Chest Pain and the Hyperventilation Syndrome - Some Aetiological Considerations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Approach to Cyanosis in a Neonate.Pdf
PedsCases Podcast Scripts This podcast can be accessed at www.pedscases.com, Apple Podcasting, Spotify, or your favourite podcasting app. Approach to Cyanosis in a Neonate Developed by Michelle Fric and Dr. Georgeta Apostol for PedsCases.com. June 29, 2020 Introduction Hello, and welcome to this pedscases podcast on an approach to cyanosis in a neonate. My name is Michelle Fric and I am a fourth-year medical student at the University of Alberta. This podcast was made in collaboration with Dr. Georgeta Apostol, a general pediatrician at the Royal Alexandra Hospital Pediatrics Clinic in Edmonton, Alberta. Cyanosis refers to a bluish discoloration of the skin or mucous membranes and is a common finding in newborns. It is a clinical manifestation of the desaturation of arterial or capillary blood and may indicate serious hemodynamic instability. It is important to have an approach to cyanosis, as it can be your only sign of a life-threatening illness. The goal of this podcast is to develop this approach to a cyanotic newborn with a focus on these can’t miss diagnoses. After listening to this podcast, the learner should be able to: 1. Define cyanosis 2. Assess and recognize a cyanotic infant 3. Develop a differential diagnosis 4. Identify immediate investigations and management for a cyanotic infant Background Cyanosis can be further broken down into peripheral and central cyanosis. It is important to distinguish these as it can help you to formulate a differential diagnosis and identify cases that are life-threatening. Peripheral cyanosis affects the distal extremities resulting in blue color of the hands and feet, while the rest of the body remains pinkish and well perfused. -
Hyperventilation Syndrome
Hyperventilation Syndrome INTRODUCTION ● hyperventilation in the presence of the following should immediately confirm an alternative Hyperventilation syndrome is defined as “a rate of diagnosis: ventilation exceeding metabolic needs and higher than that required to maintain a normal level of plasma CO2”. – cyanosis Physiological hyperventilation can occur in a number of – reduced level of consciousness situations, including life-threatening conditions such as: – reduction in SpO2. ● pulmonary embolism ● diabetic ketoacidosis MANAGEMENT 1,2 ● asthma If ABCD need correction then treat as per medical ● hypovolaemia. guidelines as it is unlikely to be due to hyperventilation syndrome but is more likely to be physiological As a rule, hyperventilation due to emotional stress is hyperventilation secondary to an underlying rare in children, and physical causes are much more pathological process. likely to be responsible for hyperventilation. Maintain a calm approach at all times. Specific presenting features can include: Reassure the patient and try to remove the source of ● acute anxiety the patient’s anxiety, this is particularly important in ● tetany due to calcium imbalance children. ● numbness and tingling of the mouth and lips Coach the patient’s respirations whilst maintaining a calm environment. ● carpopedal spasm ● aching of the muscles of the chest ADDITIONAL INFORMATION ● feeling of light headedness or dizziness. The cause of hyperventilation cannot always be determined with sufficient accuracy (especially in the HISTORY early stages) in the pre hospital environment. Refer to dyspnoea guide Always presume hyperventilation is secondary to hypoxia or other underlying respiratory disorder until proven otherwise. 1,2 ASSESSMENT The resulting hypocapnia will result in respiratory Assess ABCD’s: alkalosis bringing about a decreased level of serum ionised calcium. -
Asphyxia Neonatorum
CLINICAL REVIEW Asphyxia Neonatorum Raul C. Banagale, MD, and Steven M. Donn, MD Ann Arbor, Michigan Various biochemical and structural changes affecting the newborn’s well being develop as a result of perinatal asphyxia. Central nervous system ab normalities are frequent complications with high mortality and morbidity. Cardiac compromise may lead to dysrhythmias and cardiogenic shock. Coagulopathy in the form of disseminated intravascular coagulation or mas sive pulmonary hemorrhage are potentially lethal complications. Necrotizing enterocolitis, acute renal failure, and endocrine problems affecting fluid elec trolyte balance are likely to occur. Even the adrenal glands and pancreas are vulnerable to perinatal oxygen deprivation. The best form of management appears to be