Airway Management Mask Ventilation of the Breathing Patient

Total Page:16

File Type:pdf, Size:1020Kb

Airway Management Mask Ventilation of the Breathing Patient Airway, Mask Ventilation Riverside (County) EMS Agency 26 October 2015 Airway Management Mask Ventilation of the Breathing Patient Riverside EMS Agency Daved van Stralen, MD, FAAP Shanna Kissel, MSN, RN References John West, MD, PhD Videos http://meded.ucsd.edu/ifp/jwest/resp_phys/ http://meded.ucsd.edu/ifp/jwest/pulm_path/index.html Books Respiratory Physiology: The Essentials, Ninth Edition Pulmonary Pathophysiology: The Essentials, Eighth Edition Respiratory terms and definitions Assisted ventilation terms CPAP and PEEP- Continuous Positive Airway Pressure for continuous flow systems, Positive End- Expiratory Pressure for positive pressure ventilation (hand ventilation or mechanical ventilation). This back pressure can be good when it recruits alveoli that were collapsed or keeps them open when they take too long (long time constant). It is bad when it causes the lung to stay open and not ventilate or is a measure of trapped air that can lead to lung damage or pneumothorax and death. Bagging the patient We don’t “bag” patients, we hand ventilate. “Bag” and “bagging” are slang terms. Breathing terms Minute ventilation (volume per minute to remove CO2 - Hyperventilation and hypoventilation refer to minute ventilation. Minute ventilation is the volume of air the person breathes in one minute- the depth (tidal volume) and how many breathes (respiratory rate). Hyperventilation is excessive minute ventilation to remove carbon dioxide, generally to correct acidosis, and hypoventilation is lower minute ventilation to retain carbon dioxide to correct metabolic alkalosis or, more commonly, from some pathology. Tachypnea and hyperventilation are not the same. One can hyperventilate with slow respiratory rates (Kuss Maul breathing from diabetic ketoacidosis). Respiratory Rate- Tachypnea is high rate (often a high rate is mistakenly called hyperventilation but one can hypoventilate with fast respiratory rates when chest wall is constrained or poor lung compliance), bradypnea (slow reate), and apnea refer to the respiratory rate. 1 Airway, Mask Ventilation Riverside (County) EMS Agency 26 October 2015 Tidal volume- Hyperpnea and hypopnea refer to tidal volume. Hyperpnea is deep breathing and hypopnea is shallow breathing. Oxygenation Hypoxia and hypoxemia can be confused, with hypoxia commonly used to refer to arterial blood oxygen levels. While hypoxia is commonly used in place of hypoxemia, we reserve hypoxia for absolute concentrations of oxygen in the environment or tissue and hypoxemia for the relative concentration of oxygen in the blood. To avoid confusion, we will define the following terms, from the environment to the tissue: Ambient or environmental hypoxia- this is found at high altitude, acutely at 10,000 feet or more or enclosed space where chemical reactions (oxidation reaction) consume the oxygen. The first is low partial pressure of oxygen and the latter is low fraction of inspired oxygen. Alveolar hypoxia- this is the amount of oxygen in the alveolus which will be affected by oxygen levels in the environment and very high carbon dioxide levels in the blood that replace oxygen. It is important for treatment of pulmonary hypertension as low alveolar oxygen (alveolar hypoxia) causes constriction of the pulmonary arteries and possible failure of the right ventricle. This is the method of death from Obstructive Sleep Apnea or bronchopulmonary dysplasia (BPD) from prematurity. Hypoxemia- Low arterial oxygen levels, usually below 90%. Tissue hypoxia- Low oxygen levels in the tissue leading to anaerobic metabolism. Resistance, Airway Laminar flow- Resistance is proportional to the fourth power of the radius (1/r4), small changes in radius disproportionally increase resistance, a great danger from bronchospasm, bronchoedema, or secretions (a significant problem in low humidity regions). Turbulent flow- Resistance in turbulent flow is proportional to flow velocity, agitation, anxiety, fear, and pain increase respiratory causing increase in resistance (a significant problem and upper airway obstruction such as croup). Sensation The feeling of suffocation comes from inadequate stimulation of stretch receptors in the lung, including the vagus nerve. Poor oxygenation or ventilation do not cause this sensation, hypoxemia causes fatigue or euphoria and hypercarbia causes sleepiness. 