t57L TheCanadian Mburalo gist Vol. 35,pp. 157l-1606 (1997)

RECOMMENDEDNOMENCLATURE FOR ZEOLITE MINERALS: REPOFT OFTHE SUBCOMMITTEEON ZEOLITESOF THE INTERNATIONAL MINERALOGICAL ASSOCIATION,COMMISSION ON NEWMINERALS AND MINERALNAMES DOUGLASS. COOMBS1(Chairnan) GeologyDepartmznt, university of Otago,P,O, Box 56, Duned.in, New Zealand ALBEMOALBERTI Istiato d.iMineralogia" (JniversftA di Fenara, CorsoErcole I" d.'Este,j2, 144100Ferrara, Italy TIIOMAS ARMBRUSTER Laboratoimftr chcmischeund mburalogische Kristatlographie, Universitdt Bern" Freiestrasse 3, CH-i012Bem, Swiaerl'anl GILBERTOARTIOLI Dipartimentodi Scienzed.ell.a kna. [Jniversitd.di Milana,vin. Botticelli, 23, I-20133 Milarc, Italy CARMINECOLELLA Dipartimentodi Ingegneriadei Materiali e dellaProd.azionc, Universitd Fedcrico II di Napoli, PiazzpleV Tecchio,80, I-80125 NapolL ltaly ERMANNOGALLI Dipartimcntod.i Scienze dellaTbrra, Universitd di Modena,via S.Eufetnia, 19, 141100 Modena, Italy JOELD. GRICE MineralSciences Division, Canadian Musewn of Naturc,Ottawa" Ontarin KiP 6P4,Canada FRIEDRICHLIEBAU Mineralogisch-PetrographischesInstint, IJniversitdtKiel, Olshaasenstasse40-60, D-2300 Kiel" Germany

JOSEPHA. MANDARINO (retiredfrom Subcommittee,December I 994 Depanmcntof Mineralagy,Royal Ontario Mweum, Toronto, Onnrio MSS2C6 Canada

HIDEOMINATO 5-37-17 Kugayam+ Suginami-ku,Tolqo 168,Japan

ERNESTH. MCKEL Division of Exploration and Mining, CSIRO,Private Bag, Wembley6014, WestemAu*tralia" Aastralin

ELIO PASSAGLIA Dipanimento di ScienzedellaTerra, Universitd.di Modena"via S. Eufemia 19,I-4II0a Modenu haly

DONALD R. PEACOR Departnent of Geological Sciences,University of Michigan, Ann Arbor Michisan 48109, U.S.A.

SIMONAQUARTIERI Dipartim.entodi ScienzeitellaTena, Universitd ili Modeno, via S. Eufemiu 19,141100 Modena"Italy

ROMANORINALDI Dipartinznto di Scienzedella Terra, Universitd.di Perugia I-06100 Perugia" Italy

MAITCOLMROSS U.S. Geological Suney, MS 954, Reston, Wrginia20192, U.SA.

RICHARDA. SHEPPARD U.S. GeologicatSurvey, MS 939, Box 25M6, Federal Center Denve4 Colorado 80225, U.SA.

EKKEHARTTILLMANNS Institutflr Mineralogie md Kristallographie, UniversitdtWiett Althanstrasse14, A-1090 Vmna, Austria

GIOVANNAVEZZALIM Dipartimento di Scienzed.ella Tena, Ilniversitd. di Modena, via S. Er{emia 19, 141100 Moden'alta$

I E-mnil address: [email protected] r572 THE CANADIAN MINERALOGIST

ABSTRACT

This report embodiesrecommendations on zeolite nomenclatureapproved by the InternationalMineralogical Association, Commissionon New Minerals and Mineral Names.In a working definition of a zeolite mineral usedfor this revie\p,structures containingan intemrptedf:amework oftetrahedraare accepted where other zeolitic propertiesprevail, and completesubstitrtioD by elementsother than Si andAl is allowed. Separatespecies are recognizedin topologically distinctive compositionalseries in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemicalsymbol is attachedby a hyphento the seriesname as a suffx, exceptforthe narnesharmotomq pollucite andwairakite in the phillipsite and series.Differences in space-groupsymmetry and in order-disorder relationships in zeolites having the sametopologically distinctive framework do not in generalprovide adequategrounds for recognition of separate species.Zeolite species ate not to be distinguished solely on the ratio Si : Al except for heulandite (Si : Al < 4.0) and clhoptilolite (Si : Al > 4.0). Dehydration"partial hydration, and overhydrationare not suffrcient groundsfor the recogrition of separatespecies of zeolites. Use of the term "ideal formula" should be avoided in referring to a simplified or averaged formula of a zeolite. Newly recognized speciesin compositional series are as follows: brewsterite-Sr, -Ba" chabazite-Ca" -Na -Ii clinoptilolite-I! -Nq -C4 dachiardite-C4 -Na, erionite-Na"-K, -Cq faujasite-Na,-Ca -Mg, ferrierite-Mg, -K -Na gmelinite-Na,-Cq -K heulandite-Ca,-Nq -K -Sr, levyne-Ca -Na paulingite-K -Ca, phillipsils-1.{q -Cq -K and stilbite-Ca, -Na. Key references,type locality, origin of name,chemical dat4 ZA structure-typesymbols, space-group synmefiry, unit-cell dimensions,and commentson structureare listed for 13 compositional series,82 acceptedzeotte mineral species,and thJee of doubtfrrl status.Herschelite, leonhardite, svetlozarite, and wellsile are discreditedas mineral speciesnames. Obsolete and discreditednames are [sted.

Keyvords: zeolitenomenclanre, herschelite, leonhardite, svetlozarite, wellsite, brewsterite,chabazite, clinoptilolite, dachiardite, erionite, faujasite, ferrierite, gmelinite, heulandite"levyne, paulingite, phill;Fsite, stilbite.

SoMruans

Ce rapport contient les recommandationsi propos de la nomenclaturedes z6olites, telles qu'approuvdespar l'Association min{mlsgiqus internationale,commission des nouveaux min6raux et des noms de min6raux. Daas la d6finition d'une z€olite retenueici, les structurescontenant une trame interrompue de t6traAdressont acceptdesdgns les cas oi les autrespropri6t6s satisfont les crit0res de cetie famille de min6raux. De plus, il peut y avoir remplacementcomplet de Si et Al par d'autres 6l€ments.Des espbcesdistinctes font partie de s6riesde compositionsdont I'agencementtopologique est le m6me,le cation dominant ne faisant pas partie de la trame d6ierminantl'espBce. Pour en d6terminerle nom, il s'agit de rattacherle symbole chimiqueappropri6 au nom de la s6riepar un trait d'union, sauf dansles casde harmotome,po[ucite et wairakite, faisantpartie des s6riesde la phillipsite et de I'analcime. Des diff6rencesen symdtrie exprim6espar le groupe spatial et en degt6 d'ordre Si-Al dansles z6olites ayant le m€me agencemetrttopologique ne suffisent pas en g6n6ralpour ddfinir une especedistincte. Le seul critdre de rapport Si : Al ne sufEt pas pour distinguer les espBcesde z6olites, sauf pour la heuladite (Si : Al < 4.0) et clinoptilolite (Si : Al > 4.O).Yetat de d6shydratation,d'hydratation partielle, et de sur-hydratation ne suffit pas pour reconnaltre une espBcedistincte de z6olite, On doit 6viter d'utiliser le concept d'une "formule iddale" en parlant des formules simplifi6es ou repr6sentativesdes z6olites. I,es nouveaux noms d'espOcesdans ces s6ries de compositions sont: brewsterite-Sr,-Ba, chabazite-Ca,-Na -K, clinoptilolite-I( -Na -Ca dachiardite-Ca -Na,6rionite-Na" -K -Cq faujasite-N4 -Ca -Mg, ferrierite-Mg, -K, -Na, gmelinite-Na, -Ca, -K, heulandite-Ca, -Na, -K, -Sr, l6vyne-Ca, -Na, paulingite-K, -Ca, philipsite-Na, -C4 -K, et stilbite-Ca"-Na- Nous pr6sentonsles r6f6rences-cl6s,la localit6-type,l'origine du nom, des donn6es chimiques,le symbole structural ZA, le groupe spatial et la syndftie, les parambtes r6ticulaires et des commentairessur la structurede 13 s6riescompositionnelles, 82 espBceshomologu6es, et trois dont le statut est douteux.Herschelite, ldonhardite, svetlozaxite,et we[site sont discr6dit6escotrme norns d'esp€cesmin6rales. Nous dressonsune liste des noms obsoldteset discr6dit6s. (Iraduit par la R6daction)

Mots-cl6s:.nomenclature des z6olites, herschelite, ldonhardite, svetlozarite, wellsite, brewsterite, chabazite,clinoptilolite, dachiardite,6rionite, faujasite, ferrierite, gmelinite, heulandite,l6vyne, paulingite, phillipsite, stilbite.

INIRoDuc"iloN described with their present 6saning by L842. Forty-six zeolites were listed by Gouardi & Galli The name"zenli€'\'ras inftoducedby the Swedish (1985), and new speciescontinue to be described.The mineralogist Cronstedt ia 1756 for certain silicate first crystal-structure determination of a zeolite was minerals in allusion to their behavior on heating in a done on analcime (Taylor 1930); following this, Hey borax bead (Greek zeo =borli lithos = stone). Three (1930) concluded tlat zeolites in general have such minerals were listed by Haiiy (1801), namely aluminosilicatefraneworks with loosely bondednlkali stilbite, analcime, and harmotome, together with or alkali-earth cations, or both. Molecules of HrO "mesofype", which has not survived. Chabazite and occupy extra-framework positions. He pointed out leucitehad been named even earlier. Nineteen had been tle consequentialrequirements that the molar ratio RECOMMENDEDNOMENCI.-ATURE FOR AOLIIE MINERALS L573

AlzOr : (CaSr,BaNaz,K)O = 1 and that O : (Si + Al) = The recommendations of an IMA CNMMN 2 in the empirical formula. subcommitteeset up to review zeolite nomenclature Zeolites have other highly characteristic features are set out below. Theserecommendations have been developedto varying degrees,notably the potential adoptedby the Commission. for reversiblelow-temperature dehydration, the ability of the dehydrated forms to reversibly absorb otler DtrnmIoN oF A ZEoIxrEMINERAL molecules,a tendencytoward more or less easylow- temperatureexchange of extra-frameworkcations, and In arriving at its working definition of a zeolite, a lack of clear-cut, structu(ally controlled constraints 1ls gufssmmittee took the view that zeolitesin the on end-membercompositions in terms of Si : Al ratios historical na4 mineralogical sense are naturally within the framework. In somecases, observed extra- occurring minerals, irrespective of how the term may framework compositions may be artefacts of cation be appliedto syntheticmaterials and in industry.In the exchangeresulting from humanactivities in the labora- light of advances in mineralogy, the Hey (1930) tory or elsewhere,and firrtlermore, tle compositions definition is found to be too restictive. The Subcom- are not convenienflydetermined by traditional optical mittee gave particular considerationto the following metiods. Perhapsfor a combination of such reasons, questions.Is more that 5OVosubstitution of elements separatenames have beenglven to few zeolites on the other than Si andAl permissiblein tetrahedralsites? Is basis of the dominant extra-framework cation in tle presenceof HzO and of extra-framework cations solid-solution series. This conflicts with standard absolutely essential?Can'ointemrptedo' framework practicein most mineral groupsand with guidelinesof structuresqualify as zeolite minerals? Thesematters the Commissionon New Minerals and Mineral Names are furtler discussedinAppendix 1. (CNMMN) (Nickel &Mandarino 1987). With intensification of research and tlre advent Definition of the electron microprobe, a flood of information on compositions has become available, and with A zeolite mineral is a crystalline substancewith a automated single-crystal X-ray diffractometers atrd structure characterized by a framework of linked otler developments,many complexitieshave been tetrahedra,each consisting offour O atomssurrowtding investigated,including order-disorderrelationships in a cation. Thisframework containsopen cavities in thc the frameworks and associatedchanges in unit-cell form of channelsand cages.These are u.suallyoccupied paxameters and symmetry. Thus in the case of by H2O rnoleculesand. extra-framework cations that analcime,Mazzi & Galli (1978),Te,ertsfraet al. (1994), are commonly exchangeable.The channelsare large and otlers have demonstrateda wide range of space- enough to allow the passage of guest species.In the group symmetries associatedwith different patterns hydrated.phases, dehydration occurs at temperatures of order in tle framework and possible displacive rnost$ below about 400oCand is largely reversible. transformations. Sites of extra-framework cations Thef'ram.ework may be interru.ptedby (OH,F) groups; are commonly less well defined in an open, zeolitic theseoccupy a tetrahedronapex that is not sharedwith structuretlan in most other minerals,and are variably adjacent tetrahedro. occupied.Guidelines allowing recognition of separate speciesdepending on the dominantion occupyingeach Applicationof the defi.nition(see also Appendix 1) structural site are thus compromised in the case of extra-frameworksites in zeolites.Furthermore, changes Relatively easy exchange of extra-framework in the occupancyof suchsites can distort the framework cationsat relatively low temperatureis a characteristic to varying degrees,changing the space-groupsymmetry. feature of zeolites and zeolitic behavior, but varies Some minerals meet traditional criteria for greatly from speciesto species.Its extent does not zeolitesin all respectsexcept that they containR Be, or provide a convenientbasis for the definition of zeolites. other elements in tetrahedral sites, witl consequent In practice, it appears that channels must have a departurefrom the requirementof Hey (1930) that O : minimum width greaterthan that of 6-memberedrings (Si + A1) = 2. Other structurally related minerals vrith (i.a., rings consistingof six tetrahedra)in orderto allow zeolitic propertieshave all tetrahedralsites occupied by zeolitic behaviorat normal temperaturesand pressures. elementsother than Si andAl. Certain other minerals Framework structuressuch as in feldspars,nepheline, displaying zeolitic properties depart from traditional sodalites,scapolites, melanophlogite, and probably requirementsfor a zeolitein having a franework that is leifite, in which any channelsare too resticted to allow intemrpted by some (OH) groups. An example is typical zeolitic behaviorsuch as reversible dehydration, parth6ite,fisted by Gottardi & Galli (1985) as azsoTitp. molecularsieving, or cation exchange,are not rggarded Synthesisand structural analysis ofmaterials having as zeolites. zeolitic properties have become major fields of Framework densify, defined as the number of researchand have led to a voluminousliterature, as has tetrahedralsites in 1000 43, was used as tle criterion the industrial use of zeolitic materials. for inclusion inthe Atlas of Zeolite Structure Ilpes 1574 TT{E CANADIAN MINERALOGIST