anticipation, early identification, and prevention of potential obstetrical-neonatal problems. Every effort should be made to carry out ef fective resuscitation measures on the depressed infant at the time of delivery. erinatal asphyxia produces a wide diversity of in molecules brought into the alveoli inadequately com Pjury in the newborn. Severe birth asphyxia, evi pensate for the uptake by the blood, causing decreases denced by Apgar scores of three or less at one minute, in alveolar oxygen pressure (P02), arterial P02 (Pa02) develops not only in the preterm but also in the term and arterial oxygen saturation. Correspondingly, arte and post-term infant. The knowledge encompassing rial carbon dioxide pressure (PaC02) rises because the the causes, detection, diagnosis, and management of insufficient ventilation cannot expel the volume of the clinical entities resulting from perinatal oxygen carbon dioxide that is added to the alveoli by the pul deprivation has been further enriched by investigators monary capillary blood. -
Prolonged Post-Hyperventilation Apnea in Two Young Adults With
Munemoto et al. BioPsychoSocial Medicine 2013, 7:9 http://www.bpsmedicine.com/content/7/1/9 CASE REPORT Open Access Prolonged post-hyperventilation apnea in two young adults with hyperventilation syndrome Takao Munemoto1,4*, Akinori Masuda2, Nobuatsu Nagai3, Muneki Tanaka4 and Soejima Yuji5 Abstract Background: The prognosis of hyperventilation syndrome (HVS) is generally good. However, it is important to proceed with care when treating HVS because cases of death following hyperventilation have been reported. This paper was done to demonstrate the clinical risk of post-hyperventilation apnea (PHA) in patients with HVS. Case presentation: We treated two patients with HVS who suffered from PHA. The first, a 21-year-old woman, had a maximum duration of PHA of about 3.5 minutes and an oxygen saturation (SpO2) level of 60%. The second patient, a 22-year-old woman, had a maximum duration of PHA of about 3 minutes and an SpO2 level of 66%. Both patients had loss of consciousness and cyanosis. Because there is no widely accepted regimen for treating patients with prolonged PHA related to HVS, we administered artificial ventilation to both patients using a bag mask and both recovered without any after effects. Conclusion: These cases show that some patients with HVS develop prolonged PHA or severe hypoxia, which has been shown to lead to death in some cases. Proper treatment must be given to patients with HVS who develop PHA to protect against this possibility. If prolonged PHA or severe hypoxemia arises, respiratory assistance using a bag mask must be done immediately. Keywords: Post-hyperventilation apnea, PHA, Hyperventilation syndrome, HVS, Hypocapnia, Hypoxemia Background incidence of death, severe hypoxia, or myocardial infarc- Hyperventilation syndrome (HVS) is characterized by tion in association with the paper-bag method [2]. -
Central Neurogenic Hyperventilation Related to Post-Hypoxic Thalamic Lesion in a Child
Neurology International 2016; volume 8:6428 Central neurogenic normal. An emergency brain magnetic reso- nance imaging (MRI) was performed. Correspondence: Pinar Gençpinar, Department of hyperventilation related Although there was no apparent lesion in the Pediatric Neurology, Tepecik Training and to post-hypoxic thalamic lesion brain stem, bilateral diffuse thalamic, putami- Research Hospital, Izmir, Turkey. in a child nal and globus palllideal lesions were detected Tel.: +90.505.887.9258. on MRI (Figures 1 and 2). Examination E-mail: [email protected] Pinar Gençpinar,1 Kamil Karaali,2 revealed tachypnea (respiratory rate, 42/min), but other findings were normal. Arterial blood Key words: Central neurogenic hyperventilation; enay Haspolat,3 O uz Dursun4 thalamus; tachypnea; children. Ş ğ gases (ABGs) were pH, 7.52; PaCO2, 29 mmHg; 1Department of Pediatric Neurology, and PaO2, 142 mmHg. The chest radiograph, Contributions: PG prepared the manuscript; KK Tepecik Training of Research Hospital, electrocardiogram, and echocardiogram were prepared the figures and edited in this respect; 2 Izmir; Department of Radiology, normal. Laboratory studies disclosed the fol- OD and SH edited this manuscript and made final 3Department of Pediatric Neurology, lowing values: hematocrit, 33.7%, white blood version. 4Department of Pediatric Intensive Care cell count, 10.6×109/L; sodium, 140 mEq/L; Unit, Akdeniz University Hospital, potassium, 3.7 mEq/L; serum urea nitrogen; 6 Conflict of interest: the authors declare no poten- Antalya, Turkey mg/dL; creatinine, 0.21 mg/ dL; and glucose, tial conflict of interest. 110 mg/dL. Liver transaminases levels were normal. Serum lactate level was 1.97 mmol/L Received for publication: 23 January 2016. -
