Register of Feed Additives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Retention Indices for Frequently Reported Compounds of Plant Essential Oils
Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5. -
Variation in the Composition of the Essential Oil of Valeriana Officinalis L
Proc. Estonian Acad. Sci. Chem., 2007, 56, 2, 67–74 Variation in the composition of the essential oil of Valeriana officinalis L. roots from Estonia Ain Raala, Anne Oravb*, Elmar Araka, Tiiu Kailasb, and Mati Müüriseppb a Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia b Institute of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia Received 31 January 2007, in revised form 12 March 2007 Abstract. The volatile constituents from roots of Valeriana officinalis L. were investigated using GC and GC/MS methods. Valerianae radix samples were obtained from retail pharmacies or cultivated in Estonia. The roots of five V. officinalis samples yielded 0.28–1.16% essential oil in the cut drug, which usually corresponded (four samples) to the European Pharmacopeia standard (0.3%). The basic oil components among the identified 84 compounds were isovaleric acid (0–2.1%), α-pinene (0.4–3.6%), α-fenchene (0.6–5.8%), camphene (0.6–5.9%), bornyl acetate (8.8–33.7%), myrtenyl acetate (2.0–7.2%), alloaromadendrene (0.3–7.6%), myrtenyl isovalerate (1.1–2.5%), spathulenol (0.7–4.1%), sesquiterpene alcohol (0.8–6.6%), valerianol (0.3–16.7%), valeranone (0.5–9.4%), and valerenal (tr–14.7%). Valerian root oil from Estonia (four samples) was rich in bornyl acetate and valerenal. Bornyl acetate, valerianol, and valeranone dominated in one Estonian sample. Key words: Valeriana officinalis L., essential oil, bornyl acetate, valerenal, valerianol, valeranone. INTRODUCTION Valerian (Valeriana officinalis L.) is a well-known and frequently used medicinal plant, which has a long proven history of efficacy. -
Sources of Carotenoids and Their Uses As Animal Feed
Scientific Papers. Series D. Animal Science. Vol. LXI, Number 2, 2018 ISSN 2285-5750; ISSN CD-ROM 2285-5769; ISSN Online 2393-2260; ISSN-L 2285-5750 important role in molecular processes of cell molecules, joined in a head to tail pattern membranes whose structure, properties and (Mattea, 2009; Domonkos, 2013). Structurally, SOURCES OF CAROTENOIDS AND THEIR USES stability can be modified, leading to possible carotenoids take the form of a polyene chain AS ANIMAL FEED ADDITIVES – A REVIEW beneficial effects on human health (Zaheer, that functions as a chromophore, due to 9-11 2017). conjugated double bonds and possibly Diana PASARIN, Camelia ROVINARU Out of high production and marketability terminating in rings, what determines their reasons, carotenoids are present in the animal characteristic color in the yellow to red range National Institute for Research and Development in Chemistry and Petrochemistry kingdom, playing functions such as coloring (Vershinin, 1999). The presence of different 202 Spl. Independentei, Bucharest, Romania (pets/ornamental birds and fish, mimicking), number of conjugated double bounds leades to flavoring (scents and pollination in nature), various stereoisomers abbreviated as E- and Z- Corresponding author email: [email protected] reproduction (bird feathers and finding mates; isomers, depending on whether the double development of embryos), resistance to bonds are in the trans (E) or cis (Z) Abstract bacterial and fungal diseases, immune configuration (Vincente et al., 2017). responses (lutein connected to anti- Carotenoids are synthesized by all Carotenoids are natural pigments, widely distributed in nature, synthesized by plants, algae, fungi, and phototrophic bacteria. Carotenoids have coloring power and antioxidant properties, being used as colorants for foods, cosmetics and inflammatory natural substance in poultry), as photosynthetic organisms and some non- feeds. -
Charles A. S. Hall
Charles A. S. Hall 354 Illick Hall SUNY College of Environmental Science and Forestry One Forestry Drive, Syracuse, NY 13210 (315) 470-6870 or 470-6743 (Secretary); 470-6934 (FAX) CURRICULUM VITAE EDUCATION B.A. Colgate University, Hamilton, NY, Biology 1965 (Advisor: Oran Stanley) M.S. Pennsylvania State University, Univ. Park PA, Zoology 1966 (Advisor: William Cooper) Ph.D. University of North Carolina, Chapel Hill NC, Zoology 1970 (Advisor: H. T. Odum) PROFESSIONAL POSITIONS (Post Ph.D.) 1970 - 1974 Research Associate, Staff Scientist II (half time), Department of Biology, Brookhaven National Laboratory, Upton, NY (Director: George Woodwell) 1975 - 1977 Research Scientist II (half-time), The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA (Director: George Woodwell) 1972 - 1985 Visiting Assistant Professor, Assistant Professor, Section of Ecology and