@Iereret aL 1996).However, this criterion providesno for departing from tle rules for giving a new nrme. evidencethat the channelsnecessary for diffitsion are Casesarising under Rule 2 are particularly difficult, present,as well as cages,and it has not been adopted and require individual consideration. in the presentdefinition. In some minerals witl a tetrahedral framework RuIe 1 sfructureand other zeolitic characteristicsas described, (a) One or more zeolite minerals having a namely parth6ite, roggianite, maricopaite, and topologically distinctive framework of tenahedra,and chiavennite, one apex of some tetrahedrais occupied a compositionthat is distinctive for zeoliteshaving that by an (OH) group or F atom insteadof being occupied framework, constitute separatespecies. (b) Zeolites by an O atom. This (OH) group or F atom does not having the sametopologically distinctive framework form a bridge with an adjacent tetrahedron. The of tetrahedraconstitute a series when they display a framework is tlus intemrpted. Such minerals are here substantial lange in composition in which differing acceptedas zeolites. extra-frameworkcations may be the most abundantin In terms of the definition adopted,minerals of the atomicproportions. These cations rnay occupydifferent cancrinitegroup can arguablybe consideredas zeolites. extra-frameworksites. Such sarras consist of two or This group has long been regardedby many or most more speciesthat are distinguishedon the basis of the mineralogists as distinct from tle zeolites, in part, at most abundantextra-framework cation. least, becauseof the presenceof large volatile anions (e.9., Hassan 1997). They are not reviewed in the Application ofthe rule presentreport. 3a1trs1similarly, wenkite containslarge cagesand channels,but theseare blocked by SOa,C4 Laumontite, for example, has a topologically and Ba ions (Wenk 1973,Merlino 1974),inhibiting distinctive framework and a compositionwhich, as far zeolitic behavior. In addition, no water is lost below asis cunently known, is distinctivein that Ca is always 500oC.Wenkite is not includedas a zeolitein this report. the dominant extra-framework cation. It is a separate Leucite has seldombeen regarded as a zeolite, as it zeolite speciesunder Rule la. Natrolite, mesolite,and does not display a full range of zeolitic behavior. scolecitehave the sametopologically distinctivefrane- Nevertheless. it has the same framework structure work structure as each other, and have compositions as analcime and conforms to the adopted definition. that are distinctive. They also are separate species Ammonioleucite can be regarded as an analcime underRule la. derivative,can be synthesizedfrom analcimeby cation Zeolites having the topologically distinctive exchange, and may have formed naturally by chabazitestructure have a range of compositions in low-temperaturereplacement of analcime.Leucite and which any one of Ca, Na, or K may be the most ammonioleuciteare included in the list of zeolites.as is abundantextra-framework cation. SubstantialSr is in kalborsite, a derivative of the edingtonite structure. some casespresent as well, bui so far has never been Also conforming to the definition adopted are reported as the most abundant in natural gxamples. tle beryllophosphatespahasapaite and weinebeneite. Chabaziteis a seriesconsisting ofthree separatespecies Thesecontain neither Si norAl and can be regardedas underRule lb. It is known that near-end-memberNa end-memberexamples of Si-free zeolites or zeolite K phosphates. Ca and Sr compositionsare readily obtainableby ion exchangefrom nalural Ca-dominantchabazite at 110"C (Alberti et al. L982a), but this is not the essential RuLesron NowNo.eruns or Zrolrre MnrERAr-s criterion for recognition ofthe natural series. Mesolite may have either Na or Ca slightly in In presentingthe following rules for nomenclature excessof the other,but the ratio Na : Ca is alwaysclose of zeolite mine14ls,the Subcommitteefeels strongly to I : 1. The rangeof its compositionis not regardedas that they should be viewed as guidelines rather than "substantial", and mesolite is not divided into more as being rigidly prescriptive. As stated by Nickel than one specieson groundsof composition. & Mandarino (1987): "It is probably not desirable Severaldistinct structuralsites for extra-framework to formulate rigid rules to define whether or not a cationsare recognizedin many zeolites,but in view of compositional or crystallographic difference is tle relatively loose bonding and specializedproblems sufficiently large to require a new mineral name, and in esablishing the individual site-occupancies,only the eachnew mineral proposal must be consideredon its total population of exfra-frameworkcations should in own merits". Explanatorynotes following the proposed generalbe usedin defining zeolite species. rules or guidelinesgive examplesof how the Subcom- mifreeenvisages thaf rulebeing applid but Iike Nickel Rule 2 and Mandarino,the Subcommitteeurges that eachcase be treated on its merits. In some casesncompelling (a) Differences in space-groupsymmebry and in reasonsmay exist on grounds ofhistorical usagefor order-disorderrelationships in zeolite mineralshaving retaining an existing name,or other groundsmay exist the sametopologically distinctive framework do not in RECOMMENDEDNOMENCT.ATURE FOR reOLITE MINERALS L57s general provide adequategrounds for recognition of continuousrange of compositions.The usual 507o separatespecies, but eachcase should be treatedon its compositional fl1ls gnnnsf be applied, as there are no merits. (b) In assessingsuch cases, other factors, such clearly defined Si,Al end-membercompositions for as relationship to chemical composition, should be heulandite and clinoptilolite. Thermal stability has taken into consideration. been used by some investigators to distinguish clinoptilolite from heulandite. This is a derivative Application ofthe rule property,however, suggested by Mumpton (1960)as an aid to identification, and it is not appropriate as the The Subcommitteefound it to be impracticable to basisfor definition. Afietti (1972) and Boles (1972) formulate quantified criteria 1e1hnadling problems haveshown that thereis no gapin compositioneither in arising from this rule. Irrespective of decisions that frameworkor extra-frameworkcation contents between have been made in the past, care should be taken heulandite and clinoptilolite, and that samplestransi- that departuresenvisaged in Rule 2b from the principle tional in composition show intermediateproperties in enunciatedin Rule 2a are basedon grounds ttrat are terms of thermal stability. truly compelling. Analcime and certain other zeolites exist with Rule 4 several different space-group symmetries, in some casesoccurring on a yery fine scalein the samehand Dehydration,partial hydration, and overhydration, specimenand with the samechemistry. Even though whether reversible or irreversible, are not sufficient this may be related to Si,Al ordering, separatespecies grounds for the recognition of separate species of namesin thesecases are in generalnot warranted. zeoliteminetals. Gismondineand garronite are examplesof zeolites that havethe sametopologically distinctiveframework. Application ofthe rule Both haveCa as the dominantextra-framework cation. Their differing space-gtoupsymmetry is associated If a new topologically distinctive framework arises with disorderedSi,Al and the presenceof significant from overhydration or partial dehydration, separate Na in garronite.They are acceptedas separatespecies. speciesstatus would result from applicationofRule 1. Gobbinsiteand amicite have topologically tle same Leonhardite, a partially and in most casesreversibly framework structure as gismondine, but are alkali- dehydratedform of laumontite, is not acceptedas a dominant. Their different space-group symmetries separatemineral species. Epear to be relatedto Si,Al disorderin gobbinsiteand possiblechemical differences, and they areprovisionally Rule 5 retained. Barrerite is topologically similar to stilbite and stellerite,but it has different symmetry correlated Individual speciesin a zeolite mineral serieswith with the presenceof extra cationsthat causerotational varying extra-frameworkcations are named by attaching displacementswithin the framework (Galli & Alberti to the series name a suffix indicating the chemical 1975b);it is similarly retained. symbol for the extra-framework element that is most abundantin atomic proportions,e.9., chabante'Ca. Rule 3 The following exceptionsare made:a) On grounds ofhistorical precedenceand long-established usage, the Zeolite mineral speciesshall not be distinguished tame harmotome is retained for the Ba-dominant solely on the basis of the framework Si : Al ratio. An member of the phillipsite series. b) On grounds of exception is made in the case of heulandite and long-establishedusage, pollucite is retained as the clinoptilolite; heulandite is defined as tle zeolite Cs-dominantzeolite of the analcimestucture-type. On minslal series having the distinctive framework grounds of establishedusage and markedly different topology of heulandite and the ratio Si : Al < 4.0. space-gtoupsymmetry and Si,Al order related to the Clinoptilolite is defined as the series with tle same extra-frameworkcation content@ule 2b), wairakite is framework topology and Si : Al 2 4.0. retained as the Ca-dominant zeolite of tle analcime structure-type. On the ottrer hand, herschelite is Application ofthe rule suppressedin favor ofchabazite-Na (Appendix 2).

Many zeolites have a widely variable Si : Al ratio, Application ofthe rule but this, in itself, is not regardedas providing adequate grounds for recognition of separate species. The New species arising from Rule 5 that are well exception is basedon entrenchedusage of &e names authenticatedby publisheddata are set out in Table 1. healanditeand clinoptilolifa, andtheir conveniencefor Future proposalsfor additional new speciesunder this recognizing an important chemical feature.The cutoff rule should be dealt with as for any otler proposalfor value adopted(following Boles 1972) is arbitrary in a a new mineral name. r576 TIIE CANADIAN MINERALOGIST

Adoption of a Levinson-style system of suffixes TABLE I. NEWLY PROPiOSK)AOLTTE SPECIES wmtrN coMPiosrnor{AlgERrEst avoids the proliferation of a large number of new and potentially unrelated speciesnames, and ensuresthat all membersof a topologically identical compositional Sp6i€s nono Spoi€s nrdg seriesare indexed together.It has the great advantage that where adequatechemical data are not required or brwnt€dt€ brwdecitesr gedhft, gnrfidtFNa are not available,a mineral canbe referredto correctly br$rs€dtsBe gmdid€..Ch by an unambiguousseries name. The systemadopted gn8tidbK here is witlout the brackets (parentheses)used by dhabarrt+Ca hgrhdno.Ce Levinson (1966) minerals. claboziteNa in suffixes for rare-earth chabaziteK hsl$ditFNr Substantial amounts of extra-framework cations haileditFK otler than the dominant one may be indicated, if clhopdolte dinoftiloliteK hs'hndit*Sr desired, by the use of adjectives such as calcian and clitroFdolitsNs sodianne.g., calcian clinoptilolite-K. Such adjectival olinopflolilFCa lsr4no la4tmCa modifiers are not part of the formal nameof a species. l64fseNa Informal useis often madeof descriptiveterms such dacliardito dacfiindite-Ca as chabaziteand Ca cbabazite,in which the daclirditeNg padiqdto padi4$sK name or symbol of an elementis used adjectivally. In fingilsCs gioite-Ns conformity with generalIMA guidelines, should these pbillipcito pmil6ileN8 not print simitFK appearin as mineral namesor in hyphenated sioni!+Ca pmipitc-Ca form. The correct narnefor tle mineral speciesin this pmipoits-f caseis chabazite-Ca.Terms such as sodium-substituted frliasit&.Nr chabazite-Caare suggestedfor what in effect would be h{ieitscs dilhe-Ca a synthetic chabazite-Naprepared by cation exchange scilbiteNa from chabazite-Ca.Chabazite remains the correctname for a memberof the chabaziteseries that is not sfecifi- ftnisitelvt cally identified on compositionalgrounds. ftrrigit+I( ftrdcitoNa Rule 6

