. degree in Physical Geography, Faculty of Science, Charles University, Prague Professional employment: 2000 - Institute of Rock Structure and Mechanics, Czech Acad.Sci., Prague 2000-2014 Department of Engineering Geology, 2015- Head of Department of Neotectonics and Thermochronology Research interests: tectonic geomorphology, active tectonics, paleoseismology (study areas in Czech Republic, Spain, Mexico, USA), long-term morphotectonic relief evolution, geomorphological mapping Selected significant project participation: Manifestations of Late Quaternary tectonics within the Sudetic Marginal Fault zone 2008- 2010; postdoc project, Czech Science Foundation, GA ČR 205/08/P521, principal investigator Hydrogeological effects of seismicity in the Hronov-Poříčí fault zone area, 2005-2008; doctoral project, Czech Science Foundation GA ČR 3D monitoring of micro-movements in within the zone of expression of African – Euroasian colision, 2006-2008; Czech Science Foundation GA ČR Paleoseismological assessment of fault structures in the vicinity of Temelín nuclear power plant, 2009-2010; State Office for Nuclear Safety, team researcher Identification and characterization of seismogenic faults in Central Mexican Volcanic belt: implications for seismic
    [Show full text]
  • Fault Segmentation and Controls of Rupture Initiation and Termination
    DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY PROCEEDINGS OF CONFERENCE XLV Fault Segmentation and Controls of Rupture Initiation and Termination Palm Springs, California Sponsored by U.S. GEOLOGICAL SURVEY NATIONAL EARTHQUAKE-HAZARDS REDUCTION PROGRAM Editors and Convenors David P. Schwartz Richard H. Sibson U.S. Geological Survey Department of Geological Sciences Menlo Park, California 94025 University of California Santa Barbara, California 93106 Organizing Committee John Boatwright, U.S. Geological Survey, Menlo Park, California Hiroo Kanamori, California Institute of Technology, Pasadena, California Chris H. Scholz, Lamont-Doherty Geological Observatory, Palisades, New York Open-File Report 89-315 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1989 TABLE OF CONTENTS Page Introduction and Acknowledgments i David P. Schwartz and Richard H. Sibson List of Participants v Geometric features of a fault zone related to the 1 nucleation and termination of an earthquake rupture Keitti Aki Segmentation and recent rupture history 10 of the Xianshuihe fault, southwestern China Clarence R. Alien, Luo Zhuoli, Qian Hong, Wen Xueze, Zhou Huawei, and Huang Weishi Mechanics of fault junctions 31 D J. Andrews The effect of fault interaction on the stability 47 of echelon strike-slip faults Atilla Ay din and Richard A. Schultz Effects of restraining stepovers on earthquake rupture 67 A. Aykut Barka and Katharine Kadinsky-Cade Slip distribution and oblique segments of the 80 San Andreas fault, California: observations and theory Roger Bilham and Geoffrey King Structural geology of the Ocotillo badlands 94 antidilational fault jog, southern California Norman N.
    [Show full text]
  • Seasonal Variation of the Mountain Phytoplankton In
    Seasonal Variation of the Mountain Phytoplankton in the Arid Mendoza Basin, Westcentral Argentina Patricia Peralta Instituto Argentino de NillOlogia Glaciologfa y Cienciss Ambientales (IAN/GLA)- CRICYT Av. Ruiz Leal shI, C.C. 330 5500 Mendoza, Argentina (pperal/a@/ab.cricyt.edu.er) and Cristina Claps instituto de Limnologla "Dr. R. Ringuelef' All. Calchaqui km 23,5 1888 FIorencio Varela, Argentina ([email protected]) ABSTRACT We anaJyzed the seasonal composition of phytoplankton from the Mendoza River and its rnoutaries from the High Cordillera to the plain in centralwest Acgenlina. A total of 72 algae species were identified; among them, 36 species were diatoms, 17 chlorophytes. 15 cyanophytes, three cuglenophytes and one pyrrophyte . A marked seasooaliry was observed. Diatoms were dominant in all seasons at most of the sampling sites. with abundance peaks in autumn and winter. Cyanophytes were found throughout the year but with highest numbers in summer and spring. Chlorophytes were well represented throughout the year except in winter. The pyrropbytes were represented by Poidinium gatunensis. which was recorded exclusively in the spring along with the chlorophyte Sraurast1Um s~ba/dii at most of the sampling sites. Eugienophytes were found only in the lower basin and with maximum richness and density in autumn. Most of the diatoms were benthic. Nitzschia paka. Eugl~ruJ proxima and E. oxyUtuS were limited to ce rtain sectors of the river that receive sewage discharge. The remainder of the river is generally free from significant anthropogenic impact. INrRODucnON The Me ndoza Rjver in cenlralwest Argentina is fonned by tributaries that arc fed largely from snowmelt and from the glaciers of the Cordillera de Los Andes.
    [Show full text]
  • Fault Geometry and Kinematics Within the Terror Rift, Antarctica THESIS
    Fault Geometry and Kinematics within the Terror Rift, Antarctica THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By William B. Blocher Graduate Program in Earth Sciences The Ohio State University 2017 Master's Examination Committee: Dr. Terry Wilson, Advisor Dr. Thomas Darrah Dr. Derek Sawyer Copyrighted by William B. Blocher 2017 Abstract The Terror Rift is the youngest expression of the intraplate West Antarctic Rift System that divides the Antarctic continent. Previous studies of the Terror Rift have ascribed a variety of interpretations to its structure, and especially to the regional anticline known as the Lee Arch, which has been explained as a transtensional flower structure, a rollover anticline, and as the result of magmatic inflation. Fault mapping and the documentation of stratal dips in this study have revealed a Terror Rift structure characterized by north-south folds and a complex distribution of faults. Nearly all faults have normal sense dip separation. A continuous zone of west-dipping faults with relatively high-magnitude normal separation are interpreted to be the border fault system defining the eastern margin of Terror Rift. Reconstruction of listric ramp-flat geometry of this border fault system explains intrarift fold and fault patterns well. Zonation of structures indicates that the listric rift detachment faults are segmented along the rift axis. This new model for rift structure indicates orthogonal rift extension in the ENE- WSW direction, with low strains of <10% calculated from bed-length balancing. i Acknowledgments To my advisor, Dr.
    [Show full text]
  • Stress Triggering in Thrust and Subduction Earthquakes and Stress
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, B02303, doi:10.1029/2003JB002607, 2004 Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults Jian Lin Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA Ross S. Stein U.S. Geological Survey, Menlo Park, California, USA Received 30 May 2003; revised 24 October 2003; accepted 20 November 2003; published 3 February 2004. [1] We argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which we illustrate by a suite of representative models and by detailed examples. Whereas slip on surface-cutting thrust faults drops the stress in most of the adjacent crust, slip on blind thrust faults increases the stress on some nearby zones, particularly above the source fault. Blind thrusts can thus trigger slip on secondary faults at shallow depth and typically produce broadly distributed aftershocks. Short thrust ruptures are particularly efficient at triggering earthquakes of similar size on adjacent thrust faults. We calculate that during a progressive thrust sequence in central California the 1983 Mw = 6.7 Coalinga earthquake brought the subsequent 1983 Mw = 6.0 Nun˜ez and 1985 Mw = 6.0 Kettleman Hills ruptures 10 bars and 1 bar closer to Coulomb failure. The idealized stress change calculations also reconcile the distribution of seismicity accompanying large subduction events, in agreement with findings of prior investigations. Subduction zone ruptures are calculated to promote normal faulting events in the outer rise and to promote thrust-faulting events on the periphery of the seismic rupture and its downdip extension.
    [Show full text]