Systematics, Cornell University, Ithaca, NY 1985 - 1987 Research Associate Professor, Biological Station and Department of Zoology, University of Montana, Yellow Bay and Missoula, MT 1987-1992 Associate Professor, SUNY College of Environmental Science and Forestry, Syracuse, NY 1992 - Professor, SUNY College of Environmental Science and Forestry, Syracuse, NY 2001 - ESF Foundation Distinguished Professor, SUNY College of Environmental Science and Forestry, Syracuse, NY PROFESSIONAL INTERESTS AND GOALS Systems Ecology: The application of integrative tools of science, including especially empirical simulation modeling, to the understanding and management of complex systems of nature and of people and nature. My principal focus throughout the diversity of projects represented herein is, and always has been, the examination of how organisms and societies invest energy in resource exploitation, and how such investments change as the quality of resources changes. -
Valencene Synthase Polypeptides, Encoding Nucleic Acid Molecules and Uses Thereof
(19) TZZ¥Z_T (11) EP 3 085 778 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 26.10.2016 Bulletin 2016/43 C12N 9/88 (2006.01) C12P 5/00 (2006.01) C12N 15/60 (2006.01) C12N 5/10 (2006.01) (2006.01) (2006.01) (21) Application number: 16171175.9 C12N 15/82 C12P 7/26 (22) Date of filing: 11.03.2014 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • SARAN, Dayal GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Lexington, KY (US) PL PT RO RS SE SI SK SM TR • PARK, Grace Eunyoung Lexington, KY (US) (30) Priority: 14.03.2013 US 201361852462 P (74) Representative: Rees, Kerry (62) Document number(s) of the earlier application(s) in WP Thompson accordance with Art. 76 EPC: 138 Fetter Lane 14718824.7 / 2 970 934 London EC4A 1BT (GB) (71) Applicant: Evolva, Inc. Wilmington, New Castle County, DE 19808 (US) (54) VALENCENE SYNTHASE POLYPEPTIDES, ENCODING NUCLEIC ACID MOLECULES AND USES THEREOF (57) The present invention is directed to a recom- thase polypeptide, or a catalytically active fragment binant cell that produces valencene and aristolochene, thereof. The presnt invention also provides methods of wherein the recombinant cell comprises a heterologous producing valencene and aristolochene using a recom- nucleic acid that encodes a valencene synthase polypep- binant cell of the invention and compositions comprising tide, or a catalytically active fragment thereof; or the re- valencene and aristolochene. -
Egg Consumption and Human Health
nutrients Egg Consumption and Human Health Edited by Maria Luz Fernandez Printed Edition of the Special Issue Published in Nutrients www.mdpi.com/journal/nutrients Egg Consumption and Human Health Special Issue Editor Maria Luz Fernandez MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Maria Luz Fernandez University of Connecticut USA Editorial Office MDPI AG St. Alban-Anlage 66 Basel, Switzerland This edition is a reprint of the Special Issue published online in the open access journal Nutrients (ISSN 2072-6643) in 2015–2016 (available at: http://www.mdpi.com/journal/nutrients/special issues/egg-consumption-human-health). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: Lastname, F.M.; Lastname, F.M. Article title. Journal Name. Year. Article number, page range. First Edition 2018 ISBN 978-3-03842-666-0 (Pbk) ISBN 978-3-03842-667-7 (PDF) Articles in this volume are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is c 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/). Table of Contents About the Special Issue Editor ...................................... v Preface to ”Egg Consumption and Human Health” .......................... vii Jose M. Miranda, Xaquin Anton, Celia Redondo-Valbuena, Paula Roca-Saavedra, Jose A. -
Synthèse Organique D'apo-Lycopénoïdes, Étude Des
Synthèse organique d’apo-lycopénoïdes, étude des propriétés antioxydantes et de complexation avec l’albumine de sérum humain Eric Reynaud To cite this version: Eric Reynaud. Synthèse organique d’apo-lycopénoïdes, étude des propriétés antioxydantes et de com- plexation avec l’albumine de sérum humain. Sciences agricoles. Université d’Avignon, 2009. Français. NNT : 2009AVIG0231. tel-00870922 HAL Id: tel-00870922 https://tel.archives-ouvertes.fr/tel-00870922 Submitted on 8 Oct 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ACADEMIE D’AIX-MARSEILLE UNIVERSITE D’AVIGNON ET DES PAYS DE VAUCLUSE THESE présentée pour obtenir le grade de Docteur en Sciences de l’Université d’Avignon et des Pays de Vaucluse SPECIALITE : Chimie SYNTHESE ORGANIQUE D'APO-LYCOPENOÏDES ETUDE DES PROPRIETES ANTIOXYDANTES ET DE COMPLEXATION AVEC L'ALBUMINE DE SERUM HUMAIN par Eric REYNAUD soutenue le 23 novembre 2009 devant un jury composé de Hanspeter PFANDER Professeur, Université de Berne (Suisse) Rapporteur Catherine BELLE Chargée de recherche, CNRS Grenoble Rapporteur Paul-Henri DUCROT Directeur de recherche, INRA Versailles Examinateur Patrick BOREL Directeur de recherche, INRA Marseille Examinateur Olivier DANGLES Professeur, Université Avignon Directeur de thèse Catherine CARIS-VEYRAT Chargée de recherche, INRA Avignon Directeur de thèse Ecole doctorale 306 UMR 408, SQPOV A Je remercie l’ensemble du jury pour avoir accepté de juger ce travail : -Pr. -