6i8iml t,rpe (a) $ lto firc-med nmbo of ec& s€d€sis ths @ to xtbic,hths Space-groupvariants of zeolite mineral species Bpeim ftrth€ sis 8@ to bdorg; may be indicatedby placing the space-groupsymbol in round brackets(parentheses) after the mineral species name,e.g.,analcime(Ibca),heriandite-Ca(C2lm).(b) Levels of order may be indicated by adjectival use of oodisordered" words such as or "fullv ordered" before paragraph).Users of the list should bear in mind tlat the mineral name. the Si : A1 ratio, or, more generally, occupancy of tetrahedralsites by Si, Al, R Be, Zr, and possibly Application ofthe rule otler elementsovaries widely in many zeolites. The total exfta-frameworkcation chargevaries accordingly. Modifiers as suggestedhere are not paxt of t}le Major variation in more-or-lessexchangeable, extra- formal namee1&s mineral. framework cations is also a feature of many natural zeolites. Contents of H2O tend to decrease with AccspIEDZEourE SERTFSAND Sprcrss increasing number and size of extra-framework cations, as well as with increasing temperature and Zeolites to be elevated to series status and the decreasing P(HzO). Such variations can be vital to consequentialnew speciesto be recognizedon the basis petrological, geochemical,environmental, and experi- of the most abundantextra-framework cation (Rule 5) mental considerations. are set out in Table 1. gimFlified or generalizedformulae of zeolites,e.9., An annotated list of acceptedzeolite series and NaAlSi2O6.H2Ofor analcime,have often beenreferred speciesfollows below. In eachentry for series,and for to as "ideal" formulae.However, the supposedideality those speciestlat are not membersof compositional may be in writers' desirefor simFlicity, rather than in series, a simplified or generalized formula is given anything fundamental to the zeolites concerned,and in the first line. This is followed by Z, the number of can lead to false assumptions.There is much evidence theseformula units per unit cell, as given later in the that the compositionof naturally occurringanalcime is entry. The sim.Flified or generalized formula should a function of the chemicul eayllenment in which it be regarded as representative only, and should not forms (e.9.,Coombs & Whetten1967).In environments be regarded as an o'ideal" composition (see next of low Si activity, as in alteredsfrongly silica-deficient RECOMMENDBD NOMENCI-ATTJRE FOR AOLITE MINERALS I577 alkalingrocks, natural analcime approaches a Si : Al both Fez* and Fd+ may enter the structures of some ratio of 1.5. The composition in burial metamorphic zeolites in extra-framework or framework sites, or rocks in equilibrium with quartz appears to be both. distinctly more Si-rich than the supposed'oideal"Si : Al Space-group symmetry and crystallographic value of 2. The evidently metastableequilibrium in parametersfollow. Many acceptedzeolite speciesexist natural environments contafufng siliceous volcanic with more than oneknown space-groupsymmetry, and glassor othersource of silica yielding higher activity of these are listed. Variations in space-gtoupsymmetry Si than coexistencewith quartz,leads to analcimeu.ith and variationsin order-disorderrelationship of frame- Si : Al approaching3. Analogousobservations apply to work cations are not in themselvesadequate evidence heulandite and other zeolites. If "ideaf is taken to for establishingnew species(Rule 2). Cell parameters imply equilibrium, it can tlerefore be concludedtlat given are as reported for material specified in key this is a function of the chemical (and P-T) environ- references.Cell dimensionsof many speciesvary ment during crystallization,rather than simply being a widely as a result of variablecomposifions, variable function of crystal structure. Differing Si : Al ratios extent of order, and differing levels of hydration. may in turn favor different patterns of order in tle Except for a few newly described species,details of frameworkApplication of the term "ideal" to simFlified structure, including size and orientation of channels, or averagedformulae of zeolites shouldbe avoided. can be obtainedfor eachstructure type from Meier et Also given in the fust line of each entry is tle aL (1996)and arediscussed in Gottardi & Galli (1985). structure-type code allocated by the Structure The acceptedseries and speciesare as follows: Commission of the International Zeolite Association (ZA) and listed in Meier et al. (L996). The code Amicite consists of tlree capital letters. A preceding hyphen indicatesan intemrpted framework of tetrahedra. I(aNaa[A\SisO32].10H2O The second line of each relevant entry starts Z= 1 GIS with the odginalreferencein whichthe currentnane of Alberfr.et aI. (1979).Tlpe locality: Hiiwenegg(a Tertiary the mineral, or a nearvariant of tlat name,is given, melilite nephelinite volcano), Hegau, southwestern followed by the type locality, or, in the caseof descrip- Germany.Named after GiovanBattistaAmici (178G tions that predate the concept of type localities, the 1863), inventor of tle Amici lens and microscope generalregion of origin of tle material on which the objectiveswith a hemisphericalfront lens. name and original descriptionare based,rrhere this is Both type amicite and the only other known example known. The locality is followed by a note on the (Khomyakov et al. 7982) include minel Q1. f.t = derivation of the name.Further information on these 0.51.0.49. mattersis given by Gottardi & Galli (1985), Clark Monoclinic,.I2, a 1O.226(l),b LO.422(L),c9.884(1) A, (1993), and Blackburn & Dennen(1997), but in some B 88.32(2)". casestle information is hererevised. The framework is characterizedby double crankshaft Next is given inforrnation on tle currenfly known chainsas in gismondine(Alberti &Yezzalni1979). rangein compositionof the mineral concerned.This Amicite has tle same framework topology as includes known values,or rumgeof values,for the \i, gismondine.Si,Al and NaK distributions are ordered proportion of tetrahedronsites occupiedby Si atoms, and lower tle symmetry from topological l4llamd to as reportedin publishedresults of acceptableanalyses. real symmetry.I2. For many zeolites, this value varies widely, and the possible, valuesreported may not indicatethe firll range Ammonioleucite especiallyin the caseof the rarer zeolites. compositions Much information on zeolite was (NII4)[AlSirOr] Z = L6 ANA givenby Gottardi& Galli (1985).The present compilation incorporatesresults offurther extensivesearches ofthe IJoi et al. (1986). Tlpe locality: Tatanzawa,Fujioka, literature. A widely used criterion for acceptability of Gunma Prefecture, Japan. The name reflects its zeolite compositions is that the value of the balance- compositionand relationshipto leucite. error function of Passaglia(1970) Material from tle only known locality contains significantK. T5i= 0.70. Tetragonal,I41la, a 73.2L4(L),c 13.713(2)A. shouldbe less than l07o, a figure that is itself arguably Analcime excessive.The calculation of.EVomay be modified to allow for other suspectedcations, such as FeA and Cs*. Na[AlSi2O6].H2O 2=].6 ANA The role of Fe causesproblems that may not be Hany Q797, p. 278). Tlpe locality: near Catanes, resolvable.Some Fe reportedin zeolitesis undoubtedly CyclopeanIsles, Italy (Haiiy,1801, p. 180-185).Name a contaminant, but there are reasonsto suspectthat from Greek roots meaning "witlout strength", in 1578 TTIE CANADIAN MINBRALOGIST allusionto the weakelectrical etrects induced by friction. Bikitaite In most analyzedspecimens, Na is the only substantial extra-ftameworkcation, but analcimeforms a continuous LilAlSi2O6l.H2O Z=2 BIK serieswith pollucite and possibly with wairakite (Seki Hurlbut (1957). Tlpe locality: Bikita, Zimbabwe. & Oki 1969,Seki 1971,Cho & Liou 1987).Ts varies Named after the type locality. widd 0.594.73 (e.9.,Coombs &Whetten 1967).As Tlvo known localities, with the bikitaite having very Si increases,NaAl decreasesand HrO increases. similar ee6p6sitions.Tsi = 0.67. Topological symmetry cubic, is Ia3d.Real symmefy MonoctinicfP2 1, a 8.6L(4), b 4.962(2),c 7.600(a)A, variants include: B L14.45(l)'(Kocmanet aI.1974). cubic,Ia3d, a 13.725A; Also triclinic, Pl, a 8.606(1),b 4.953(I), c 7.599(l) 4,, tetragonal,I41lacd, a 13.723(1), c 13.686(10)A; cr 89.89(2)", B 174.42(2)', y 89.96(2)" (Bissert & a L3.72I(I), c L3.735(l) ANIaz.zi & Galli 1978); Liebau 1986). tefragonaT,I41la; The framework stucture consistsof 5-memberedrings orthorhombic, Ibca, a 13.733(l), b L3.729(I), c linked by additionaltetrahedra Its topologicalsymmetry 13.712(r)L: a 13.727(2),b 1.13.71.4(2),c B.7a0Q) A. is P21.The monoclinicP2t variant of Kocmanet al. has Mun & Galli 1978); partly orderedSi,Al distribution;the triclinic Pl variant monoclinic with 2-fold axis parallel both to pseudo- of Bissert and Liebau is highly ordered. cubic[100] and [110]; triclinic, a 13.6824(5),b L3.7OM(6),c L3.7063(5)A, Boggsite o 90.158(3)',B 89.569(3)',y 89.543(3)'(Hazen & Finger 1979); CatNa:[AlrqSinOp2].70H2O and probably trigonal with variable Si,Al order (a.9., Z=I BOG Hazen & Finger 1979,Teertstra et al. 1994). Pluth er al. (L989) and Howard et al. (L990).TYpe The name applies to Na-dominant composifionswith locality: Basalt abovecliff, Goble Creek, south side of this framework structureregardless of the degreeand km Goble, Columbia patternsof order. tle Neer Road, 0.2 nofih of County, Oregon,U.S.A. Named after Robert Maxwell Barrerite Boggs(father) and Russell Calvin Boggs(son), mineral collectors in the Pacific Norttrwest. Nar[AlrSirOtr].6H2O Z=8 STI Passaglia& Pongiluppi (1974,1975).Tlpe locality: Tlpe boggsite approximatesthe above formula, with Capo hrla, Sardinia, Italy. Named after Professor minor Fe, Mg, and K. Boggsitefrom Mt. Adamson, RichardM. Barrer (1910-1996)ef Imperial College, Antarctica (Galli et al. 1995) approximates London,for contributionsto the chemistryof molecular Ca6l.{a5K[AlrsSilOp2].70H2O,with minor Fe, Mg, Sr, sieves. Ba.T51 = Q.Sl. Also known from Kuiu Island, Alaska @i Renzo & Orthorhombic, Irnma, a 20.236(2), b 23.798(L), Gabelica1997). Tsi =O.77,O.78. The typeexample has c 12.798(l)A (Ptutl & smirh 1990). composition: Si,Al highly disordered. (Na:.asKr.oeCao.sM&.rz)[Als.reF% .orSin.72O7).25.78H2O. Orthorhombico Amma ot Arnmm, a L3.643(2), Brewsterite (series) b 18.200(3),c 17.842(3)A (Passaglia& Pongiluppi r974). (Sr,Ba)zlAlaSiuO32l.10H2O The stucture is similar to that of stilbite and stellerite. Z=L BRE but it has different symmetry as a result of extra Brooke (1822). Tlpe locality: Strontian, Argyll, cations, which causerotational displacementswithin Scotland.Named after Sir David Brewster (1781- the framework (Galli &Alberti 1975b). 1868),Scottish natural philosopherwho discovered laws of polarization of light in biaxial crystals. Bellbergite Monoclinic, P21lm,P2y or triclinic (Akizuki 1987a, (KBaSr)zSrzCar(CaNa)a[Al1sSi13072].30H2O Akizuki et aL.1996). Z=L EAB The structureis sheet-likeparallel to (010) @errotta& Riidinger et al. (1993). Tlpe and only known locality: Smith 1964). Bellberg (or Bellerberg) volcano, near Mayen, Eifel, Germany.Named after the locality. Brewsterite-Sr Ca is overall the dominant extra-framework cation. Tsi= 0.51. New name for the original speciesof the series;Sr is Hexagonal,possible space-groups^PQlmmc, P62c, alid the most abundantextra-framework cation. T51in the P63mc,a 13.244(l),c 15.988(2)A. ran9e0.744.75. The framework structure is as for svnthetic zeolite Monoclinic,72rlm, a 6.793(2),b 17.573(6),c 7.759(2) TMA_EAB. A, B 94.54(3)oofor composition (Sr1.a2Baa.arKo.r) RECOMMENDED NOMENCI.Af,URE FOR ZBOLITE MINERAI.S r579

[AI4.uSirLe5O32].aHzO(Schlenker et al. 1977a). Although originally described 4s sqalaining "silexn On optical grounds,possibly triclinic (Akizuki I987a). alumina, and potash" (L6vy 1825), tle name Refined as triclinic in three separategrowth-sectors by herschzlitehasoften beenapplied to chabaziteminerals Akizuki et aI. (L996). of tabular habit and high Na content. Herschelite Partly orderedSi,Al distribution. shouldno longer be used as a speciesname.

Brewsterite-Ba Chabazite-K

New name;Ba is tle most abundantextra-framework New name; K is the most abundant single extra- cation. frameworkcation. Othercationsvary widd T51inthe Proposed type-example: the Gouverneur Talc range0.6G{.74. Company'sNo. 4 wollastonitemine nearHarrisville, Suggestedfype-specimen: Tufo Ercolano,Ercolano, Lewis County, New York, U.S.A. (Robinson & Grice Naples, Italy (De Gennaro & Franco L976)' 1993).Also Cerchiaramine, Liguria, Italy (Cabella et a iz.t+g(z), ts.tos(r) A, for hexagonalcell, witl " al. L993,including structurerefinement). Tsi = 0.73, composition (K2.s6Nan.$Cas.a6Mge.16Sre.e1)[Ala37Fe6.6s 0.74. [email protected]. Monoclinic^,P21lm ot P21,a 6.780(3),b L7.599(9), c 1 .733(2)L, B 94.47(3)" for type examFle,containing Chiavennite up to 0.85Ba per 16 O atoms. CaMnlBerSisO r(OlD2l'2H2O Chabazite (series) Z=4 -{HI Bondret al. (1983),Raade et aI. (1983).Tlpe locality: (Caos,NaK)alAlaSisO S. 12H29 ChiavennaLombardy, Italy. Namedafter type locality. Z=I (trigonal) CHA The limited data available show up to 0.72 Al Boscd'Antic (1792),as "chabazie". The sourceofthe and 0.15 B in tetrahedral sites, and significant original specimenis unclear.The nameis from a word extra-framework Fe and Na (Raade et al. 1983, "chabaziono'used for an unknown substancein the Langhof& Holstam1994). Ts1 in therange 0.63 to 0.68. story of Orpheus. Orthorhombic, Pnab, a 8.729(5), b 31'.326(1'l), Ca-, Na-, andK-dominant species occur in that orderof c 4.903Q) A, (tazzob et al. 1995). frequency,with Sr andMg occasionallysignificant Ba A CaMnberyllosilicate with an intemrptedframework moreminor. Ts varieswidely, 0.58to 0.81. of four-connected[SiOa] and tbree-connected[BeOa] Topological symmetry of tle framework, trigonal tetrahedra. (R3n), wherea = L3.2,c = 15J A (pseudohexagonal cell). Significan! deviationsto triclinic, PI, a * 9.4, ClinoPtilolite (series) b = 9.4,c o 9.4A, U.=94o, B * 94",T- 94" (Smithet al. 1964,l,0lllazzr & Galli 1983). (NaK,Caos,Sro.s,Baos,Mgos)e[Al6si30o72]'-20ILO Partial ordering leadsto the lower symmetry. Z= L I{EU Schaller(1923, 1932).Tlpe locality: in d6semFosed Chabazite-Ca basalt at a high point on ridge running east from Hoodoo Mountain, Wyoming, U.S.A. ("crystallized New namefor the original and most common species; mordenite" of Pirsson 1891).The name reflects its Cais the most abundantsingle exfia-framework cation. inclined extinction and supposed similarity in Other cationsvary widely. Tr; in the range0.58-O.80. composition to "ptilolite" (mordenite). Ptilo-, from a L3.790(5),c 15.0210(4)A, for pseudo-hexagonalcell, Greek, alludes to the downy, finely fibrous nature of with composition (Ca1361.{a6.orlq.20Mg6.02Sre.o:)[Al:.sathat mineral. Fes.61Sis.i3O2l'13.16H2O,from Col de Lares' Val di The cation content is highly variable. Ca-, Na-, and Fass4 Italy @assaglia1970, #L3). K-dominant compositionsare known, and Sr, Ba, and Mg arein somecases substantial. Feh and Fek are Chabazite-Na possibleconstituents. In Pirsson's(1890) analysis,K is the most abundant single cation by a small margin. New name; Na is ttre most abundant single extra- Clinoptilolite-K is thereforetaken as the type speciesof framework cation. Other cationsvary widely. Ts1in the the series.Tn in the range0.8G{.84. nngeO.624.79. Minerals with the sameframework topology but with Suggestedtype-locality: biggest "Faraglione" facing Tsi < 0.80, Si/Al < 4.0 are classifiedas heulandite,with Aci Trezza, Sicily, Italy (Passaglia 1970, #D. which clinoptilolite forms a continuousseries. a L3.863(3),c 15.165(3)A, for hexagonalcell, with Monoclinic,CArn,or A,or Cm. composition (Na3.11K1.65Cax.rrlVlge.66Srs.65)[Ala.53Fes.e1 Structure refinements by Alberti (I975a) and Sir.aoOz].11.47H2O. Armbruster (1993) demonstratevariations in extra- 1580 framework cation sites compared with heulandite Dachiardite (series) and as a function of the extent of dehydration. (Caj5,Na"K)a-5[AI4-5Si20-r eo4s]. 1 3HrO Clinoptilolite-K Z=L DAC D'Achiardi (1906).Dpe locality: SanPiero in Campo, Elba, Italy. Named by the author in memory of his New name for tle original species; K is the most father, Antonio D'Achiardi (1839-1902), frst fuIl abundantsingle sx66-fram.\ /ork cation.A moderately professorof Mineralogy at the University of Pisa. K-rich clinoptilolite-K was referred to as "potassium May containminor Cs andSr. Ts1 in the range0.7H.86. clinoptilolite'by Minato & Takano (1.964).Ts in the range0.8G{.83. Monoclinic, topological symmetry Alm, real symmetry Crn. Monoclinic,AJm. C2,ot Cm.,a L7.688(1,6), b L7.902(9), The structure consists of complex chains of c 7.409(7) A, n tto.solt)o, for (I!.zzNao.rcao.* 5-memberedrings cross-linkedby 4-memberedrings Sre3TMge.,eFee.orlr4ns.sJ[A16.,2Si2essO'f,.nH2O, from (Gottardi & Meier 1963), but with complexities that an off-shore borehole,Japan (Ogrhara & Iijima 1990). commonlyresuhin diffrse andstreaked X-ray-diffraction maxima (Quartieri et aL.7990). Clinoptilolite-Na Dachiardlte-Ca New name; Na is tle most abundant single extra- New name for the original speciesof the series;Ca is frameworkcation. Other cationsvary widely. Ts1in the range0.80--0.84. the most abundantextra-framework cation. Dachiardite from the type locality contains 0.12 Cs atoms per Suggestedtype-example: Barstow Formation,about formula vnut(apfu) (Bonardi 1979).Tsi in tle range 1.6 km eastof mouth of Owl Canyon,San Bernardino 0.7H.83. County,California U.S.A., USGSLab. no. D100594 14e16slinic,topological symmetry C2lmo real symmety (Sheppard& Gude 1969a). Cm. a 1"8.676,b 7.5L8,c 10.246A, B 107.87o,for Monoclinic,QAm, C2, or Crn,a 17.627(4), b 17.955(4), tlte composition (Car.saNao.azlG.e2Csj.11Sre.12Baa.j1) c 7.399(4) 4,, n ne .ZO1Z).(Boles 1972), for type [Al4.s6Fe0.02sir8.s6Oasl.l2.56E2O from tle type locality material of (L969a), (Na'1K1.., Sheppard & Gude Nezz,abnL984). Ca66tBao'Mgo,,Mno.o,)[Al66rFq.6Si,p,nO7.].20.4L12O. Partly ordereddistribution of Si,Al.