2 Airway, Mask Ventilation Riverside (County) EMS Agency 26 October 2015 Time constant Resistance X Compliance; this is the time in seconds for 63% of the lung to empty or fill; determined by airway resistance and lung/chest wall compliance; important to note that increased pressure on ventilator bag DOES NOT change flow rate. Ventilation The pulmonary removal of carbon dioxide from the blood by minute ventilation (the kidneys can also remove carbon dioxide though this can take a few days to come on line). This is separate and distinct from oxygenation though the element of hypoventilation as a shared cause. Visual Respiratory Evaluation- CRAWL This exam is a visual exam useful as you approach a patient, monitoring a patient from a distance or multiple patients, in presence of high ambient noise, response to treatment, and patient description. Color- Hypoxemia Cyanosis occurs when there is 4-5 gm/dL of deoxygenated hemoglobin present while hypoxemia is defined as abnormally low arterial oxygen levels. An anemic person will be cyanotic at much lower oxygen levels than someone with normal hemoglobin levels, and tissue with slow blood flow may be cyanotic when other tissues are not. (Think of blue lips in a cold child who won’t get out of the swimming pool.) This is why we differentiate central cyanosis (arterialized blood in mucus membranes like the gums and tongue) from peripheral cyanosis (lips in a cold child or the digits of a patient with compromised peripheral blood vessels.) Saturation levels less than 90% are generally considered hypoxemia but a healthy person may show few symptoms other than impaired judgment at 80% saturation while a patient with pulmonary hypertension may have cardiac strain at levels less than 95%. Descriptors- Cyanosis describes an absolute amount of de-oxygenated hemoglobin, pulse oximetry describes the ratio of oxygenated red cells; ALWAYS give supplemental oxygen with the pulse oximetry value for effective interpretation. Respiratory rate and rhythm The adult diaphragm has slow twitch muscle fibers resistant to fatigue, meaning they cannot increase their respiratory rate significantly but may “tolerate” tachypnea for a period before someone calls 911. Children have fast twitch muscle fibers that are not resistant to fatigue, meaning they can breathe much faster than expected (infants can reach over 100 breathes per minute) but will fatigue precipitously. Because respiratory muscle fatigue is a major factor in respiratory distress, it is important to note that an increasing respiratory rate may indicate greater respiratory reserve while a decreasing respiratory rate is ominous, indicating imminent 3 Airway, Mask Ventilation Riverside (County) EMS Agency 26 October 2015 respiratory failure. A “normal” respiratory rate may actually be the number you observe during this deterioration. Respiratory rhythm can help determine non-pulmonary tachypnea or, in children, failure of the diaphragm. Infants use the abdomen as an accessory respiratory muscle when the diaphragm fails. The intercostal muscles, respiratory muscles in the adult but not for infants, will contract to make the chest wall firm during abdominal breathing. You will see this “see saw” breathing pattern as the child rests the diaphragm. Apnea can occur slowly or suddenly. When it occurs suddenly in the infant and responds to stimulation of the child it is more likely to be RSV bronchiolitis. Non-pulmonary causes of tachypnea are important to note or you will pursue respiratory treatments and miss metabolic acidosis from diabetic ketoacidosis, hypovolemia, or certain drugs. Pain, agitation, and psychogenic tachypnea are also causes of non-pulmonary tachypnea. Descriptors- respiratory rate (as a value, use of “normal” or “WNL” as in “We Never Looked” cannot be used to evaluate change or trajectory of the patient’s course); apnea, Kuss-Maul, in infants there is sudden apnea (think of RSV bronchiolitis, gastroesophageal reflux, or ALTE), abdominal breathing or see saw breathing in infants. Air entry This is chest expansion. For normal quiet breathing it is surprisingly small, look around you to observe how much expansion you need for a normal patient when you hand ventilate. If they are expanding their chest to a great degree there is something going on. If they are working hard to breath and their chest is not expanding well, there is something