The Pathophysiology of 'Happy' Hypoxemia in COVID-19
Dhont et al. Respiratory Research (2020) 21:198 https://doi.org/10.1186/s12931-020-01462-5 REVIEW Open Access The pathophysiology of ‘happy’ hypoxemia in COVID-19 Sebastiaan Dhont1* , Eric Derom1,2, Eva Van Braeckel1,2, Pieter Depuydt1,3 and Bart N. Lambrecht1,2,4 Abstract The novel coronavirus disease 2019 (COVID-19) pandemic is a global crisis, challenging healthcare systems worldwide. Many patients present with a remarkable disconnect in rest between profound hypoxemia yet without proportional signs of respiratory distress (i.e. happy hypoxemia) and rapid deterioration can occur. This particular clinical presentation in COVID-19 patients contrasts with the experience of physicians usually treating critically ill patients in respiratory failure and ensuring timely referral to the intensive care unit can, therefore, be challenging. A thorough understanding of the pathophysiological determinants of respiratory drive and hypoxemia may promote a more complete comprehension of a patient’sclinical presentation and management. Preserved oxygen saturation despite low partial pressure of oxygen in arterial blood samples occur, due to leftward shift of the oxyhemoglobin dissociation curve induced by hypoxemia-driven hyperventilation as well as possible direct viral interactions with hemoglobin. Ventilation-perfusion mismatch, ranging from shunts to alveolar dead space ventilation, is the central hallmark and offers various therapeutic targets. Keywords: COVID-19, SARS-CoV-2, Respiratory failure, Hypoxemia, Dyspnea, Gas exchange Take home message COVID-19, little is known about its impact on lung This review describes the pathophysiological abnormal- pathophysiology. COVID-19 has a wide spectrum of ities in COVID-19 that might explain the disconnect be- clinical severity, data classifies cases as mild (81%), se- tween the severity of hypoxemia and the relatively mild vere (14%), or critical (5%) [1–3]. -
Central Hypoventilation with PHOX2B Expansion Mutation Presenting in Adulthood S Barratt, a H Kendrick, F Buchanan, a T Whittle
919 CASE REPORT Thorax: first published as 10.1136/thx.2006.068908 on 1 October 2007. Downloaded from Central hypoventilation with PHOX2B expansion mutation presenting in adulthood S Barratt, A H Kendrick, F Buchanan, A T Whittle ................................................................................................................................... Thorax 2007;62:919–920. doi: 10.1136/thx.2006.068908 suggested cardiac enlargement and an ECG showed right heart Congenital central hypoventilation syndrome most commonly strain. Oxygen saturation by pulse oximetry (SpO2) on air was presents in neonates with sleep related hypoventilation; late 80% and arterial blood gas analysis on 24% fractional inspired onset cases have occurred up to the age of 10 years. It is oxygen showed hypercapnic respiratory failure (pH 7.21, associated with mutations in the PHOX2B gene, encoding a oxygen tension 8.6 kPa, carbon dioxide tension 10.3 kPa). He transcription factor involved in autonomic nervous system was polycythaemic with haematocrit 64%. He was treated with development. The case history is described of an adult who antibiotics, diuretics, controlled oxygen therapy and face mask presented with chronic respiratory failure due to PHOX2B non-invasive positive pressure ventilation (NIV). mutation-associated central hypoventilation and an impaired From day 2 his daytime oxygenation was satisfactory on low response to hypercapnia. flow oxygen without ventilatory support; he remained on nocturnal NIV. Two attempts to record overnight oximetry without ventilatory support failed: his SpO2 fell below 50% due ongenital central hypoventilation syndrome (CCHS, to apnoea within 30 min of sleep onset and the nursing staff ‘‘Ondine’s Curse’’) classically presents in neonates with recommenced NIV on each occasion. Overnight oximetry on air Csleep-dependent hypoventilation. -
Hyperventilation and the Body