Clinoptilolite-Ca Dachiardite-Na

New name; Ca is the most abundant single extra- New name;Na is the most abundantexba-framework framework cation. Other cationsvary widely. Ts1in the cation. range0.80-0.84. Suggestedtype-example: Alpe di Siusi, Bolzano, Italy Suggestedtype-specimen: Kuruma Pass,Fukushima (Alberti L975b). Prefecture,Japan (Koyama & Tak6uchi 1977). Available analytical results for material from seven \/f6a6s1inis,^()1t771,C2, or Cm,a 17.660(4), b L7.963(5), localities, e.9.,Bonardi et al. (198L)show considerable c 7.4O0(3)A, B L1"6.47(3)obased on C2"/m(Koyama & variation in Na : K : Ca proportions. Tsi in the range Tak6uchi 1,977), for Kuruma Pass specimen, 0.81-0.86. (Nar.ruKr.e5Ca,.roMgs.17)[A.16.72Si,2e.6Or").23.7H2O. Monoclinic,a 18.647(7),b 7.506(4),c 1,0.296@)L, B I 08.37(3)', for (Na2.5eKn.r1Caa.53Mge.eaBao.or)[AI+.zz Fe6.11Si1e.61Oasl.13.43HzOfrom the type locality Cowlesite (Alberti L975b). Diffrrse diffraction-spotsindicate disorder. Ca[AlrSi3O,o].5.3HrOZ=52 @Acodenotassigned) Wise & Tschernich(1975). Tlpe locality: road cuts Edingtonite 0.65 km northwest of Goble, Columbia County, Oregon,U.S.A. Named after John Cowles of Rainier, Ba[AlzSi:Oro].4ItO Z=2 EDI Oregonoamateur mineralogist. Haidinger (1825). Tlpe locality: Kilpatrick Hills, near Minor substitutionfor Ca by Na and lesserK, Mg, Sr, Glasgow Scotland. Named after a Mr. Edington of B4 Fe.To in the range0.60--0.62 (Yezzalitr et al. 1992). Glasgow,in whosecollection Haidinger found the mineral. Orthorhombic,P222tor Pmm.m,Pmm2, Y2wn, Y222 Small amountsof K, Na and Ca may replaceBa. T5iin (Nawaz L9U), a 23.249(5),b 30.629(3), c 2a.96a@)A the range0.59-0.61. (Artioli et al. 1987). Orthorhombic,F2t2t2b a 9.550(10),b 9.665(10), Structure and degree of order of framework cations c 6.523(5)A @Ohletmine, Westergotland,Sweden) have not beendetermined. (Galli 1976). RECOMMENDED NOMENCLATTJRE FOR 4OLITE MINERAI,S 1581

Also tetragonal,P42rm, a9.584(5), c 6.524(3)A (On epitactic growths (Passagliaet al. L998). The three Kilpatrick, near Glasgow, Scotland) @Iazzi et al. mineralshave4-, 6- and 8-memberedrings.They differ 1984). in the stackingof single and doubleGmembered rings, From optical evidence,Akizuki (1986) suggestedthat a resultingin different c dimensionsand differently sized triclinic true symmetry also is possible. andshaped cages. Si,Al disordered.- The structureis similar to that of natrolite, but with a distinctive slessJinking of the chains (Taylor & Erionite-Na Jackson 7933, Mazzi et al. 1984). Examples of orthorhombic edingtonite have nearly perfect (Si,Al) New name;Na is the most abundantexfta-framework order.The tetragonalform is disordered,and available cation. analytical results show that slightly more Ba has been Proposedtype-example: Cady Mountains, Californi4 replacedby other ions. U.S.A.(Sheppwdet aL.1965). Tsl in therange0.744.79. For tho rypJspecimen,a B.rI4Q), c tS.OaS(+)A, Eptutilbite composition(Na5.5eK2.ssCax.11Mgq.1sFe6.0, [AL.57Si2s.2? 0721.24.6OH2O(Sheppard & Gude L969b). (CaNaJlAlzStAOd.4H2O Z=4 EPI Erionite-K Rose (1826). Tlpe localities: "Iceland" and "Fartie New name: K is the most abundantextra-framework Islands". Named from Greek epi in the senseof near, cation. and stilbite, from its supposedsimilarity to the latter. Proposedtype-example: Rome, Oregon, U.S.A. in Na/(Na + Ca) variesfrom about 0.1 to 0.3, with minor which K makesup 58Voof extra-framework cations; K and Ba (e.S- CaIi & Rinaldi 1974).Tsi in the range significant Na, Ca, and Mg also are present (Eberly 0.724.77. 1964).Tsi in the rangeO.74F4.79. Monoclinic, C2, a 9.LOL(2),b 17.74L(L),c 10.226(l) For a specimenaomOrtenberg, Germany, a I3.227(L), A, B 124.66(2)o(Teigarhorn, Iceland: Nberti et al. c 15.075(3) A, (K3.32Nas1Ca".*Mgs.o6Bao.oJ[A]ms 1985),or Si2r.6,O721.31.99H2O et al. 1998). triclinie, CI, a 9.053(L),b L7.738(3),c L0.209(I)4., @assaglia o 89.95(1)',I 124.58(1)',y 90.00(1)'(Gibelsbach, Erionite-Ca Valais, Switzerland:Yang & Armbruster 1996). The structural framework belongs to tle mordenite New name; Ca is the most abundantextra-framework group (Gottardi & Gatli 1985).Earlier work suggested cation. space-groupsymmetry C2J m @elr.ottaL967 ). Albem et Proposed type-example: Maz{ Niigata Prefecture, al. (L985) proposed a domain structure involving Japan(Harada et al. 1967).Ts in the range0.68-0.79. acentric configurationsof tenahedra,and spacegroup For thi rype exnmpleta ].3-.433{1),c fS.OSt(Z)A; C2. Yaq & Armbruster (1996) indicated that the (Ca2.2sK1.5aNa6.e5Mge.s6)[Als.sSi26.eeO72].31.35H2O proposeddomains can be modeledby (010) disorder (Haxaalaet al. L967). caused by a local mirror plane, and tlat increased partial order of Si,Al leadsto fisliniq symmetry. Faujasite (series)

Erionite (series) (Na Caos,M&.5,K),[Al,Si12-"O ul. L6HzO 2=16 FAU Kr(NaCaoj)s [AlroSi26O72].30H2O Damour (1842). Tlpe locality: Sasbach,Kaiserstuhl, Z=7 Germany. Named after Barth6l6my Faujas de Saint Eakle (1898).Tlpe locality: Durkee,Oregon, U.S.A., Fond. noted for his work on extinct volcanoes. in rhyolitic, welded ash-flow tuff. Name from Greek Major amountsof Na, Ca andMg arecommonly present root meaningwool, in refergnceto its alpearance. and in somecases, K; minor Sr is also reported.The Substantialamounts of any or all of Ca, Na and K and ratio Si : Al alsovaries; Tsl in the range0.68-{.74, with subordinateMg may be present,and there is evidence onerecord of 0.64.In most samplesanalyzed,.r in the that fraceFe may entertetrahedral and extra-framework abovegeneralized formula is in the range3.2-3.8, with sites.Eakle's (1898) analysisof type erionite showsNa one record of 4.4 (Rinaldi et al. 1975a,Wise 1982, asthe mostabundant extra-framework cation; Passaglia Ibrahim& Hdl 1995). et al. (L998) found Ca to be the most abundantin a Cnbic, Fd3m, a 24.65 A (material from Sasbach: type-locality specimen.Ts1 in the range-0.68-{.79. BergerhoffetaL1958). Hexagonal,PQlmmc, a I3.I5, c L5.02A (Kawahara& The framework structure is very open, with complete Cwien 1969). sodalite-typecages and with very large cavitieshaving The sfructureis relatedto thoseof offretite, with which L2-memberedring openings.Up to 260 molecules of it may form intergrowths with stacking faults I{2O can be accommodatedper unit cell @ergerhoffer (Schlenkerer al. 1977b),and levyne, on which it forrns al. L958,Baur 19@). r582

f,'aujasite-Na b 1,4.145(2),c 7 .499(I) A for specimenfrom Monastir, Sardinia, of composition (Mgr.orKt.rsl.{ao.reCaos, New name;Na is t}le most abundantextra-framework Srs.1aBao.0r[Al6.6eSi2e.eaO72].17.86H2O(Alberti & cation, as it is in the original (incomplete) and most Sabelli 1981. subsequentanalyses of samplesfrom the type locality, Sasbach,Kaisersfubl, and someother localities. Ts1in X'errierite-K the range0.70_0..74, with onereport of O.64.- Reportedvalues of a rangefrom 24.638(3)A (Wise New name; K is the most abundant single extra- 1982)to A.728(2) A (Ibrahim& Hall 1995). framework cation. Proposedtype-example: Santa Monica Mountainso Faujasite-Ca California,U.S.A., composition(l(r*Na1.1alvlgo .roCao.ro) [Al5.00Si3mrO72].aH2O(Wise & Tschernich1976, #3). New name; Ca is the most abundantextra-framework T.t in the range0.81-0.87. cation.Reported Tsi in the range0.6H.73. Proposed Orthorhombic,a 18973Q),b L4.L40(6),c 7.478(4)L type-example: drill core from Haselborn near for type specimen. Ilbeshausen,Vogelsberg, Hessen, Germany (Wise 1982), composition (Car.azNfu5oVIBogIG.onXAL.83Si8.reo24l Ferrierite-Na 'nHzO,Z=L6. Reportedvalues of a:24.714(4)and 24.733(3) A (Jabal New name; Na is the most abundantsingle extra- Hanoun,Jordan: Ibrahim & Hall 1995). framework cation. Proposedtype-example: Altoon4 Washington,U.S.A., Faqiasite-Mg composition (1.{a:.oe&.s'MgejsCa6.s5Srs.6B q.d [Al5S13r O72l.18HrO(Wise & Tschernich1976, #L). New name;Mg is the most abundantextra-framework T31in the range0.85-0.88. cation. Monoclinic,Y2rln, a 18.886(9),b 14.182(6),c 7.470(5) Proposedtype (and only) example:'oOld (museum) A, B 90.0(1)' (Gramlich-Meier et al. 1985, for a sample"(# 32, GenfhCollection, Pennsylvania State specimenfrom Altoona, Washington). University) from Sasbach,Kaiserstuhl, Germany (anal. #15, Rinaldiet al. 1975a),composition Garronitr (Mgrs:Caa.Naz.0K6.4XAl56Si13?Q 3sal.nH2O, Z = L. NaCa2.5[A16Si nO.e]. | 4 H2O f,'errierite (series) Z= | GIS Walker (1962). Tlpe locality: slopes of Glenariff (K,Na,Mgs5,Caos)6[A16Si30Ozr].8HzO Valley, County Antrim, Northern keland. Namedafter Z=]. FER the Garron Plateau,where the type locality is sited. Graham(1918). Tlpe locality: KamloopsLake, British Cal(Na + K) is variable, but Ca predominates.Tlpe- Columbia Canada.Named after Dr. Walter F. Ferrier, localitygarronite has about l.3Naapfu, someothers have mineralogist,mining engineer,and one-timemember of (Na + K) < O.2 apfu. H2O in the range 13.0-14.0 the GeologicalSurvey ofCanada who first collectedit. moleculesper formula unit. \1 in the range0.60-0.65. Substantialarnounts of any or all of Mg, K Nq andCa, The crystal_structurehas been refined in" tetragonal may be presenl and smalleramounts of Fe, Ba, and Sr. symmety, i4m2, a 9.9266(2),c I 0.3 03 I (3) A, by Artioli Ts1in the range0.8H.88. (1992),and Na-free synthetic garronite has been refined Statistical symmetry, ortlorhombic, Imrnm:, true nI4/a, a9.873(1),c 10.288(1)A, by Schriipfer& Joswig symmetriesorthorhombico Pnnm, a 19.23,b L4.t5, (1997). Orthorhombicsymmetry has been proposed on c 7.5OA (Alberti & Sabelli 19^87),and monoclinic, the basis of X-ray diftaction witi twinned crystals Y2/n, a 18.89,b L4.78,c 7.47 A, B 90.0' (Gramlich- (Nawaz1983) and crystal morphology(Howard 1994). Meier et al. L985). The framework topology is the same as for The structurewas first determinedby Vaughan(1966). gismondine,but Si andAl are essentially disordered. Framework Si,Al partially ordered(Alberti & Sabelli The different space-groupsymmetry (tutioli L992) is L987). associatedwith disorderand the presenceof significant Na. Gottardi &Alberti (1974)proposed partial ordering f,'errierite-Mg subsequentto growth to explain fwin domains.

New namefor the original memberof the series;Mg is Gaultite the most abundantsingle extra-frameworkcation. Substantial extra-framework Na, K, and lesser Ca Naa[Zn2Si7O1d.5H2OZ=8 VSV commonly present.T51 in the range 0.80-0.84. Ercit & Van Velthuizen(L994).Iype locality: Mont True symme6y orthorhombic,Pnnmo a 19.23L(2), Saint-Hilaire,Quebec, Canada. Named after RobertA. RECOMMENDEDNOMENCLATURE FOR reOLITE MINERALS 1583

Gault (b. 1943),mineralogist at the CanadianMuseum Gmelinite-Na of Nature, OttawaoOntario, Canada. No other elements detected in the one reported New namefor the most coulmon speciesof the series. example;Tsi = 0.78. I1 occursin at least one of the g@elinitetype-localities Orthorhombico Fkld, a L0.2IL(3), b 39.88(2), (MontecchioMaggrore). The Ca contentis commonly c 10.304(4)A. substantial,K is minor, and Sr is significant in a few The zincosilicate framework of tetrahedra is samplesanalyzed. Ts1 in the range0.65-0.71. characterizedby stackedsheets of edge-sharing4- and Hexagonal,P6y'mmc, a 1.3.756(5),c 10.048(5)A 8-memberedrings. The sheetsare cross-linkedby (Gallt et aL L982), for near-end-membermaterial tetrahedra. Gaultite is isostructural with synthetic from Queensland, Australiao of composition zeoliteVPI-7 and similar in structureto lovdarite Grcit (Nar.utCao.*&r6)[AL.41Si16.4eO4s].21.51H2O@assaglia & Van Velthuizen 1994). et al. t978a). Gmelinite-Ca Gismondine New namefor a speciesthat also occursin at least one Ca[AlzSizOs].4.5HrO Z=4 GIS of the type localities (MontecchioMaggiore). Ca is the von Leonhard (in footnote, 1817), renaming most abundantsingle exta-framework cation. Signifi- oozeagonitd'of Gismondi(1817). Tlpe locality: Capodi cant to substantialSr and Na, minor K. \1in the range Boveonear Rome, Italy. Named after Cado Giuseppe 0.68-{.70. Gismondi (1762-l8U), lecturer in Mineralogy in Hexagonal,PQlrnmc, a 13.800(5),c 9.964(5)A (Galli Rome. et al. 1982),from MontecchioMaggiore, of compositron (Ca2.s6Sr1.35Na0.78K0.r 3.23H2O (K + Na) doesnot exceed0.12 apfu with K lesstlan 1)[Al?.s2Si 16.21Oas]'2 1978a). 0.08 apfu; analyses showing high K result from @assagliaet al. intergrown phillipsite. Minor Sr may be present;Ts in therange 0.514.54 ('lezzalni & Oberti 1984).HzO is Gmelinite-K slightly variable (4.M.5 moleculesper formula unit) becauseof mixed 6- and 7-coordinationof Ca (Artioli New name; K is the most abundant single extra- et al.1986b). framework cation. Proposed type-example: Fara \{easeliniso originaily refined tn P2/a by Fischer& Vicentina"Vic enz4 Italy, composition(K2.72Ca1.67Sre3e Schramm(1970); cell convertedto standardP21lc Nao.uzMgo.rJ[Alr.7eSi16.32Oa3].23.52H20(YezzalTm et s_econdsetting is a 10.023(3),b 10.61.6(5),c 9.843(15) al. 1.990\.Also known from the Kola Peninsula A, B 92.42(25)".Also refined (t'wosamples) by Rinaldi (Malinovskii1984). &yezzalini (1985). Hexagonal,P6zlmmc, a L3.62I(3),c L0.254(l)A. The framework topology is basedon crankshaftchains of 4-membered rings as in feldspars, connected in Gobbinsite ULIDD configuration. Si,Al are strictly ordered. Na5[Al5Si11Orzf.L2LlzOZ=l GIS Nawaz & Malone (1982).$pe locality: basaltcliffs Gmelinite (series) near Hills Port, soutl of the Gobbins area, County Antrim, Nortlem Ireland. Named after the locality. (Naz,Ca,K)a[ALSi16oa3].22H2o Na: Ca: Mg: Kvariable,withNagreatlypredominant Ca < 0'6 apfu'-.Reportsof high K are ascribedto 2=L GMF. Brewster(1825a). rlpe rocariry, th"ou*" *i ffi%?fjffi;'jilffih&X?,#fl?*;ffirff proposedfor minerals occuning both at Little Deer Orthorhombic, pmn2y a 10.108(1), b 9.766(L), Park,Glena:m, County Antrim, Northernkeland, and c 1,0.I7L(I) A for the anhydrous composition at Montecchio Maggrore,Yrcenz4- ltaly. Named after (Nar.roKr.r,Ca".5e)[Al6.17sie.$o32]from Tlvo-Mouth Christian Gottlob Gmelin, Professorof Chemistry, Cav",-Countyemirn,Northemlreland(McCuskereraL UniversityofT0bingen. 1985);a 1O:1027(S),b 9.8016(5),c 10.1682(6)A for Na-dominantmembers are the most common.\1 in the (Na.43Cao.6)[Al5.6Siro.nOr2].12HrOfrom Magheramorne range0.65-{.72. quarry,Larne, Northern heland (Artioli & Foy 1994). Hexagonal,PQlmmc, a 13.62-t3.88, c 9.97-1O.25A. The frameworktopology is the sameas for gismondine The stucture is similar to that of chabazite,with which andis basedon cra:rksha:ftchains of 4-memberedrings, it is commonlyintergrown (Sfrunz 1956),but gmelinite as in feldspars.Distortion from tetragonaltopological has a different stacking of the double 6-membered symmetry results from the arrangementof cations in rings @scher 1966). Si,Al are disordered. the channels.Si,Al in the fra.rneworkare disordered. 1584 TTIE CANADIAN MINERALOGIST