serious going on. The second thing to observe for air entry is prolongation of inhalation or exhalation (Inspiratory- Expiratory, or I:E, Ratio) . Normal ratio is 1:2, whether a large or small breath. Prolonged inspiration indicates upper airway obstruction while prolonged expiration indicates lower airway obstruction. For upper airway obstructions it is useful to identify the level of lesion, above or below the vocal cords. Drooling, leaning forward for excessive secretions, or gagging is associated with supraglottic lesions, above the vocal cords. Coughing, “barky” cough, or hoarseness is associated with subglottic lesions, below the vocal cords. Although we think of this as wheeze vs. stridor the limitation of sound is in the need for sufficient respiratory effort to produce sound, the ambient noise on scene or in the ambulance,
Recommended publications
  • Expiratory Positive Airway Pressure (EPAP) for Obstructive Sleep Apnea
    Subject: Expiratory Positive Airway Pressure (EPAP) for Obstructive Sleep Original Effective Date: Apnea 10/30/13 Policy Number: MCP-145 Revision Date(s): 11/8/2016, 12/10/19 Review Date: 12/16/15, 9/19/17, 7/10/18, 12/10/19, 12 9/20 MCPC Approval Date: 7/10/18, 12/10/19, 12/9/20 Contents DISCLAIMER ............................................................................................................................................................................. 1 Description of Procedure/Service/Pharmaceutical .................................................................................................................. 1 Position Statement ................................................................................................................................................................... 2 Limitations ............................................................................................................................................................................... 3 Summary of Medical Evidence................................................................................................................................................ 3 Coding Information: ................................................................................................................................................................ 7 Resource References ................................................................................................................................................................ 7 REVIEW/REVISION
    [Show full text]
  • Hyperventilation Syndrome
    Hyperventilation Syndrome INTRODUCTION ● hyperventilation in the presence of the following should immediately confirm an alternative Hyperventilation syndrome is defined as “a rate of diagnosis: ventilation exceeding metabolic needs and higher than that required to maintain a normal level of plasma CO2”. – cyanosis Physiological hyperventilation can occur in a number of – reduced level of consciousness situations, including life-threatening conditions such as: – reduction in SpO2. ● pulmonary embolism ● diabetic ketoacidosis MANAGEMENT 1,2 ● asthma If ABCD need correction then treat as per medical ● hypovolaemia. guidelines as it is unlikely to be due to hyperventilation syndrome but is more likely to be physiological As a rule, hyperventilation due to emotional stress is hyperventilation secondary to an underlying rare in children, and physical causes are much more pathological process. likely to be responsible for hyperventilation. Maintain a calm approach at all times. Specific presenting features can include: Reassure the patient and try to remove the source of ● acute anxiety the patient’s anxiety, this is particularly important in ● tetany due to calcium imbalance children. ● numbness and tingling of the mouth and lips Coach the patient’s respirations whilst maintaining a calm environment. ● carpopedal spasm ● aching of the muscles of the chest ADDITIONAL INFORMATION ● feeling of light headedness or dizziness. The cause of hyperventilation cannot always be determined with sufficient accuracy (especially in the HISTORY early stages) in the pre hospital environment. Refer to dyspnoea guide Always presume hyperventilation is secondary to hypoxia or other underlying respiratory disorder until proven otherwise. 1,2 ASSESSMENT The resulting hypocapnia will result in respiratory Assess ABCD’s: alkalosis bringing about a decreased level of serum ionised calcium.
