The Development and Regulation of Bt Brinjal in India (Eggplant/Aubergine)
Total Page:16
File Type:pdf, Size:1020Kb
Scientific Review: We are extremely grateful to Dr. P. Ananda Kumar, Director and Dr. K.C. Bansal, Professor, National Research Centre on Plant Biotechnology (NRCPB) of the Indian Council of Agricultural Research (ICAR), New Delhi; Dr. P. Balasubramanian, Director, Centre for Plant Molecular Biology (CPMB), Tamil Nadu Agricultural University (TNAU), Coimbatore; and Dr. T.M. Manjunath, Consultant on Agricultural Biotechnology, Bengaluru; for their critical review of this document. BRIEF 38 The Development and Regulation of Bt Brinjal in India (Eggplant/Aubergine) by Bhagirath Choudhary Kadambini Gaur No. 38-2009 © The International Service for the Acquisition of Agri-biotech Applications (ISAAA). Copyright: ISAAA 2009 All rights reserved. This document is a product of the staff of the International Service for the Acquisition of Agri-biotech Applications (ISAAA) South Asia Office, New Delhi. Whereas ISAAA encourages the global sharing of information, no part of this publication shall be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise without the permission of the copyr ight owners. Reproduction of this publication, or parts thereof, for educational and non-commercial purposes is encouraged with due acknowledgment, subsequent to permission being granted by ISAAA. Citation: Choudhary, B. and Gaur, K. 2009. The Development and Regulation of Bt Brinjal in India (Eggplant/ Aubergine). ISAAA Brief No.38. ISAAA: Ithaca, NY. ISBN: 978-1-892456-43-5 The authors gratefully acknowledge the support of ISAAA management and staff at the ISAAA Centres in Kenya and the Philippines, and the staff of the Biotechnology Information Centres (BICs) located in 20 developing countries around the world in the preparation and the free distribution of this Brief in developing countries. The objective of the Brief is to provide information and knowledge to the scientific community and society regarding Bt Brinjal (eggplant/aubergine) and to facilitate a more informed and transparent discussion about its potential role in the vegetable sector, and its contribution to a more sustainable agriculture. The authors, not ISAAA, take full responsibility for the views expressed in this publication and for any errors of omission or misinterpretation. Cover Picture: Bt brinjal hybrids MHB-9 Bt, MHB-11Bt, MHB-80Bt and MHBJ-99Bt in large-scale field trials at the Tamil Nadu Agricultural University (TNAU), Coimbatore, Tamil Nadu. Publication Orders: Please contact the ISAAA South Asia Office for your copy at [email protected] or [email protected]. Purchase a copy online at http://www.isaaa.org. For a hard copy of the full version of Brief 38, cost is US$50 including express delivery by courier. The publication is available free of charge to eligible nationals of developing countries. The International Service for the Acquisition of Agri-biotech Applications (ISAAA). ISAAA South Asia Office, C/o ICRISAT, NASC Complex, DPS Marg Opp. Todapur Village, New Delhi-110012, India Info on ISAAA: For information about ISAAA, please contact the Centre nearest you: ISAAA AmeriCentre ISAAA AfriCentre ISAAA SEAsiaCentre 417 Bradfield Hall, c/o CIP c/o IRRI, Cornell University PO 25171 DAPO Box 7777 Ithaca NY 14853, U.S.A. Nairobi, Kenya Metro Manila, The Philippines ISAAA on net: For more information, please visit http://www.isaaa.org and www.isaaa.org/kc Foreword In the early 1990s, many critics of crop biotechnology were skeptical that genetically modified (GM) or transgenic crops, now more often referred to as biotech crops, could ever deliver improved products and make an impact at the farm level. Many critics referred to crop biotechnology as the science of promises, and more promises, but never to have the capability to deliver a product. The critics were even more skeptical that small resource-poor farmers in the developing countries of Asia, Latin America and Africa would ever be able, or want, to accept and adopt biotech crops - that was the speculation of the critics; however, the actual facts reveal that nothing could be further from the truth. In 2007, the twelfth year of commercialization of biotech crops, of the 23 countries growing 114 million hectares of biotech crops (equivalent to more than two-thirds of the total arable land of India) strikingly, 12 were developing countries, compared with only 11 industrial countries; and the trend in favor of developing countries is expected to continue in the second decade, as more and more developing countries from all three continents in the South embrace biotech crops. Importantly, of the 12 million farmers who benefited from biotech crops in 2007, remarkably 11 million of them, equivalent to 90%, were small resource-poor farmers in developing countries, 7.1 million in China, 3.8 million in India, over 100,000 in the Philippines and the balance in the other 7 developing countries. It is evident, that the first decade of commercialization of biotech crops, 1996-2005, was