Gonnardite Harmotome

(NaCa)o+[(Al,Si)2oO4o].12H2O @an5,Caa5,K,Na)5[A15Si11O32].L2H2O Z=I NAT Z=T PHI Lacroix (1896). Tlpe locality: Chaux de Bergonne, Haiy (1801,p. 191-195),renaming andreasbergolite, Gignat Puy-de-D6me,France. Named after Ferdinand alsoknown as andr6olite, of Delam6therie(1795,p.393). Gonnard. who had earlier described the material as oomesole" Tlpe locality: Andreasberg,Harz, Germany.Named (= thomsonite). from Greekwords for a'Joint'' and "to cut'', in allusion Forms an extensive substitution seriesocommonly to a tendencyto split alongjunctions (twin planes). approximatingNa3-3,Ca2,[A\*"Si12-Oa6].12H2O (after Ba is tle most abundant extra-framework cation. Rossel aL 1992),with minor Feh, Mg, Bq Sr, andK. Harmotome forms a continuous series with Ts;in the range0.52-{.59 (or O.524.62 if tetranatrolite phillipsite-Ca. The name hannotorne predates = gonnardite). phillipsite; on grounds of history and usage, both Tefragonal,IZd, a L3.2L(l), c 6.622(4)A for material are retainedin spite of Rule I of the presentreport. Tsi from Tvedalen,Langesund, Norway, of composition in the range0.68-{.71 (e.g.,Cern! et al. 1977). (Nat.az&.orCarjo)[A1e.22Sir0.73O aa].L2.37H2O @Iazzi et Monoclinicorefined in P21lm,but on piezoelectric al. 1986). and optical grounds, tle true symmeft'y may be The structure is similar to that of natrolite. but with noncentrosyrnmetricand triclinic, Pl (e.5.,Akizuki Si,Al disordered, and usually with significant to 1985, Stuckenschmidt-et al. L990), a 9.879(2), substantial Ca (Mazzi et al. L986, Artioli & Torres b L4.139(2),c 8.693Q)A, B 124.81(1)ofor @a1.sCan.* Salvador1991,Alberti et al. L995). IG.r) [Alr.uoSit peO 3). L2H"O fr om Andreasberg, Harz (Rinaldi et aI. L974). Goosecreekite The structureis the sameas for phillipsite, with little or no Si.Al order. Ca[Al2Si6O16].5H2OZ=2 GOO Dunn et al. (1980).Tlpe locality: GooseCreek quarry, Heulandite (series) lnudoun County,Virginia" U.S.A. Naned afterthe locality. Resultsofthe single analysisavailable conform closely (Can5,Sre5,Ba6s,Mgo.s.Na *).41J',;9 to the formula given, with no other elementsdetected. K) sl$Siy1O 7,1. Tsi = 0.75. Z= I IIEU Monoclinic,P2r, a7 .4AL(3),b L7.439(6), c 7.293Q) A, Brooke (L822). Tlpe locality: none; the name was minerals B L05.M(4)" @ouse& Peacor1986). given to the more distinctly monoclinic The framework consists of 4-, 6-, and 8-membered previously known as stilbite. Named after Henry rings that link to form layersparallel to (010), with Heuland,English mineral collector. somesimilarities to the brewsteritestructure. Si,Al are The cation contentis higbly variable.Ca-, Na-, K-, and nearly perfectly ordered@ouse & Peacor1986). Sr-dominantcompositions are lcnowno and Ba andMg are in some casessubstantial. Tsi in the range 0.71 to Gottardiifs 0.80. Minerals with the samefrarnework topology, but with T51> 0.80, Si/Al > 4.O, are distinguishedas Na:IUg:Caj[Al 1eSil 1rO2r2].93H2O clinoptilolite. Z=l NES Monoclinic, with highestpossible topological symmetry Alberti et al. (L996), Galli et al. (L996).Mt. Adamson, CAm (I2lm). Cm ard C2 alsohave been suggested. Victoria Land, Antarctica. Named after Professor The sheet-like strucfure was solved by Merkle & GlaucoGottardi (1928-1988), University of ModenA Slaughter(1968). There is partial orderof Si,Al. in recognition of his pioneeringwork on the structure and crystal chemistry of natural zeolites. Known from the type locality only, with composition Heulandite-Ca approximatingthe abovesimplified formula; minsl [1, andvery high Si. Ts = 0.86. New namefor the most corlmon speciesof the series, Orthorhombic, topological symmefr'y Fmmmo real and that deducedfrom results of most older analyses. extra-frameworkcation. symmetryCmca, a 13.698Q),b 25.213Q), c 22.660(2) Ca is the most abundantsingle A (Alberti et al.1996). T51in the range0.71-0.80. The framework topology is the same as for the Monoclinic, C2lrn, Crn, or C2, a L7.7I8(7), synthetic zeolite NU-87, which, however, has b 17.897(5),c 7.428(2)A, B 116.42(2)"from Fariie monoclinic symmetry, P21lc. Some Si,Al order Islands,composition (Ca357Sre.e5Ba6.66Mg.61Na1slft .a3) is probable. lAle3?Si26.70O721.26.02H2O(Ts = 0.74) (Nbertr 1972). RFCOMMEI.IDED NOMENCLATURE FOR ZEOLITE MINERALS 1585

Heulandite-Sr Known from two localities in the Khibina massif.both with compositionsclose to the aboveformula @ekov& New name; Sr is the most abundant single extra- Chukanov1996). Tst values are 0.59, 0.61. ^ framework cation. Tetagonal,P42p, a 9.851(5),c 13.060(5)A. One known example: QamFegli, Eastern Ligurian Framework of Si,Al tetrahedra with channelsalong c ophiolites, Italy, of composition (Sr2.1eCa1.76Ban.1acontaining B(OH)4 tetrahedraand K, Cl (Malin6vslii Mgs.62Nae.ffi.22)[A1e.resi26.e4O.,2f.nH2O,Tsr = 0.75 & Belov 1980).Considered by Smitl (1988)to be an (Lucchetti et al.L982). anhydrousanalogue ofthe edingtonite strucfure-fype MorlocLtric,-CUn4Cm, or C2' a L7.655(5),b17.877(5), EDI. c 7.396(5)A" B 116.65". Laumontite Heulandite-Na Caa[AlsSir6Oas].L8HzOZ = L LAU New name; Na is the most abundant single extra- As lomonite, Jameson(1805), who creditstle nameto framework cation. Wernerwithout specifi.creference; spelling shangedto Proposedtype-example: Challis, Idaho, U.S.A., U.S. laumoniteby Haiiy (1809),and to laumontiteby von National Museum#9451213 & Shannon1924, @oss konhard (1821).Named after Gillet de Laumont who Boles L972,#6'). collectedmaterial described as "z€ohtheefflorescente" Monoclinic,C2)m, Cmo ot C2,a 17.670(4),b17.982(4), by Haiiy (1801, p. 4I0-4L2), from lead mines of c 7.4O4(2)A, B 116.40(2)o 7972) for the @oles Huelgoet,Brittany. The later spellingswere applied to type example,of composition(Na3.esCar,rl(n:s)[AL.* this material, and the Huelgodt mines are effectively 5!46O71.27.74HO, T't = 0.78. the type locality. Always Ca-dominant,witl minor (K,Na). "Primary Heulandite-K leonhardite" of Fersman(1908) is laumontite with approximately1.5 Ca replacedby 3(K,Na) apfu and New name; K is the most abundant single extra- reducedH2O. Tsi in the range0.M.7O. framework cation. Monoclinic, C2lm (although reported to !e Proposedtype-example: Albero Bassi, Vicenza, Italy pyroelectric),a 14.845(9),b 13.167(2), c 7.5414(8)A, @assaglia1969 a), composition(K2.asNaoj6Ca1.ooMgo.* B 1L0.34(2)"(Nasik,India: Artioli & Stnil 1993). Sre5paj.p)[Ale.6Fq56Si"o.cO7,].25.84H2O, Ts1 = 0.73. Exceptwhere unusually rich in (KJ.{a),reversibly loses Monoclilis, C2/rn, Cm" or A, a L7.498,b 17.816, ca. 4H2O at low humidity at room temperatureand c7.529A, B 116.07'. pressureto form fhe variety termed"leonhardite" (e.9., A close approachto end-memberKe[AleSi27O72].zH2O Fersman1908, Armbruster & Kohler 1992); structure hasbeen reported by N/rnbere (1990). refined by Bartl (1970) and others.Si,Al in the frame- work is highly ordered. Hsianghualite Leucite Li2Ca3[BgSiO,2]F2 Z=8 ANA Htang et al. (1958).Tlpe locality unclear,in metanor- KlAlsi2o6] z=16 ANA phosedDevonian Limestone,Hunan ProvinceoChina. Blumenbachs (I79I), who attributed tle name to The nameis from a Chineseword for fragrant flower. Werner,who had previously describedthe mineral as Known from the original locality only. MnorAl, Fe, 'lrhite garnet". Tlpe locality: Vesuvius,Italy. Named Mg, Na, and L.28Voloss on ignition reported@eus from Greek,msnning white, in referenceto color. 1960).\t = 0.48. Minor substitutionof Na for K at low temperatures,and Ctbic,I2r3, a 12.864(2)4,. Si in excessof that in the ideal formula, are commonly Has an analcime-typestructure, with tetrahedralsites reportd alsosignificant Fe9'. Ts1 i1 the range0.66-O.69. occupied alternately by Si and Be. Extra-framework Tefragonal,I41la, a L3.09,c 13.75A, @laz.zlet aI. 1976). Ca, Li, and F ions @astsvetaevaet al. L99L). At ordinary temperatures,leucile is invariably finely twinnsd as a result of a displaciveinversion from a Katborsite cubic polymorph with the structureof analcime,space grotp la3d, apparently stable above 630'C (Wyart K6[ALSi6Om]B(OI{)4CI 1938,Peacor 1968). Heaney & Veblen(1990) noted Z=2 ?EDI that high leucite inverts to lower symmetry at Khomyakover aL (1980),Malinovskii & Belov (1980). temperaturesbetween 600" and 750oC dependingon Tlpe locality: rischorrite pegmatite,Mt. Rasvumchorr, the sample, and that there is a tetragonal, metrically Khibina alkaline massif, Kola Peninsula,Russia. The cubic form intermediatebetween high (cubic) and low namealludes to the composition. (tetragonal)forms. 1586 TIIE CANADIAN MINERALOGIST

Levyne (series) The structure consists of a tiree-dimensional framework of Si (with minor Al) and Be tetrahedra. (Caos,Na"K)6tAl6Sir2O36l.17H2O It contains three-membered rings, made possible Z=3 LEV by the presenceof Be instead of Si in one of the Brewster (1825b). Tlpe locality: Dalsnypen,Fariie teftahedra. Islands. Named after Armand I-Evy (1794-1.84I), mathematician and crystallographer, Universit6 de Maricopaite Paris. Extra-framework cations range from strongly (PbCa)[AluSir6(O,O]I)1e6l.n(II2O,QH),n - 32 Ca-dominant to strongly Na-dominant, witlh minor K and, in some cases,mi1e1 Sr or Ba; Si:Al is Z=1 Structureclosely also variable (Galli et al. L98I). T5i in tle range related to MoR 0.624.70. Peasoret al. (1988).Tlpe locality: Moon Anchor mine, Hexagonal,Rbn, a 13.32-13.43,c 22.66-23.01A. near Tonopah,Maricopa County, Aizona, U.S.A. The stacking 61 single and double 6-memberedrings Namedafter the locality. differs from that in the relatedshuctures of erionite and Only one known occurrence.Tsr = 0.76. offretite (Merlino et aI. L975). Orthorhombic, Cm2m (psetdo-Cmcm), a 19.434(2), b 19.702(2),c 7.538(1)A @ouse&Peacot 1994). Levyne-Ca Has an intemrpted, mordenite-like framework. Pb atoms form Pb4(O,OH)4clusters with Pb4tetrahedra New na:nefor the original memberof the series;Ca is within channels(Rouse &Peacor 1994). the most abundant extra-framework cation. Type locality: Dalsnypen,Farbe Islands.Material closely lV,Iazrite approachingend-member Car[A16SirrO36].L7H2O has beenreported by England& Ostwald (1979)from near @Igz.sKrCarJ [Al10Si26O72].30H2O Meriwa, New SouthWales, Australia. \1 in the range o.624.7A. Z=L MAZ Hexagonal,frmo a 13.338(4),c 23.014(9)A for com- Galltret al. (L974).Tlpe locality: in olivine basaltnear position (Caz.rsl.{ao.65lq.2o)[Al6jlsir.6eO36]. 16.66H2O top of Mont Semiol, south slope, near Montbrison, from near the Nurri to Orroli road, Nuora, Sardinia Loire, France.Named after FiorenzoMazzi, hofessor @assagliaet aL.7974,Merlino et aI. 1975). of Mineralogy at the University of Pavia"Itaty. A new chemicalanalysis fromthe fype and only known Levyne-Na locality (G. Vezzalini, pers. commnn., L996)gives the aboveforrnula (cf Rinaldi et al. 1975b).Tsi=0:72. New name;Na is the most abundanlexfra-framework Hexagonal,P6y'nmc, a 18.392(8), c 7.646(2)A. cation. The framework is characterizedby stackedgmelinite- Proposed type-example: Chojabaru, Nagasaki type cages(Galli 1975),witl evidencefor limited Si,Al Prefecture,Japan (Mizota et al. 1974).T5i in the range order(Alberti &Yezzalim 1981b). 0.65-{.68. Hexagonal,frm,a 13.330(5),c22.684(D A.for Merlinoite (Nar.ealqjeCao.rglvlgo.oJ[Al6$Si11.?ro36](lllizota et aI. 1974). &CadAlgSixOsl.22HzO Lovdarite Z=l MER Passagliaet al. (1977).Tlpelocality: Cupaelloquarry IlNap[BqSi4O?r]. 18HrO in kalsilite melilitite, near Santa Rufina, Rieti, Italy. Z=l LOV Named after Stefano Merlino, Professor of Men'shikov et al. (1973). Ilpe locality: alkaline Crystallographyat the University of Pisa. pegmatites on Mt. Karnasurt, Lovozero nlkaline The two available reliable analyses@assaglia er massif,Kola Peninsul4 Russia.Name means 'oa gifl of al. L977, Della Ventura et aL L993) show strongly Lovozero". K-dominant compositions,with significant Ca, and In the type and only known occurrence,approximafely lessNa andBa; T51in the range0.66-{.71. 1 Al atom substitutes for Si in the above structure- OrthorhombicoImrnrn, a L4.lL6(7), b L4.229(6), derived formula, with introduction of additional c9.946(6)A @assagliaet aI.1977). exfra-frarneworkNa and Ca. Ts1= Q.JJ. The framework is built of double 8-memberedrings Orthorhombic,Pmaz, but containsb-centered domains linked with 4-memberedrings (Galli et al. L979).T\e in which a is doubled;a 39.576(I), b 6.93O8(2),c structure is related to, but different from, that of 7.L526(3) A (Merlino 1990). philliFsite. RECOMMENDED NOMENCLATURE FOR ZOLITE MINERAI.S