    [Show full text]
  • Respiratory Mechanics and Breathing Pattern T Jacopo P
    Respiratory Physiology & Neurobiology 261 (2019) 48–54 Contents lists available at ScienceDirect Respiratory Physiology & Neurobiology journal homepage: www.elsevier.com/locate/resphysiol How to breathe? Respiratory mechanics and breathing pattern T Jacopo P. Mortola Department of Physiology, McGill University, 3655 Promenade Sir William Osler, room 1121, Montreal, Quebec, H3G 1Y6, Canada ARTICLE INFO ABSTRACT Keywords: On theoretical grounds any given level of pulmonary or alveolar ventilation can be obtained at various absolute Allometry lung volumes and through many combinations of tidal volume, breathing frequency and inspiratory and ex- Breathing frequency piratory timing. However, inspection of specific cases of newborn and adult mammals at rest indicates thatthe Human infant breathing pattern reflects a principle of economy oriented toward minimal respiratory work. The mechanisms Neonatal respiration that permit optimization of respiratory cost are poorly understood; yet, it is their efficiency and coordination that Work of breathing permits pulmonary ventilation at rest to require only a minimal fraction of resting metabolism. The sensitivity of the breathing pattern to the mechanical properties implies that tidal volume, breathing rate, mean inspiratory flow or other ventilatory parameters cannot be necessarily considered indicators proportional to thecentral neural respiratory ‘drive’. The broad conclusion is that the breathing pattern adopted by newborn and adult mammals is the one that produces the adequate alveolar ventilation
    [Show full text]
  • Asphyxia Neonatorum
    CLINICAL REVIEW Asphyxia Neonatorum Raul C. Banagale, MD, and Steven M. Donn, MD Ann Arbor, Michigan Various biochemical and structural changes affecting the newborn’s well­ being develop as a result of perinatal asphyxia. Central nervous system ab­ normalities are frequent complications with high mortality and morbidity. Cardiac compromise may lead to dysrhythmias and cardiogenic shock. Coagulopathy in the form of disseminated intravascular coagulation or mas­ sive pulmonary hemorrhage are potentially lethal complications. Necrotizing enterocolitis, acute renal failure, and endocrine problems affecting fluid elec­ trolyte balance are likely to occur. Even the adrenal glands and pancreas are vulnerable to perinatal oxygen deprivation. The best form of management appears to be anticipation, early identification, and prevention of potential obstetrical-neonatal problems. Every effort should be made to carry out ef­ fective resuscitation measures on the depressed infant at the time of delivery. erinatal asphyxia produces a wide diversity of in­ molecules brought into the alveoli inadequately com­ Pjury in the newborn. Severe birth asphyxia, evi­ pensate for the uptake by the blood, causing decreases denced by Apgar scores of three or less at one minute, in alveolar oxygen pressure (P02), arterial P02 (Pa02) develops not only in the preterm but also in the term and arterial oxygen saturation. Correspondingly, arte­ and post-term infant. The knowledge encompassing rial carbon dioxide pressure (PaC02) rises because the the causes, detection, diagnosis, and management of insufficient ventilation cannot expel the volume of the clinical entities resulting from perinatal oxygen carbon dioxide that is added to the alveoli by the pul­ deprivation has been further enriched by investigators monary capillary blood.
    [Show full text]
  • Prolonged Post-Hyperventilation Apnea in Two Young Adults With
    Munemoto et al. BioPsychoSocial Medicine 2013, 7:9 http://www.bpsmedicine.com/content/7/1/9 CASE REPORT Open Access Prolonged post-hyperventilation apnea in two young adults with hyperventilation syndrome Takao Munemoto1,4*, Akinori Masuda2, Nobuatsu Nagai3, Muneki Tanaka4 and Soejima Yuji5 Abstract Background: The prognosis of hyperventilation syndrome (HVS) is generally good. However, it is important to proceed with care when treating HVS because cases of death following hyperventilation have been reported. This paper was done to demonstrate the clinical risk of post-hyperventilation apnea (PHA) in patients with HVS. Case presentation: We treated two patients with HVS who suffered from PHA. The first, a 21-year-old woman, had a maximum duration of PHA of about 3.5 minutes and an oxygen saturation (SpO2) level of 60%. The second patient, a 22-year-old woman, had a maximum duration of PHA of about 3 minutes and an SpO2 level of 66%. Both patients had loss of consciousness and cyanosis. Because there is no widely accepted regimen for treating patients with prolonged PHA related to HVS, we administered artificial ventilation to both patients using a bag mask and both recovered without any after effects. Conclusion: These cases show that some patients with HVS develop prolonged PHA or severe hypoxia, which has been shown to lead to death in some cases. Proper treatment must be given to patients with HVS who develop PHA to protect against this possibility. If prolonged PHA or severe hypoxemia arises, respiratory assistance using a bag mask must be done immediately. Keywords: Post-hyperventilation apnea, PHA, Hyperventilation syndrome, HVS, Hypocapnia, Hypoxemia Background incidence of death, severe hypoxia, or myocardial infarc- Hyperventilation syndrome (HVS) is characterized by tion in association with the paper-bag method [2].