Hyperventilation and the body C. Gilbert Hyperventilation has rapid and far-ranging physiological effects via its alteration of pH and depletion of CO 2 in the body, resulting in respiratory alkalosis, acute or chronic. The general effects on skeletal and smooth muscles, as well as neural tissue, are summarized. A wide variety of symptoms such as pain, tension, disturbances of consciousness, circulatory problems and cardiovascular effects can confound treatment efforts but may respond to alterations of breathing patterns. Suggestions are given for detecting this condition. Introduction Background Imagine the following set of symptoms reported The 'Fat folder' syndrome is one vivid description to you: episodes of light-headedness attached by Claude Lum to the so-called accompanied by cool, moist hands, pale skin, hyperventilation syndrome, indicating the perhaps some tunnel vision, chest pain, tortuous, and tortured, doctor-to-doctor path headaches, feelings of unreality, dread and followed by many individuals pursuing relief agitation; heart palpitations, uncomfortable from their problems. Each specialist performs his breathing and tender shoulder muscles. Suppose tests, finds little that is specifically diagnostic, and that medical consultation has found little of note, dutifully relays the individual on to the next but at least there is no evidence of major disease. specialist because typically, with this disorder, Where would you start? A break for lunch, symptoms come and go in many different perhaps? systems. Hyperventilation simply means breathing in Christopher Gilbert In working with such a diffuse set of PhD Social Sciences complaints spread out over many systems, a excess of the body's needs for oxygen at a and Human practitioner will naturally tend to focus on the particular moment. -
Apnea of Prematurity
www.jpnim.com Open Access eISSN: 2281-0692 Journal of Pediatric and Neonatal Individualized Medicine 2013;2(2):e020213 doi: 10.7363/020213 Advance publication: 2013 Aug 20 Review Apnea of prematurity Piermichele Paolillo, Simonetta Picone Neonatology Department, Neonatal Pathology, Neonatal Intensive Care Unit, Policlinico Casilino Hospital, Rome, Italy Proceedings Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy) · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research Abstract Apnea of prematurity (AOP) is one of the most frequent pathologies in the Neonatal Intensive Care Unit, with an incidence inversely related to gestational age. Its etiology is often multi factorial and diagnosis of idiopathic forms requires exclusion of other underlying diseases. Despite being a self- limiting condition which regresses with the maturation of the newborn, possible long-term effects of recurring apneas and the degree of desaturation and bradycardia who may lead to abnormal neurological outcome are not yet clarified. Therefore AOP needs careful evaluation of its etiology and adequate therapy that can be both pharmacological and non-pharmacological. Keywords Apnea of prematurity, idiopathic and secondary apnea, caffeine. Corresponding author Piermichele Paolillo, Neonatology Department, Neonatal Pathology, Neonatal Intensive Care Unit, Ospedale Policlinico Casilino, Rome, Italy; email: [email protected]. How to cite Paolillo P, Picone S. Apnea of Prematurity. J Pediatr Neonat Individual Med. 2013;2(2):e020213. doi: 10.7363/020213. Definition and pathophysiology Apnea of prematurity (AOP) is defined as the cessation of breathing for over 15-20 seconds and is accompanied by oxygen desaturation (SpO2 less than or equal to 80% for ≥ 4 seconds) and/or bradycardia (HR < 2/3 of the basic HR for ≥ 4 seconds) in neonates with a gestational age less then 37 weeks [1, 2]. -
Hypocapnia in the Pathomechanism of Panic Disorder
375 SPECIAL ARTICLE The role of hyperventilation - hypocapnia in the pathomechanism of panic disorder O papel da hiperventilação - a hipocapnia no patomecanismo do distúrbio de pânico Andras Sikter,1 Ede Frecska,2 Ivan Mario Braun,3 Xenia Gonda,2 Zoltan Rihmer2 Abstract Objective: The authors present a profile of panic disorder based on and generalized from the effects of acute and chronic hyperventilation that are characteristic of the respiratory panic disorder subtype. The review presented attempts to integrate three premises: hyperventilation is a physiological response to hypercapnia; hyperventilation can induce panic attacks; chronic hyperventilation is a protective mechanism against panic attacks. Method: A selective review of the literature was made using the Medline database. Reports of the interrelationships among panic disorder, hyperventilation, acidosis, and alkalosis, as well as catecholamine release and sensitivity, were selected. The findings were structured into an integrated model. Discussion: The panic attacks experienced by individuals with panic disorder develop on the basis of metabolic acidosis, which is a compensatory response to chronic