Mesolite Mutinaite

Na16Ca16[Ala3S i7 20 7,a]. 4H2O Na3Caa[Al1lSirrO,e].60HrO Z=l NAT Z=l MFI Gal1iet aI. (1997b),Yezza1imet al. (L997b).a}pe Gehlen& Fuchs(1813), as mesolitl, for somevarieties locality: Mt. Adamson, Northern Victoria Land, of "mesotype"(mostly natrolite)of Haiiy (1801).No Antarctica. The name is for Mutina the ancient Latin type localify was given. Fuchs (1816) clarified tle namefor Modena Italy. distinctions among natrolite, scolecite, and mesolite, Electron-microprobe analysesof mutinaite from the and gave analytical data for mesolite from tle Farije type and only known locality show limited departure Islands, Iceland and Tlrol. The name recognizes its from tle simplified formula, with minor Mg compositionalposition betweennatrolite aud scolecite. (-0.21 apfu) and K (-0.11, apfu). Very high Si, (Na + K/(Mg + Ca + Sr + Ba) variesfrom 0.45 to0.52, Tsi= 0.88. with Mg, Sr, Ba very minor (Alberti et al. L982b). K Orthorhomblc, Pnma, a 20.223(7), b 20.052(8), Ts1in the rangeO.59-0.62. c 13.491(5)A. Orthorhombic, Fdd2, a I8.4M9(8), b 56.655(6), Mutinaite conformsclosely in stucture with synthetic c 6.5M3(4) A, for material from Poona,India (Artioli zeolite ZSM-5. et al. L986a). OrderedSi,Al in the framework with onenatrolite-like Natrolite layer alternatingwith two scolecite-likelayers parallel to (010) (Artioli et aI. t986uRoss et al.1992). Na2[Al2Si3O16).2HzOZ=8 NAT Klaproth (1803).Tlpe locality: Hohentwiel,Hegau, Montesommaite Baden-Wiirttemberg,Germany. Name from natro- for sodium-bearing. Ke[AleSirOa].10HzOZ=L MON (Na + K/(Mg + Ca + Sr + Ba) variesfrom 0.97 to 1.00, Rouse e/ al. (I99O). Tlpe locality: Pollena, Monte with K, Mg, Sr, and Ba very mineL T3l in the range Somma,Vesuvius, Italy. Named after the localify. 0.59-0.62 (Alberti et al. l982b,Rosset al.1992). Minor Na was detectedin the one publishedanalytical Orthorhombic,Fdd2, a 78.272,b 18.613,c 6.593 A data-set.Tsi = 0.70. (Si"{l highly ordered Dutoitspan,South Africa: Artioli A. Orthorhombic,Fdd2, a = b L0.O99(L),c 17.307Q) A, it at. 9\qj a r8.3r9(4),uis.sgs@), c 6.5970) (-70Vo order,Zeilberg, Germany:Hesse 1983). (pseudoteftagonal,14 rl amO. Si,N The framework can be constructedby linkiag (100) Si,Al partly to highly ordered (Alberti & Yezzalini sheetsof five- and eight-memberedrings; it has simi- 1981a,Ross et al. 1992,AJ:bem et al. 1995). larities to thoseof merlinoite andthe gismondinegroup (Rouseet aI. 1990). 0ffretite caKMg[AlsSi13o36]'16H2o Mordenite Z= | OFF (Na2,c4K)a[A18si4oo%].28H'os,ffin13rT"9r:Lffi?ji;",?x;.ti ffr;H:l Z = | MOR Albert J.J. Offreg professorin the Facuhy of Sciences, How (1864). Tlpe locality: shore of Bay of Fundy, !Yo1-Franc-e,- 3-5 km east of Morden, King's County, Nova Scotiu, Ca Mg, and K substantial,commonly in proportions approacling I : 1,: 1; N1as6mmofil/ trace or minor. canada. Named after the tocality. trffiiffi'hli'33,r} rhecarion contenr is variable, with Na/(Na + ca) ,-*;f$:}ffi#ffi# typicatly in the range 0.5H.81. SomeK Ue, ro Cal and Na_dominantvariants and Sr also may be present 1975,Passaglii f1 ;;.ffiil @assaglia ;;;d,r.treE "nn|*d, td"ntificarionproblems,including et al. 1995).In someelrmpleso K is reporredas tle io ,h".*g e'o.eg_nlq. (Thugutt L933,1-net aI. L99L,Lo & o"rrilt*1"**]t* demin4r carion "n;;;;;" 1,'-p-;;2,"a tz.zot(i), c 7.592(2) A for Hsieh 1991),potentially justifying therecognition of a ;;6;;tt.;'(Mg,*Cuo.rl!.rrSrs.61Bao.e1)[Al'xSi,r.r, mordeniteseries withNa- andK-dominant species.l'1 OrulltO.ASHrOfiifr di; fo-Jifit'-ipurriEfij-ii in the range0.8G{.86. ryF orthorhombic, cmcm,^a 18.052-18.16 8, b 20.404- ffitJflh1tJ3fl is retaredto rhoseof erioniteand 20.5n,c7.511-7.537 A@assaglia1975). levlmeo but differs in the stacking of sheets of Structuredetermined by Meier (1961). Si,Al disorder six-memberedrings, resultrngin different valuesfor c in tle framework is extensive,but not complete. and differently sized and shapedcages (Gard & Tait 1588 TT{E CANADIAN MINERALOGIST

1972). A high degree of Si,Al order is inferred. Paulingite-K Offretite may contain intergrown macro- or crypto-domainsof erionite (e.9., Rinaldi 1976). It New name;K is the most abundantextra-framework forms epitactic intergrowths wittr chabazite, but cation. epitactic associations with levyne are questionable Averagecomposition from five analysesof samples (Passagliaet al. 1998). from Rock IslandDam, Washington,U.S.A., the sug- gestedtype-example for paulingite-K: (I(0.*Nao.rrCar.r, Pahasapaite Bax.13)[Ale32S\2.21Opa1.44H2O(fschernich & Wise 1982):a35.093(2) A (Gordonet al. 1966). (Ca5.5Li3.6K12Nao.2trrr)Lis[Be24P24Oe6].3 8II2O Z='1. RHO Paulingite-Ca Rouseetal. (1987).Tlpe locality: Tip Top mine, Black Hills, South Dakota, U.S.A. Named after Pahasapa,a New neme: Ca is the most abundantextra-framework Sioux Indian namefor the Black Hills. cation.Average result offour analyses,Ritter, Oregon, Known from the type loc^alityonly. T'' = Q. U.S.A., the suggestedtype-locality for paulingite-Ca: Cubic,I23,a L3.781(4)A. (Ca3.7eK2.67Nae.s6Bas.1e)[Al r0.?sSi31.2rOs al.34H2O ; A beryllophosphatezeolite with orderedBeOa and PO4 a 35.088(6)A (Tschernich& Wise 1982). tetrahedraand a distorted synthetic zeolite RHO-type I-angater et al. (1997) found evidenceofreduced HzO framework, structurally related to the faujasite series content (27 H2O for Z = 16) in barian paulingite-Ca (Rouseet al.1989). from VinaricM Hora, CzechRepublic.

Parth6ite Perlialite

Caz[AlaSiaO r:(OIDr].4HrO Kfl a(CaSr)[Af usi24od. 15H2O Z=4 -PAR Z=j. LTL Sarpet al. (L979).Tipe locality: in ophiolitic rocks, Men'shikov (1984).Tlpe locality: pegmatitesof Mt. 7 km souttreastof Doganbaba,Burdur province, Eveslogchorr and Mt. Yukspor, Khibina alkaline TaurusMountains, southwesternTirrkey. Named after massif, Kola Peninsula, Russia. Named after Lily Erwin Partl6, Professorof Structural Crystallography, Alekseevna Perekrest, instructor in mineralogy at University of Geneva"Svritzerland. Kirov Mining TechnicalSchool. Minor Na and K. Tr, = 0.52 and 0.495 in the only two Minor substitution by Sr and Ba, but little other known occurrences. compositionalvariation in the two known occunences. Monoclinic, C2/c o a 21.553(3), b 8.761 (L), c 9.3M(2) Tn in the range0.65-{.67. A, B 91.55(2)"(type locality; Engel & Yvon 1984). Hexagonal, P6lmnrm, a 18.49(3), c ?.51(1) A The framework contains various 4-, 6-, 8-, and (Men'shikov1984). l0-memberedrings, and is intemrpted at every second Perlialite has the snme framework topology as AlOo tetrahedronby hydroxyl groups. Si and Al are synthetic zeolite-L (Artioli & Kvick 1990).Structural ordered. columns have alternatingcancrinite-fype cages and double 6-memberedrings. No Si,Al order has been Paulingite (series) detected.