clearly the decade of the Americas where over 90% of the global biotech hectarage was grown. However, ISAAA has projected that the second decade of commercialization of biotech crops, 2006 to 2015, will witness much stronger growth in Asia, with the two most populous countries in the world, China (1.3 billion) and India (1.1 billion), both exerting global leadership and utilizing biotech crops to ensure not only fibre security, but more critically, food security. Both India and China have already benefited enormously from the deployment of a biotech fibre crop, Bt cotton. India, the country with the largest hectarage of cotton in the world, estimated at 9.6 million hectares in 2007, benefited from an unprecedented 125 fold increase in Bt hybrid cotton hectarage in only six years, 2002 to 2007. A total of 3.8 million farmers in India increased their income from Bt cotton by approximately 1 billion dollars at the national level in 2007. This was an important contribution to the alleviation of their poverty and it is noteworthy that farmers represent the majority of the extremely poor in India. In addition to the substantial economic benefits from Bt cotton, there have been other multiple and substantial benefits including environmental benefits, through decreasing insecticide requirements by half, thereby resulting in significantly less exposure with positive health implications for farmers. Bt cotton has also resulted in a better quality of life for their families, who for the first time can afford better health care and education for their children. Given the significant and multiple agronomic, economic, environmental and welfare benefits generated by Bt cotton, there is strong and growing political support for Bt cotton in India, and in turn for other biotech crops, particularly food crops. The remarkable success of Bt cotton in India has been recognized by leading politicians and policy makers who have become advocates of biotechnology because of the multiple benefits it offers. The increased political support for i crop biotechnology in India parallels increased support by global society for biotech crops due to their capability to directly contribute to more affordable food prices, especially when prices of the basic staples, rice, wheat and corn (maize) have skyrocketed; precipitating food riots in many developing countries. The following recent public statements by leading Indian politicians illustrate the concern about food security, escalating food prices and the role of technology, including biotechnology to remedy the grave situation now exacerbated by a global financial crisis. Smt. Pratibha Devisingh Patil, the President of India “The success story of the First Green Revolution has run its course. We cannot afford to rest on our laurels. The fruits of the Green Revolution and the momentum generated by it, needs to be sustained. Efforts towards sustainable agriculture can be greatly augmented with the help of space technology and biotechnology advances”. Dr. Manmohan Singh, the Prime Minister of India “We need to strike a balance between using the potential of biotechnology to meet the requirements of hungry people while addressing concerns about interfering with nature”. Mr. P. Chidambaram, the Minister of Finance “Bt cotton has made India a cotton exporting country. We thought of ourselves as exporters of wheat and rice, but today we import wheat. No country as large as India can survive on imports for its food needs,”….”The production figures for rice and wheat are far below the world average and yield gaps vary dramatically across different states,”….”The success achieved in cotton must be used to make the country self sufficient in rice, wheat, pulse and oil seed production”. The statement by the Prime Minister Singh addresses the issue of acceptance of biotech food crops by society and implicitly the need to inform society of the science-based attributes of biotech food crops to facilitate a science-based, meaningful and transparent dialog about acceptance of biotech food crops. This is precisely the objective of this comprehensive ISAAA Brief on the development and regulation of biotech brinjal in India, which is likely to be the first biotech food crop to be approved and adopted in India in the near term. More specifically, this Brief is a comprehensive review of all aspects of the cultivation in India ofthe important vegetable brinjal, also known as eggplant or aubergine. Importantly, the Brief summarizes the development, status and content of the extensive regulatory dossier in India for biotech Bt brinjal, which confers resistance to the most important insect-pest of brinjal, the Fruit and Shoot Borer (FSB). It is a pleasure to commend the senior author of this ISAAA Brief, Mr. Bhagirath Choudhary and his co-author Ms. Kadambini Gaur, based at the ISAAA office in New Delhi, India for proactively anticipating the knowledge needs of society about the development and status of Bt brinjal in ii India, which has undergone a rigorous safety assessment by the regulatory authorities.