Low Acyl Gellan Gum for Inclusion on the National List of Substances Allowed in Organic Production and Handling (7 CFR 205.605 (B)
Petition for Evaluation of Low Acyl Gellan Gum for Inclusion on the National List of Substances Allowed in Organic Production and Handling (7 CFR 205.605 (b) Submitted by: CP Kelco U.S., Inc. 3100 Cumberland Blvd., Suite 600 Atlanta, GA 30339 Date: 08 August 2019 CP Kelco U.S., Inc. 08 August 2019 National Organic List Petiion Low Acyl Gellan Gum Table of Contents Item A.1 — Section of National List ........................................................................................................... 4 Item A.2 — OFPA Category - Crop and Livestock Materials .................................................................... 4 Item A.3 — Inert Ingredients ....................................................................................................................... 4 1. Substance Name ................................................................................................................................... 5 2. Petitioner and Manufacturer Information ............................................................................................. 5 2.1. Corporate Headquarters ................................................................................................................5 2.2. Manufacturing/Processing Facility ...............................................................................................5 2.3. Contact for USDA Correspondence .............................................................................................5 3. Intended or Current Use .......................................................................................................................5 -
Essential Oil Components of Alaska Cedar Heartwood Signature Redacted for Privacy
AN ABSTRACT OF THE THESIS OF Yeping Xiong for the degree of Master of Science in Forest Products presented on December 8, 2000. Title: Essential Oil Components of Alaska Cedar Heartwood Signature redacted for privacy. Abstract approved: 0 JosephVKarchesy C/7 The essential oil of Alaska cedar heartwood is known to contain compounds which contribute to the remarkable durability of this species. While previous research has identified several compounds, a complete description of this oil, which has a "burnt-grape fruit" odor, has not been undertaken. In this research a profile of the oil is given in which the major components are identified by GC-MS, isolation and spectroscopic techniques. The major components of the steam distilled essential oil were identified as nootkatin, nootkatone, valencene, nootaktene, carvacrol, methyl carvacrol, nootkatol, and eremophil- 1(10),11-dien-13-ol. In addition, it was found that the diethyl ether extract of the heartwood contained 1(10)- eremophilen-11,12-epoxide as a major component in addition to the compounds found in the steam distilled essential oil. 1(10)-Eremophilen-11,12-epoxide apparently does not survive the condition of steam distillation. Nootkatol, eremophil-1(10),11-dien-13-ol and 1(10)- eremophilen-11,12-epoxide have not been previously reported in Alaska cedar. Nootkatol is a known compound having been reported in other plants. However, eremophil-1(10),11-dien-13-ol and 1(10)-eremophilen- 11,12-epoxide represent new chemical structures to science being described here for the first time. Essential Oil Components of Alaska Cedar Heartwood by Yeping Xiong A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Presented December 8, 2000 Commencement June, 2001 Master of Science thesis of Yeping Xiong presented on December 8, 2000 APPROVED: Signature redacted for privacy. -
Odor Impact of Volatiles Emitted from Marijuana, Cocaine, Heroin and Their Surrogate Scents Somchai Rice Iowa State University, [email protected]