(K,Caor,Na,BaoJ 1 0[Al1 0Si32O84].27 -44H2O Phillipsite (series) Z=L6 PAU Kamb & Oke (1960). Tlpe locality: Rock Island Dam, (K,Na"Cao.s,BaoJ,[ALSi ro-O: ]. lltIzO Columbia River, Wenatchee,Washington, U.S.A. Z=L PHI Named after Linus Q. pauling, Nobel Prize winner L6vy (1825).Tlpe locality asrecorded by L6vy: Aci and Professor of Chemistry, California Institute of Reale,now Acireale,on the slopesof Etna"Sicily, Italy. Technology. Contemporary literature (see Di Franco 1942) al.d Electron-microprobeanalyses show K as tle most present-dayexposrres suggest that the occunencewas abundantcation at tbree known localities and Ca at probably in basaltic lavas at Aci Castello, nearby. two. Significant Ba and Na also are reported Named after William Phillips (1773-1828), author of (Ischemich&Wise 1982,kngauer et al. L997).Tsiin geological and mineralogical treatises and a founder the range0.734.77. of the Geological Society of London. Cnbic,Iffim, a35.093(2)A (Gordonet al. L966). Either K, Na, Ca, or Ba may be the most abundant The framework contains several kinds 6f 1ffgs extra-framework cation, but tle name harmotome is polyhedralcages (Gordon et al.1966). The structure retained for tle Ba-dominant member of tle series. has been refined by Bieniok et al. (L996) and by Minor Mg and Sr may be present.In the generalized Lergauer et al. (L997). formula above,x rangesfrom about 4 to about 7. T51 RECOMMENDED NOMENCI.ATTJRE FOR ZOLITE MINERAI.S 1589 varies from approximalely0.56 to 0.77. end-membercompositions (Teertstra & dernf 1995). Monoclirlic,P2, or P2rlm,a9.865(2), b 14.3O0(4),c Ts1in the range 0.67-0.74. Minor Rb and Li may be 8.668(2)A" B 124.20(3)"@hillipsite-K with substantial present.Sodian pollucite commonly containsmore Si Ca from Casal Brunori, Rome, Italy: Rinaldi er aL than the simplifi ed formula-T\e tame pollucite applies 1974). A, pseudo-orthorhombiccell has a = 9.9, where Cs exceedsNa in atomic proportions. b = 14.2,c = 14.2Fa B = gO.O",Z = 2. Cubic, Ia3d, a 13.69 A for Cs11.7Na3.1Lis.25IG.. Tlvo cation sites have been idenffied, one, with two [Al15SirrOe6.2].H2O(Beger L969); a in tle range atoms per formula unit fully occupied by K in 3.672(1Y13.674(t)A for 0.1Lm.I73 Na apfu,Z = 16 phillipsite-K and by Ba in harmotome,is surrounded (demf & $imFson1978). by eight framework atoms of oxygen and four Si.Al disordered. moleculesof HzO; the other is partly occupiedby Ca and Na in distorted octahedralcoordination viith two Roegiantte framework atoms of oxygen and four molecules of HrO (Rinaldi et al. 1.974).Framework Si,Al largely Caz[Be(OH)zAlzSiaO rrf. 4.5H2O disordered. Z=8 -ROG Passaglia(1969b). Tlpe locality: in albitite dike Phillipsite-Na @. Passaglia,pers. commun., 1998) at Alpe Rossoin Val Vigezzo about 1.5 km soutl of Orcesco,Novara New name;Na is the most abundantextra-framework Province, Italy. Named after Aldo G. Roggiani, a cation. teacherof naturalsciences, who first found the mineral. Na forms SLVoof all extra-framework cations in Containsminor Na andK. materialfromAci Castello,Sicily, Italy, suspectedto be Tetragonal,I4lmcm, a 18.33(1),c 9.16(I) A (Galli tle original locality for phillipsite (#6 of Galli & 1980). Loschi Ghittoni 1972).Known rangein T5i:0.&4.77. Contains framework tetrahedrally coordinated Be For pseudocell,a^ 9.93I-IO.O03, b L4.1,42-L4.286, (Passaglia & Yezzalim 1988) and framework- c 1.4.159-14.338A, B 9Oo,Z = 2 (e.5.,Galll & Loschi intemrpting (OII) groups (Giuseppettiet el. I99I). Ghinoni 1972,Sheppard & Fitzpatrick1989). Scolecite Phillipsite-K Ca[d2Si3O1e].3H2OZ=4or8 NAT New name; K is the most abundantextra-framework cation.Proposed type-locality: Capo di Bove, Rome, Gehlen& Fuchs(1813), as skolezit. Clark (1993)gave Itaty (Hintze L897,#2 of Galli & Loschi GhittonllgT2). the type locality as Berufiord, Iceland, but this is not Known rangein Tn: 0.594.76. appaxentin the original reference. Fuchs (1816) For the pseudocell,a9.87L-1.0.007, b L4.124-L4.332, clarified the distinctionsamong nafrolite, scolecite,and c 14.L98-14.415A, B 90o,Z = 2 (e.g., GaIh& Loschi mesolite.He listed occlurencesof scoleciteas Farde Ghittoni 1972,Sheppard et al. l97O). Islands, Iceland and Staffa (WesternIsles, Scotland), with andytical data for specimensfrom the Fariie Phillipsite-Ca Islands and Staffa. Named from Greek slalex,wotm, for a tendencyto curl when heated. New name; Ca is the most abundantextra-framework (Na + K)/(Mg + Ca) variesfrom 0 to 0.16, with very cation. Proposedtype-locality: Lower Salt Lake Tirff, little K, Mg, or other elements. Ts1 in tle range Puuloa Road near MoanaluaRoad junction, Oahu, 0.60_0.62(Alberti et al.1982b). Hawaii (Ljima & Harada 1969). Monoclinic,Cc, a 6.516(2),b 18.948(3),c 9.767(l) A, Known rangein Ts1:0.57{).74. B 108.98(1)",Z= 4 @ombay,India: Kvick et al. 1985), For the pseudocell,a 9.859-9.960,b L4.224-L4.340, or, by analogy with natrolite, pseudo-orthorhombic c 14.297-14.362A, B 90", Z = 2 (e.g., GaJJi& Loschi Fd, e.g.,a 18.508(5),, 18.981(5)c 6.527(2)A, B Ghittoni t972, Passaghaet al. 1990). 9O.64(L)",Z = 8 (Ber:afiord,Iceland: Joswig et al. 1984). Pollucite The structure is similar to that of natrolite, with a well-ordered Si,Al framework, Ca insteadof Na2,and (Cs,Na)[AlSi2O6f.nH2O,where (Cs + n) - | an extra moleculeof HrO. Z=L6 ANA Breithaupt (1s46). Tlpe locality: Elba, Italy. Named Stellerite oopollux"with coexistingmineral otastolo (a variety of pltutit") for twins C-astor and Polluxn of Gieek Ca[A12Si7O13]'7H2O Z = 8 STI mythology;name modified to pollucite by Dana(1868). Morozewicz (1909).Tlpe locality: ComrnanderIsland Forms a serieswith analcime (Cernf 1974) reaching Bering Sea NamedafterWilhelm Steller (1709-17216), 1590 natural scientist and military doctor who made 13.657,b 8.201-r8.29L,c L7.775-77.842L,8 90.0G imFortant observationson CommanderIsland. 90.91"@assaglia et al. 1.978b). Variations in compositioninclude up to about0.2,apfu Na andminor K, Mg, Fe.T51 in the range0.75-0.78. Stilbite-Na Orthorhombic,Fmmm, a in the range13.507-13.605, D in therange 18.198-18.2700 c in tle nnge 17.823- New name:Na is the most abundantextra-framework 17.863A @assagliaet aI. 1978b). cation. The frameworkis topologicaly the sameas for stilbite, Proposedtype-locality: CapoPula" Qagliari, Sardinia, but it has higher symmetrlr, correlated witl fewer Italy @assagliaet al. I918b, #2L). extra-frameworkcations. Only one independentexha- Known examples contain significant Ca and K, and framework site is occupied, and the symmetry is minor Mg, aswell as cleady predominantNa.Ts in the Fmmm (Galli & Alberti 1975a). Na-exchanged range 0.73-0.78 (Passagliaet al. 1978b, Ueno & stellerite retains the Fmmm symmetry, unlike tle Na Hanada1982,Di Renzo& Gabelica1997). zeolite, barrerite, with which it is isochemical Monoclinic, C2lm. U sing the pseudo-ortlorhombic & Sacerdoti1982). @assaglia F2lm settimg,a L3.610,b L8.330,c 17.820A, B 90.54" Villarroel (1983) has suggestedtle occurrenceof for type material,of composition(Nas.1sK1-Ca3"5JVlgs.e) Na-dominant Fmmm stellerite from Roberts Island. (Quartieri & Yezzalini South Shetlandgroup. [Alr6.62Si55.25Oraa].53.53HrO 198n. In spite of the high Na content, themotocljnic C2lm Stilbite (series) symmetryof stilbite is retaine4 in contast to stellerite, Amma. (Caos,NaK)q[AleSirO72].28FI2O F mmm, andbarr.erite, Z=L STI Tbrranoyaite Haiiy (1801, p. 161-166),for minerals, apparently including heulandite, that had previously been NaCa[Al:SirOqol.>7WO describedwith informal names. He mentionedoccur- Z=4 TER rences in volcanic terraneso and named lceland, Andreasberg in Harz, Alpes Dauphinoises, and GaIh et al. (L997a). Tlpe locality: Mt. Adamson, Norway, but there is no clear type-locality. Named Northern Victoria Land. Antarctica. Named after tle from Greek word for mirror. in allusion to its luster Italian Antarctic station at TerranovaBay. ('1rn certain 6clat"). Tlpe materialcontains minor amountsof K and Mg. Ca is almost always tle dominant extra-framework Tsi= 0.85. cation,accompanied by subordinateNa and minsl l( Orthorhombico Cmcm, a 9.747(7), b 23.880(2), and Mg, approximating Caa(Na,K)per formula unit, c?-0.068(2)4,. but Na-rich membersalso are known. Ts1in the range The framework topology is not known in other natural 0.71to 0.78. or syntheticzeolites. It containspolyhedral units found Monoclinic, C2lm,a L3.64(3),b 18.24(4),c 11.27(2) in laumontite, heulandite,and boggsite. A, B 128.00(25)"(Galli & Gottardi L966,GalliL97l); an alternative setting is pseudo-orthorhombic,F2lm, Thomsonite Z=2. Increasingdeparture from the topological symmetryof CazNa[AlsSisOm].6I{10 the orthorhombicframework, Fm.rnm, tends to correlafe Z=4 THO witl increasing content of monovalent cations Brooke (1820). Tlpe locality: Old Kilpatrick, near @assaghaet aL LWSb),which causesthe frameworkto Dumbarton, Scotland. Named after Dr. Thomas rotate (Galli & Alberti L975a,b). However, {001} Thomson (1773-1852), editor of the journal in which growth sectorswitl appreciableNa and orthorhombic the name was published, and who contributed to the Frnmtn symmetry have been observedin crystals in improvementof methodsof chemical analysis. which other isochemicalsectors are monoclinicoC2,lm Extensivevariation in Na:(Ca+ Sr) and Si : Al approxi- (Akizuki & Konno 1985,Akizuki et al. L993).T\e mately according to the formula Naa*,(Ca,Sr)r, centrosymmet'icspace-group depends on statistically [Alzo-"Sizo'Oaol.2AHzO,where r variesfrom about0 to completeSi,Al disorder,and the true space-grouprnay 2; small amountsof Fe, Mg, Ba, and K also may be be noncenfrosymmetric(Galli 1971). present@oss el a/. 1992).Tst in the range0.5H.56. Orthorhombic,Pncn, a l3.lO43(L4), , 13.0569(18), Stilbite-Ca c 13.2463(30)A (SUU et aI. 1.99O} Chainswith a repeatunit of five tetrahedraoccur as in New namefor commonstilbite in which Ca is the most the NAI structuretype, but they are cross-linkedin a abundantextra-framework cation. different way; Si,Al are highly ordered, but disorder For tle pseudo-orthorhombiccell, F2lm, a 13.595- increaseswith increasingSi : Al (Alberti et al. I98l). RECOMMENDBD NOMBNCLATT]RB FOR reOLITE MINERAI.S r59l

Tbchernichite The nameapplies to zeolitesof ANA structuraltype in which Ca is the most abundantextra-frarnework cation, Ca[AlrSiuO,u].-8ttO Z=8 BEA irrespective of the degree of order or space-group Smrthet al. (1991),Boggs et al. (1993).Tlpe locality: symmery. GobleCreek, 0.2 km north of Goble,Columbia County, \{einebeneite Oregon, U.S.A. Named after Rudy W. Tschernich, zeolite investigatorof theAmerican Pacific Northwest, Ca[Be@Oa)r(OH)r].4HrO who discoveredthe mineral. z--4 wEI Na, Mg, and K are minor but variable constituentsin Walter(1992). Dpe locality: vein of spodumene-bearing specimensfromthe oneknown locality. T' in tle range pegmatite2 km west of WeinebenePass, Koralpe, 0.744.78 (0.73, 0.80 in a tschernichite-likemineral Carinthia,Austria- Named after the locality. from Mt. Adamson,Antarctica: Galli et al. L995). No elementsother than thosein the given formula were Tetragonal,possible space-group P4lmmm, a 12.880Q), detectedin the one known occurrence. c 25.020(5)A, but may consist of an intergrowth of a Monoclinic,Cc, a 11.897(2),b 9.707(I), c 9.633(1)A, tetragonal enantiomorphic pair with space groups B 95.76(1)'. P4p2 andP\22 and a triclinic polymorphPl. Seealso A calcium beryllophosphatezeolite witl 3-, 4-, and GalJiet al. (1995). 8-memberedrings in the framework (Walter 1992). This is a structural analogueof synthetic zeolite beta. \ilillhendersonitc Tbchiirtnerite K"Cq15"a5q[Al3Si3Otr]'5H2O,where 0 <.r < 1 Caa(Kz,CaSr,Ba):Cu:(OtI)a[AltrSitrO4].zH2O,n = 2O Z=2 CHA Z= L6 (IZA codenot Peacoret al. (198a).Tlpe locality: SanVenanzo qrurry, assigned) Terni, Umbria, Italy. Named after Dr. William A. Krauseet aI. (L997),Effenberger et al. (1998).Bellberg Henderson,of Stamford,Connecticut, U.S.A., who volcano, near Mayen, Eifel, Germany. Named after noted this as an unusual mineral and provided it for JochenTschdrhrer, minglal collector and finder of the study. mineral. Tlpe willhendersonite conforms closely to Tsi = 0.50 &r the only known occrurence. KCa[Al3Si3O1rl.5HuO.End-member Ca1.5[A13Si3Or2] Cubic,Fn$-m, a3l.62g) 4,. .5HO and intermediatecompositions are now known Cagesin the frameworkinclude alarge super-cagewith (Yezzallnret al. t997a).Tsi = 0.50,0.51. 96 tetrahedraand 50 faces.A Cu,(Oll)-bearing cluster Triclinic, Pl, a 9.2O6(2),b 9.2L6(2),c 9.500(4)A, occupies another cage.The framework density is the u 92.34(3)', B 92.70(3)", T 90.12(3)' @ftringer lowest known for a zeolite with a non-intemrpted Bellerberg,near Mayen, Eifel, Germany:Tillmanns et framework. al.I98$. The frameworkis the sameas for chabazite,which has Wairakite idealized framework topological symmetry R3m, but with much lower Si and with Si,Al fitlly ordered.This Ca[AlzSiaOrz].2HzO Z=8 ANA reducesthelopochemical frarnework symmetryto rR3, Steiner (1955), Coombs (1955). Wairakei, Taupo and the nature and ordering of the extra-framework VolcanicZone, New Zealand.Named after the locality. cationsfurther reducethe framework symmetryto Pl. Most analyzed sampleshave Na/(Na + Ca) less than The low-K variants also have fully orderedSi,Al, but 0.3, but wairakite possibly forms a continuous solid- are less markedly ticlinic ({ezzalni et al. 1996). solution serieswitl analcime(Seki & Oki 1969, Seki 1971,Cho & Liou 1987).Other reported substitutions Yugawaralite are very minor. Ts1in the range0.65-{.69. 1{ea6slinic (highly ordered),^I2la, a 1,3.692(3), CalAlzSieOrel.4HzO Z=2 YUG b 1.3.643(3),c 13.560(3) A, B 90.5(1)" for Sakurai & Hayashi (1952). Tlpe localify: Yugawara (Cao.roNao.14)[Al1.e2Sia.67O12].2H2O(Tak6uchi et al. Hot Springs, Kanagawa Prefecture, Honshu, Japan. 1979). Named after the locality. Tetragonal^or near-tetragonal, I41lacd, a 13.72(4), Reported compositions are close to the ideal c 13.66(4)A for (Cq.eNa6.16)[AlpSq.67Opl.2.lLH2O stoichiometry,withtpta0.2 apfu of Na + K + Sr. Tsi in (Nakajima1983). the range0.7H.76. The fiLmework topology is similar to that of analcime, Monocinic , Pc, a 6.70il(L),b I3.g72Q), c 10.039@A, but Al is preferentially located in a pair of tetrahedral I 111.07' (Kvick et al. 1986). sites associated with Ca, and Ca is in one specific fdslinis, Pl, by symmetryreduction ascrib€dto local extra-framework site. Smaller departuresfrom cubic Si,Al order, has been reported on the basis of optical symmetry are correlated witl decreasedSi,Al order. measurements(Akizuki 1987b). 1592

Si,Al are strictly orderedin samplesfrom Iceland (Kerr Larsen et al. (1992). Tlpe locality: Vevya quarry, & Mlliams 1969,Kvick a al. 1986).The partial order Tvedalen,Vestrold County, Norway. Named after the reportedfor the Yugawa&sample (rimer & Slaughter locality. 1969)is doubttul(Gottardi & Galli 1985). Spot analysesshow a range from (Ca3.2sNlno:zFeo.os)x to (Car.6Mn1.s6Feo.rn)20for BqSi6O17(OII)a.3H2O, with ZsourEs oF DoUBTFILSrAf,us AND about0.9 to 0.21A1 andminor Be substitutingfor Si in e PossrsLEZEourE the generalizedformula. Further work is recommendedto clarify the status Orthorhombic(c-centered), a 8.724(6),b 23.L4(.L),c of paranatrolite and tetranatrolite. Essential data for 4.e23@)L. these minerals and for tvedalite, which is possibly a Consideredto be structurallyrelated to chiavennite,but beryllosilicate zeolite, are as follows. in the absenceof an adequatedetermination of its structure, it has not been listed here as an accepted Paranatrolite zeolitespecies.