    [Show full text]
  • Sleep-Apnea-Protocol.Pdf
    Evidence-based Practice Center Systematic Review Protocol Project Title: Continuous Positive Airway Pressure Treatment for Obstructive Sleep Apnea in Medicare Eligible Patients I. Background Sleep apnea is a common disorder that affects people of all ages. It is characterized by periods of airflow cessation (apnea) or reduced airflow (hypopnea) during sleep. Sleep apnea may be caused by mechanical obstruction of the airways resulting in disturbed airflow patterns, by a central loss of respiratory drive, or a combination of the two (mixed). Obstructive sleep apnea- hypopnea syndrome, more commonly called obstructive sleep apnea (OSA), is the most common type of sleep apnea.1 Definition and severity of obstructive sleep apnea Sleep apnea is primarily diagnosed with sleep tests that measure sleep time (and often other sleep measures) and respiratory events. OSA is distinguished from central sleep apnea by the presence of respiratory effort during episodes of apnea and hypopnea (in contrast with central sleep apnea where respiratory effort is lacking). The severity of OSA is typically quantified by the sum of the number of apneas and hypopneas per hour of sleep, a quantity that has been termed the apnea-hypopnea index (AHI). AHI is often used as part of both diagnosis (and, thus, study inclusion criteria) and as a surrogate measure for health outcomes (also called an intermediate outcome) in studies. The American Academy of Sleep Medicine (AASM) publishes scoring manuals for AHI and other physiological events to characterize OSA. In the United States, AASM is the predominant accrediting institution for sleep laboratories. AASM first published its scoring manual in 1999 (known as the “Chicago” Criteria).2 They have amended their definitions of breathing events, sleep time, and how these are measured multiple times since their first set of criteria, with major revisions in 2007,3 and in 2012.4 Minor revisions have been made almost annually since (the current version is v2.6,5 released in 2020).
    [Show full text]
  • Sleep Apnea Sleep Apnea
    Health and Safety Guidelines 1 Sleep Apnea Sleep Apnea Normally while sleeping, air is moved at a regular rhythm through the throat and in and out the lungs. When someone has sleep apnea, air movement becomes decreased or stops altogether. Sleep apnea can affect long term health. Types of sleep apnea: 1. Obstructive sleep apnea (narrowing or closure of the throat during sleep) which is seen most commonly, and, 2. Central sleep apnea (the brain is causing a change in breathing control and rhythm) Obstructive sleep apnea (OSA) About 25% of all adults are at risk for sleep apnea of some degree. Men are more commonly affected than women. Other risk factors include: 1. Middle and older age 2. Being overweight 3. Having a small mouth and throat Down syndrome Because of soft tissue and skeletal alterations that lead to upper airway obstruction, people with Down syndrome have an increased risk of obstructive sleep apnea. Statistics show that obstructive sleep apnea occurs in at least 30 to 75% of people with Down syndrome, including those who are not obese. In over half of person’s with Down syndrome whose parents reported no sleep problems, sleep studies showed abnormal results. Sleep apnea causing lowered oxygen levels often contributes to mental impairment. How does obstructive sleep apnea occur? The throat is surrounded by muscles that are active controlling the airway during talking, swallowing and breathing. During sleep, these muscles are much less active. They can fall back into the throat, causing narrowing. In most people this doesn’t affect breathing. However in some the narrowing can cause snoring.
    [Show full text]
  • Respiratory Issues in Rett Syndrome Dr. Marianna Sockrider, Pediatric
    RettEd Q&A: Respiratory Issues in Rett Syndrome Dr. Marianna Sockrider, Pediatric Pulmonologist, Texas Children's Hospital Webcast 02/13/2018 Facilitator: Paige Nues, Rettsyndrome.org Recording link: https://register.gotowebinar.com/recording/1810253924903738120 Attendee Questions Response Breathing Irregularities Why is breathing so funny when our girls/ A behavioral arousal can trigger breathing abnormalities in Rett boys wake up, almost as if startled? syndrome. A person goes through stages of sleep and particularly if aroused from a deep sleep state (REM) may be more disoriented or startled. This can trigger the irregular breathing. Could she address the stereotypical You may observe breathing abnormalities like breath holding breathing abnormalities such as gasping and hyperventilation more with the stress of an acute and breath holding and how they play a respiratory illness. Breath holding and hyperventilation do not part in respiratory illness? directly cause respiratory illness. If a person has difficulty with swallowing and has these breathing episodes while trying to eat or drink, aspiration could occur which can cause respiratory symptoms. If one has very shallow breathing, especially when there is more mucus from acute infection, it may be more likely to build up in the lower lungs causing airway obstruction and atelectasis (collapse of some air sacs). Is there any evidence (even anecdotal) Frequent breath-holding and hyperventilation has been Reference 1 that breathing patterns change in Rett reported to become less evident with increasing age though it is patients over time? not certain whether this could be that families are used to the irregular breathing and don’t report it as much or that it is the people who live longer who are less symptomatic.