hyperventilation. The attacks are triggered by a sudden increase in (pCO2) when the latent (metabolic) acidosis manifests as hypercapnic acidosis. The acidotic condition induces catecholamine release. Sympathicotonia cannot arise during the hypercapnic phase, since low pH decreases catecholamine sensitivity. Catecholamines can provoke panic when hyperventilation causes the hypercapnia to switch to hypocapnic alkalosis (overcompensation) and catecholamine sensitivity begins to increase. Conclusion: Therapeutic approaches should address long-term regulation of the respiratory pattern and elimination of metabolic acidosis. Descriptors: Acidosis; Catecholamines; Hyperventilation; Hypocapnia; Panic disorder Resumo Objetivo: Os autores apresentam um modelo de transtorno do pânico que se baseia nos efeitos da hiperventilação aguda e crônica, característicos do subtipo respiratório de transtorno do pânico. -
Central-Sleep-Apnea-Facilitator-Guide
Vidya Krishnan and Sutapa Mukherjee for the Sleep Education for Pulmonary Fellows and Practitioners, SRN ATS Committee, 2015 Facilitators Guide I.A. In a patient of this age and presentation the broad category of sleep disorders include: 1) 1) Sleep disordered breathing conditions: OSA, CSA, hypoventilation 2) 2) Insomnia (patients with HF rarely sleep 7-8 hours but usually <4/night and have developed horrible sleep hygiene 3) 3) Parasomnias like REM behavioral disorder (if treated with beta blockers) 4) 4) RLS like symptoms from renal insufficiency/failure, iron deficiency I.B. What are known risk factors for Central Sleep Apnea? 1) age - >65 years old 2) sex – men>women – higher apneic threshold in men 3) heart failure 4) stroke – especially in first 3 months after stroke 5) opioid use 6) renal failure II. A. What is a central sleep apnea? Cessation of airflow for at least 10 seconds, without respiratory effort during the event. II. B. How does your assessment for central sleep apnea risk alter with the given information? - oxycodone can increase risk of central sleep apnea - new onset atrial fibrillation and increased left atrial size can increase the risk of CSA in SHF patient - oropharyngeal exam does not support increased risk of OSA II. C. What are the syndromic presentations of central sleep apnea? What type of central sleep apnea might you expect to see on a sleep study in this patient at this time? 1. Primary central sleep apnea 2. Secondary central sleep apnea a. Cheyne Stokes Respiration b. Secondary to a medical condition – CNS diseases, neuromuscular disease, severe abnormalities in pulmonary mechanics (such as kyphoscoliosis) c. -
Congenital Central Hypoventilation Syndrome
orphananesthesia Anesthesia recommendations for patients suffering from Congenital Central Hypoventilation Syndrome Disease name: Congenital Central Hypoventilation Syndrome ICD 10: G47.3 Synonyms: Undine Syndrome, Ondine’s Curse Central hypoventilation syndrome (CHS) is a rare disorder, which can be both congenital and acquired. Congenital central hypoventilation syndrome (CCHS) is caused by chromosomal mutations in the PHOX2B gene on chromosome 4p12. The non-congenital or acquired form of CHS may be due to brain stem tumour, infarct, or edema. As the acquired form of this disease is quite rare the main focus of this article will be the congenital form of central hypoventilation syndrome. Medicine in progress Perhaps new knowledge Every patient is unique Perhaps the diagnostic is wrong Find more information on the disease, its centres of reference and patient organisations on Orphanet: www.orpha.net 1 Disease summary The main characteristic of CCHS disease is small tidal volumes and monotonous respiratory rates while awake and asleep, with more profound alveolar hypoventilation during sleep. Due to hypoventilation these patients develop hypercapnia and hypoxemia but lack the normal ventilatory responses to overcome these conditions while asleep. However, while awake they do have the ability to consciously alter the rate and depth of breathing. While sleeping, these children will have shallow respirations interspersed with periods of apnoea most commonly during non-REM sleep. CCHS is a lifelong condition and will require some form of ventilatory support throughout life either positive pressure ventilation via tracheostomy or nasal mask. Other forms of long-term management include negative pressure ventilation and diaphragmatic pacing. CCHS usually manifests itself in the new born period with episodes of cyanosis and apnea and most infants will require mechanical ventilation immediately after birth.