Agricultural and Biosystems Engineering Agricultural and Biosystems Engineering Publications 12-2015 Odor impact of volatiles emitted from marijuana, cocaine, heroin and their surrogate scents Somchai Rice Iowa State University, [email protected] Jacek A. Koziel Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/abe_eng_pubs Part of the Agriculture Commons, Bioresource and Agricultural Engineering Commons, and the Toxicology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ abe_eng_pubs/707. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Agricultural and Biosystems Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Agricultural and Biosystems Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Odor impact of volatiles emitted from marijuana, cocaine, heroin and their surrogate scents Abstract Volatile compounds emitted into headspace from illicit street drugs have been identified, but until now odor impact of these compounds have not been reported. Data in support of identification of these compounds and their odor impact to human nose are presented. In addition, data is reported on odor detection thresholds for canines highlighting differences with human ODTs and needs to address gaps in knowledge. New data presented here include: (1) compound identification, (2) gas chromatography (GC) column retention times, (3) mass spectral data, (4) odor descriptors from 2 databases, (5) human odor detection thresholds from 2 databases, (6) calculated odor activity values, and (7) subsequent ranking of compounds by concentration and ranking of compounds by odor impact (reported as calculated odor activity values). -
The Antidiabetic and Antioxidant Effects of Carotenoids: a Review
ISSN (Online) : 2250-1460 Asian Journal of Pharmaceutical Research and Health Care, Vol 9(4), 186-191, 2017 DOI: 10.18311/ajprhc/2017/7689 The Antidiabetic and Antioxidant Effects of Carotenoids: A Review Miaad Sayahi1 and Saeed Shirali2,3* 1Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran 2Hyperlipidemia Research Center, Department of Laboratory Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran 3Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; [email protected] Abstract Carotenoids are a big group of phytochemicals that have a wide variety of protective and medical properties. They are widespread in plants and photosynthetic bacteria and have many medical functions. Here in this article, we studied antidiabetic and antioxidant effects of four kinds of carotenoids (lutein, lycopene, beta-carotene and astaxanthin) besides some of the ways they can lower blood glucose and prevent the oxidant damages. Many articles, including originals and reviewsbriefly defining were scanned them and in this also way, mentioned but only somea few ofhad their a suitable plant sources. data. All So,of ourwe referencescan say, the were aim articlesof this studyhas been was collected to show Beta-carotene is the most widely carotenoid in food prevent cancer and triggers the release of insulin and like lutein its electronically from valid journals and databases including PubMed, Science Direct, Elsevier, Springer and Google scholar. levels in the retina with diabetes. Lycopene helps to protect diabetes patients with cardiovascular disease. Astaxanthin has antioxidant is useful for the prevention of macular degeneration. Lutein has also anticancer effects and reduces the ROS of these phytochemicals produces a kind of protect against diabetes and oxidative damages and also have other medical significant hypoglycemic effects. -
Flavonoids and Terpenes • Analytical Standards for Terpenes and Flavonoid Analysis • Single-Element Standards and Mixes Available
cannstandards® Flavonoids and Terpenes • Analytical standards for terpenes and flavonoid analysis • Single-Element Standards and Mixes Available spexcertiprep.com Connect with us Phone: +1.732.549.7144 • +1.800.LAB.SPEX Spex CertiPrep is an Fax: +1.732.603.9647 Anatylia Scientific company [email protected] Find out more at antylia.com Flavonoids and Terpenes Flavonoids are naturally occurring secondary metabolic products which can have important functions within plants and benefit consumers with health and healing properties. Organic Certified Many beneficial compounds are metabolites produced as an end product Reference Materials of chemical and biological processes. Metabolites are small molecules that have many functions including defense, pigments, pheromones, odorants and catalysts. Primary metabolites are necessary for growth, development and reproduction. Flavonoids are secondary plant, algae or fungus metabolites composed of polyphenolic compounds. Secondary metabolites are not directly involved in critical processes but have secondary functions involving defense and pigmentation. We offer analytical standards for flavonoid analysis. Analytical Standards for Terpenes are the common term for a large group of compounds that contribute Flavonoid and Terpene Testing to flavor and smell of botanical products. Custom standards are also available. Contact us at 732.549.7144 or via email at [email protected] to discuss your specific requirements. Supplied with a Certificate of Analysis to 1702 ed 5 & it 1 d 7 re 0 c 3 c 4 A C er