    [Show full text]
  • Dyspnoea and Its Measurement
    REVIEW Key points Dyspnoea is the sensation of breathing discom- fort that can be described with different terms according to different pathophysiological mechanisms that vary in intensity. The mechanisms of dyspnoea are complex. In COPD, whilst the intensity and quality of dys- pnoea during activity correlates with the magni- tude of lung hyperinflation and inspiratory events, it correlates poorly with FEV1. Valid, reliable and responsive instruments are available to measure the severity of dyspnoea in patients with respiratory disease. 100 Breathe | December 2004 | Volume 1 | No 2 REVIEW N. Ambrosino1 Dyspnoea and its G. Scano2 measurement 1 Pulmonary Unit, Cardio-Thoracic Dept, University-Hospital Pisa, Pisa, and 2Clinica Medica, University-Hospital Careggi, CME article: educational aims Firenze, Italy. To introduce dyspnoea and explain its mechanisms. Correspondence: To present dyspnoea descriptors, which may help in the understanding of the language of N. Ambrosino dyspnoea, and to relate these to specific diseases. Pulmonary Unit To describe some of the methods available for the measurement of dyspnoea. Cardio-Thoracic Dept Azienda Ospedaliera-Universitaria Pisana Via Paradisa 2, Cisanello Summary 56124 Pisa Italy Fax: 39 50996786 Dyspnoea, a term used to characterise a subjective experience of breathing discomfort, is E-mail: perhaps the most important symptom in cardiorespiratory disease. Receptors in the air- [email protected] ways, lung parenchyma, respiratory muscles and chemoreceptors provide sensory feed- back via vagal, phrenic and intercostal nerves to the spinal cord, medulla and higher cen- tres. Knowledge of dyspnoea descriptors can help in understanding the language of dys- pnoea and these are presented here. It is important to appreciate that differences in lan- guage, race, culture, sex and previous experience can all change the perception of and the manner in which the feeling of being dyspnoeic is expressed to others.
    [Show full text]
  • Chest Pain and the Hyperventilation Syndrome - Some Aetiological Considerations
    Postgrad Med J: first published as 10.1136/pgmj.61.721.957 on 1 November 1985. Downloaded from Postgraduate Medical Journal (1985) 61, 957-961 Mechanism of disease: Update Chest pain and the hyperventilation syndrome - some aetiological considerations Leisa J. Freeman and P.G.F. Nixon Cardiac Department, Charing Cross Hospital (Fulham), Fulham Palace Road, Hammersmith, London W6 8RF, UK. Chest pain is reported in 50-100% ofpatients with the coronary arteriograms. Hyperventilation and hyperventilation syndrome (Lewis, 1953; Yu et al., ischaemic heart disease clearly were not mutually 1959). The association was first recognized by Da exclusive. This is a vital point. It is time for clinicians to Costa (1871) '. .. the affected soldier, got out of accept that dynamic factors associated with hyperven- breath, could not keep up with his comrades, was tilation are commonplace in the clinical syndromes of annoyed by dizzyness and palpitation and with pain in angina pectoris and coronary insufficiency. The his chest ... chest pain was an almost constant production of chest pain in these cases may be better symptom . .. and often it was the first sign of the understood if the direct consequences ofhyperventila- disorder noticed by the patient'. The association of tion on circulatory and myocardial dynamics are hyperventilation and chest pain with extreme effort considered. and disorders of the heart and circulation was ackn- The mechanical work of hyperventilation increases owledged in the names subsequently ascribed to it, the cardiac output by a small amount (up to 1.3 1/min) such as vasomotor ataxia (Colbeck, 1903); soldier's irrespective of the effect of the blood carbon dioxide heart (Mackenzie, 1916 and effort syndrome (Lewis, level and can be accounted for by the increased oxygen copyright.
    [Show full text]
  • Influence of Exercise and C02 on Breathing Pattern in Patients with Chronic Obstructive Lung Disease (COLD)
    Eur Respir J 1988, 1, 139-144 Influence of exercise and C02 on breathing pattern in patients with chronic obstructive lung disease (COLD) G. Scano*, F. Gigliotti*, A. van Meerhaeghe**, A. De Coster**, R. Sergysels** Influence of exercise and C02 on breathing pattern in patients with chronic • Clinica Medica III, Universita di Firenze, obstructive lung disease (COLD). G. Scano, F. Gigliotti, A. van Meerhaeghe. Italy. A. De Coster, R. Sergyse/s. •• Pulmonary Division, Hopital Universitaire ABSTRACT: In ten eucapnic patients with chronic obstructive lung disease St. Pierre (ULB), Brussels, Belgium. (COLD) we evaluated the breathing pattern during induced progressive Keywords: Breathing pattern; exercise; COPD; hypercapnia (C0 rebreathing) and progressive exercise on an ergometric 1 col rebreathing. bicycle (30 W /3 min). The time and volume components of the respiratory cycle were measured breath by breath. When compared to hypercapnia, the increase Received: January 30, 1987; accepted after in ventilation (VE) during exercise was associated with a smaDer increase in revision: September 17, 1987. tidal volume (VT) and a greater increase in respiratory frequency (fl). Plots of tidal volume (VT) against both inspiratory time (Tt) and expiratory time (TE) showed a greater decrease in both TI and TE during exercise than with hypercapnia. Analysis of YE in terms of flow (VT/TI) and timing (Tt/'I'r) showed VE to increase by a similar increase to that in VT/TI during both exerci.se and hypercapnia, while Tt/TT did not change significantly. When the patients were matched for a given VE (28 I· min -J ), exercise induced a smaller increase in VT (p < 0.05), a greater increase in fl (p < 0.025); Tl (p < 0.025) and TE (p < 0.01) were found to be smaller during exercise than hypercapnia.
    [Show full text]
  • Obstructive Sleep Apnea Causing Chest Pain and Cardiac Arrhythmias
    Journal of Cardiology & Cardiovascular Therapy ISSN 2474-7580 Case Report J Cardiol & Cardiovasc Ther Volume 1 Issue 3 - September 2016 Copyright © All rights are reserved by Irtaqa Ali Hasnain DOI: 10.19080/JOCCT.2016.01.555565 Obstructive Sleep Apnea Causing Chest Pain and Cardiac Arrhythmias Irtaqa Ali Hasnain1 and Mujtaba Ali Hasnain2 1Department of Emergency Medicine, Bahria Town Hospital, Lahore, Pakistan 2Department of Medicine, Saint Barnabas Medical Center, USA Submission: September 16, 2016; Published: September 28, 2016 *Corresponding author: Irtaqa Ali Hasnain, Bahria Town Hospital, 670 Gul Mohar Block, Sector C, Bahria Town, Lahore, Pakistan Introduction Discussion Chest pain is one of the most common complaints for patients Although most patients with obstructive sleep apnea (OSA) presenting to the hospital. It can be a manifestation of coronary present with typical features like snoring, day-time sleepiness, artery disease, acid peptic disease, pleuritis, or musculoskeletal fatigue, and restlessness but they can present with chest pain problems. Patients with obstructive sleep apnea may present or cardiac arrhythmias only. The prevalence of obstructive sleep with chest pain and heart block but lack typical features such as day-time sleepiness, poor concentration, fatigue, and apnea in the general population is 20 percent if defined as an restlessness. Obstructive sleep apnea can cause these problems apnea hypopnea index is the number of apneas and hypopneas apnea hypopnea index greater than five events per hour (the due to episodes of transient nocturnal hypoxia. per hour of sleep). The most important risk factors for obstructive sleep apnea are obesity, craniofacial abnormalities, and upper Patient report airway abnormalities.
    [Show full text]