Na2[Al2SiO1e].3H2OZ=8 NAT DISCREDnED,Onsorrrg, ANDOIIDR NON-APPROVED Chao (1980). Tlpe locality, Mont Saint-Hilaire, ZsoLrrE NANcs Quebec,Canada. The namerecognizes its association with and similarity in chemical somposition to Herschelite, Ieonhardite, svetlozarite, and natrolite, Na2[Al2SirOro].zHro. wellsite are discreditedas nrmes of mineral species Contains additional HrO relative to natrolite, also (Appendix 2). minor Ca andK. Kehoeite was regardedby McConnell (1964) as a Pseudo-orthorhombic,F***, pro^bablymonoclinic, a zinc phosphateanalogue of analcime,but accordingto Ig.W(l),b 19.13(L),c 6.580(3)A. Givesvery diffuse White & Etd,(1992), type kehoeiteis a heterogeneous diffraction-spots, and a powder pattern similar to that mixture of quartz and sphalerite witl other phases of gonnardite(Chao 1980). including gypsumand woodhouseite,or a very similar Dehydratesto tefranatrolite and could be regardedas phase. No phase present bears any relationship to overhydrated natroliteo tetranatrolite or gonnardite. analcime.It is not acceptedas a valid zeolite species. Without firtler justification, separatespecies status is debatableaccording to Rule 4. Vis6ite is shownby Di Renzo& Gabelica(1995) not to be a zeolite, as had commonly been supposed. Tetranatrolite They regardit as a defectivemember of the crandallite group,with compositionCaA|@O4,SiO4)2(OID o.mH2Q. (1996) (Na,Ca)6[Al1eSi21Oso]. 16H2O Kim & Kirkpatrick showedthat a specimen Z=0.5 NAT sxaminedfy them is very disordered,with a structure Chen & Chao (1980). Tlpe localify: Mont Saint- simil2l 16that of crandallite,but containsother phases Hilaire, Quebec, Canada. The name indicates a including opal. Vis6ite is excluded from the list of tetragonal analogue of natrolite. First described as acceptedzeolites. "tehagonalnafrolite", from flfmaussaq,Greenland, by Obsoleteand discreditednnmes are listed below" KroghAndersenet al. (L969). followed by the correct namesor identifications. The Extensivesolid-solution approximating Na16_,Ca,Al1*" list is basedon one compiled by the late G. Gottardi, Siz+-9a0'16HrO,where.r varies from about0.4 to 4, is using tle following references:Hintze (1897),Dana reportedby Rosset a/. (L992). Small amountsof Fek, (L9L4),Cocco & Garavelli(1958), Davis (1958),Hey Sr, Ba and K may replaceNa and Ca. Ts in the range (1960, 1.962),Merlino (1972), and Strunz (1978). 0.50-{.59. Numerousadditions and amendmentshave been made Tetragonal,i42d, a L3.L4I, c 6.617 A (Mont Saint- in the light of more recentlypublished work and of the Hilaire, Quebec,Canada: I!.:oss et al. L992). notes below, and of listings in Clark (L993), in which The framework is of disordered natrolite type. much information on the history and usagesof these Tefranafroliteis consideredto be a product of dehydra- namescan be found. tion ofparanatrolite(Chen & Chao 1980,Ross et a/. 1992).It differs from nafrolite in CaAl substitutionfor ahrazite = gismondine,phillipsite NaSi, as well as in space-group symmetry. These, acadialite= chabazite however, are also characteristics of gonnardite, to achiardite= dachiardite which its relationship is debatable. adipite = chabazite2 aedelforsite= laumontite?.stilbite? Tvedalite aedelite(of Kirwan), aedilite = natrolite ameletite= mixtures of sodalite,analcime, phillipsite, (Ca,Mn)aBqSi6O tr(OII)o.3H2O and relict nepheline Z=2 amphigdne= leucite RECOMMENDED NOMENCT.ATURE FOR EOLIIE MINERAI,S 1593 analcidite = analcime granatite= leucite analcite= analcime grenatite (of Daubenton)= leucite analzim = analcime gpddeckite = gmelinite? andreasbergolite= harmotome hairzeolite (group name) = natrouteo thomsonite, andreolite,andr6olithe = harmotome mordenite antitidrite = edingtonite harmotomite= harmotome apoanalcite= natrolite harringtonite = tlomsonite, mesolitemixture arduinite = mordenite haydenite= chabaztte, aricite = gismondine hegauit (hOgauite)= natrolite ashtonite= strontianmordenite hercynite (of Zappe)= harmotome bagotite = thomsonite herschelite= chabazite-Na barium-heulandite= barianheulandile (unless Ba is the hiigauite = natrolite most abundantcation) hsiang-hua-shih= hsianghualite barytkreuzstein= harrnotome hydrocastorite= stilbite, mic4 petalite mixfure beaumontite= heulandite hydrolite (of Leman) = gmelinite bergmannite= nabolite hydronafrolite = naholite blItterzeolith = heulandite,stilbite hydronephelite = a. mixture, probably containing brevicite = natrolite natrotte cabasite= chabazite hypodesmine= stilbite caporcianile= laumontite hypostilbite = stilbite or laumontite carphostilbite= thomsonite idrocastorite (hydrocastorite)= stilbite, mica, petalite chabasie,chabasite = chabazite mixture christianite (of des Cloizeaux)= philliFsite kali-harmotome,kalkh4aele6e = phillipsite cluthalite = analcime kalithomsonite= ashcroftine(not a zeolite) comptonite= thomsonite kalkkreuzstein= phillipsite crocalite = natrolite karphostilbite = tlomsonite cubicite, cubizit = analcime kehoeite = a mixture including quartz, sphalerite, cubic zeolite = analcime?,chabazite gyp$um,and ?woodhouseite cuboite = analcime koodilite = thomsonite cuboizite =chabazite krokatith = naholite desmine= stilbite kubizit = analcime diagonite = brewsterite kuboite = analcime dollanite = analcime laubanite= natrolite doranite = analcime with tlomsonite, natrolite, and laumonite = laumontite Mg-rich clay minerals(Ieertsta & Dyer 1994) ledererite,lederite (of Jackson)= gmelinite echellite = natrolite lehuntite = naholite efflorescing zeolite = laumontite leonhardite= HzO-poorlaumontite eisennatrolith= nafrolite witl otler mineral inclusions leuzit = leucile ellagite = a ferriferous natrolite or scolecite? levyine, levynite, levyite = levyne epidesmine= stellerite lime-harmotome= phillipsite epinatrolite = nafrolite lime-sodamesotlpe = mesolite ercinite = harmotome linsqlnins, lincolnite = heulandite eudnophite= analcime lintonite = thomsonite euthalite,euthallite = analcime lomonite = laumontite euzeolith= heulandite marburgite= phillipsite falkenstenite= probabl] plagioclase@aade 1996) mesole= tlomsonite fargite = natrolite mesoline= levyne? chahazite? fariielite = tlomsonite mesolitine = thomsonite fassaite(of Dolomieu) = probably stilbite mesotype= oatrolito, mesolite, scolecite feugasite= faujasite metachabazite= partially dehydratedchabaztts flokite, flockit = mordenite metadesmine= partiall) dehydratedstilbite foliated zeolite = heulandite,stilbite metaepistilbite= partially dehydratedepistilbite foresite = stilbite + cookeite metaheulandite= partiall| dehydratedheulandite galactite = natrolite metalaumontite= partially dehydratedlaumontile gibsonite= thomsonite metaleonhardite= dehydrated"leonhardite" Qaumontite) ginzburgite (of Voloshin et al.) =roggpzaile metaleucite= leucite gismondite= gismondine metamesolite= mesolite glottalite = cbabazite metanatrolite= partiall! dehydratednatrolite t594 TIIE CANADIAN MINERAL@IST metascolecite,metaskolecit, metaskolezit = partially strontium-heulandite = strontian heulandite and dehydratedscolecite heulandite-Sr metathomsonils= partially dehydratedthomsonite svetlozarite= dachiardite-Ca monophane= epistilbite syanhualite,syankhualite = hsianghualite mooraboolite= natrolite syhadrite,syhedrite = impure stilbite? morvenite = harmotome tehaedingtonite= edingtonite nafrochabazite= gmelinite tonsonite= thomsonite naton-chabasit,natronchabazit (of Naumann)= gmelinite triploclase, triploklase = thomsonite naftonite (in part) = naholite vanadio-laumontite= vanadianlaumontite needle zeolite, needle stone = natrolite, mesolite, vemrcite = mesolite scolecite Vesuviangarnet = leucite normafin= phillipsite Vesuvian(of Kirwan) = leucite orizita, oryz,rtn= epistilbite vis6ite = disorderedcrandallite and other phases ozarkite = thomsonite weissian= scolecite parastilbite= eprstilbite wellsite = barianphillipsite-Ca and calcianharmotome phacolite,phakolit(e) = chabazi.tp white garnet= leucite picranalcime= analcime winchellite = thomsonite picrothomsonite= tlomsonite Wtirfelzeolith = analcime, chabazile pollux = pollucite zeagonits- gismondine,phillipsite poonahlite,poonalite = mesolite zeolite mimetica = dachiardite portite = natrolite (Franzini &Perchrazn L994) zdolithe efflorescente= laumontite potassiumclinoptilolite = clinoptilolite-K pseudolaumontite= pseudomorphsafter laumontite AcKr.IowmDGEN{B,trs pseudomesolite= mesolite pseudonatrolite= mordenite Members of the present Subcommittee,which pseudophiJlipsite= phillipsite commencedwork in L993, arc grateful to a previous ptilolite = mordenite Subcommittee. established in 1979 under ttre puflerite, pufflerite = stilbite Chairmanshipof ProfessorW.S.Wise of the University punahlite = mesolite of California. Santa Barbara, California, for work radiolite (of Esmark) = natrolite containedin a draft repofi completedin 1987.Members ranite = gonnardite(Mason 1957) of the 1979Subcommittee included L. P. van Reeuwijk reissite (of Fritsch) = epistilbite and the late G. Gottardi and M.H. Hey, as well as retzitp = stilbite?, laumontite? D.S.C. and H.M. of tle presentSubcommittee. J.V. sarcolite (of Vauquelin)= gmelinite Smith, W.M. Meier, R.W. Tschernich,and the late V.A. sasbachite,saspachite = phillipsite? Frank-Kamenetskiiwere consultanls.Although recom- savite = natroute mendations in tle present report differ significantly schabasit= chabazite from those in the 1987 report, the existence of that schneiderite= laumontite(Franzini &Percbiaz.zi15941 report has greatly facilitated our task. Ws thank J.V. schorl blanc = leucite Smith andL.B. McCuskerfor advice,C.E.S. Arps and scolesite,scolezit = scolecite W.D. Birch. successivesecretaries of CNMMN, for scoulerite= thomsonite much help, andmany othercolleagues for conhibutions seebachite= chabazite of time, advice, and specimens.Staff of tle Science skolezit = scolecite Library, University of Otago, and others,helped trace sloanite= laumontite? obscurereferences. snaiderite(schneiderite) = laumontite soda-chabazite= gmelinite REFERENCES sodamesotype = natrolite sodium dachiardite= dachiardite-Na Arrzrn

& Kottro, H. (1985): Order-disorderstructure and Ar.Ern, A. (1972): Polymorphism and crystal-chemistry theinternal texture of stilbite.Ara Mineral.70,8l+821. of heulandites and clinoptilolites, Am. Mineral. 57, 1448-1462. KuDou,Y. & Kurusavesm,T. (1996):Crystal structuresofthe {0ll}, {610},and {010} growthsectors AnvsnusrEn, T. (1993): Dehydration mechanism of in brewsterite.Am" Mineral.81. 150l-1506. clinoptilolite and heulandite: single-crystal X-ray study of Na-poor, Ca-, K-, Mg-rich clinoptilolite at lm K.Arr. & Saros, Y. (1993): Crystal shuctureof Mineral.7E.260-2@. the orthorhombic {001} growth sector of sttJblte.EunJ. Mineral.5, 839-843. & Kom*en,T. (1992): Re- and dehydrationof laumontite: a single-crystalX-ray study at 100 K. Neues ALBERT,A. (L972): On the crystal structure of the zeolite Jahrb. Mineral.. Monatsh.. 385-397. heulandite. Tscher'maksMineral. Petrogr. Mitt, lE, 129-146. Aarror,I, G. (1992): The crystal structure of garronite. Arz. Mineral. TT,189-196. -Onsa): The crystal strucfire of two clinoptilolites. TschermalaMineral. Petrogr Mitt. X2,25-3'7. & Foy, H. (1994): Gobbinsitefrom Magheramorne quarry,Northern lr:eland,MfurcraL Mag. 58, 615-620. (1975b): Sodium-richdachiardite from Alpe di Siusi, Italy. Contrib. Mineral. Petrol. 49,63-66. -, Gotr*ot, G., RNALDI,R., Sarow,Y., Honruqu, H., Ys, J., Seweoe,H., Tarexe, M. & Tororem, M. CnucnNl G. & Deunu,I. (1995):Order-disorder (1987): A single crystal dif&action study of the natural in natrolite-group minerals.Ear: J. Minzral. T, 501-508. zeolite cowlesite, Photon Factory, National Inboratory for High EnergyPhysics, Activity Rep.198i1,316. _, Ger-u, E. & Vnzam.n, G. (1985): Epistilbite: an acenhiczeolite wilh domainstructure. Z Kristallngr 1.il3, & Kvrc& A. (1SSO):Synchrotron X-ray Rietveld 257-265. study of perlialite, the natural counlerpart of synthetic zeolite-L. Eun J. Mineral. 2, 749-7 59. Passecua,E. &ZNtAZz,, P.F. (1982a):Position of cations and water molecules RnrALDr,R., Kvrcr, A. & Surnr, J.V. (1986b): in hydrated chabazite. Natural and Na-, Ca-, Sr- and Neutron dilfraction strucfl[e refinement of t]e zeolite K-exchangedchabazites. kolites 2, 303-309. gismondineat 15 K. fuolites 6, 36L-366.

Ilalrscng., G. & VszAr.;Nr, G. (1979): Amicite, SMffH,J.V. & KucK, A. (1984):Neuton dilffiaction a new natural zeolite. Neueslahrb. Mineral., Monatsh., study of natrolite, NarA12Si3O16.2H"O,at 20 K. Acta 481-488. C rystaIIo g n Cfi , 1658-1662. Poxcnuppr, D. & Vnzzamu, G. (1982b): The & PLUTIT,J.J. (1986a):X-ray sffucture crystal chemistry of natrolite, mesolite and scolecite. refinementof mesolite. Acta Crystallogn C{2, 937'942. NeuzsJahrb. Mineral.. Abh. 143. 231-248.

& Sansnt, C. (1987): Statistical and true & SrAttU K. (1993): Fully hydratedlaumontite: a symmetry of ferrierite: possible absence of straight stucture study by flat-plate and capillary powder diffrac- T-G-T bridEirg bonds.Z Kristallogr 178,249-256. tion tecbniques.Tzolites 13, 249-255, (1991):Characterization _ & Vnzzer-nu, G. (1979): The crystal structure of - & ToRRF.sSALVADoR, M.R. amicite, a z,enlate,Acta Crystallogr. R35, 2866-2869, of the natural zeolite gonnardite. Sffucture analysis of natural and cation exchanged species by the Rietveld 79-82, M5-850. & - (1981a): A partially disordered method.Materi.al ScienceForum natrolile: relationshipsbetween cell parametersand Si-Al &stribution.Acta Crystallogn837, 781-788. BARTL,H. (1970): Strukturverfeinerung von Leonhardit, Ca[AlzSiOu].3Hro, mittels Neutronenbeugung.lVeaes - & - (1981b):Crystal energiesand coordi- Jahrb. Mineral., Monatsh., 298-310. nation of ions in partially occupied sites: dehydrated maznts.Bull. Mindral lM,5-9. Baun, W.H. (1964): On the cation and water positionsin faujasite.Ane Mineral. 49, 697-7 M. Gar,u, E. & Querrmr, S. (1996): The crystal structureof gottardiite, a new natural zeolite. Err: BEcER,R.M. (1969): The crystal structureand chemical J. Mineral.E.69-75. composition of polluciie. Z. Kristallagn 129, 280'302,

& T szzor.r,Y. (198l): Thomsonite:a BBRGERuoFF,G., Beun, W.H. & Nowecrc,W. (1958):Uber detailedrefinement with crosschecking by crystal energy die Kristallstrutrtur desFaujasis. NeucsJahrb. Mbrcral., calculations.Zolites l.9l-97 . Monatsh.,193-200. 1596 THB CANADIAN MINERALOGIST

Brus, A.A. (1960): Geochemistryof Berylliunr.and the C:mrf, p. (1974):The presentstatus of the analcime-pollucite GeneticTlpes of Berylliunt Deposits.Akademii Nauk, seies. Can, Mineral, 12. 33+341, SSSR,Ltst. minspl., geokhim.,i kristallochim.redkith elementov,1-329 (i:r Russian).Abstract in Am, Mfu.eral. - Rl.teml, R. & SURDAM,R.C. (1977):Wellsite and 46.2M. its status in the phillipsite - harmotome glottp. Neues Jahrb.Mineral., Abh. PA,3L2-32O. BIEI\uoK,A., Joswo, W. & Baun, W.H. (1996):A study of paulingites: pore filliag by cations and water molecules. _ & SnrsoN, F.M. (1978):The Tancopegmatite at NeuesJahrb. Mineral., Abh. l7l, ll9-134. Bernic Lake, Manitoba. X. Pollucite. Can, Mineral. 16, 325-333. BIssERr,G. & LTEEAU,F. (1986): The crystal structure of a triclinic bikitaite, LilAlSi2O6l.HrO, with ordered AVSi Cs,lo, G.Y. (1980): Paranatrolite, a new zeolite from Mont distribution. Neues Jahrb. MineraL, Monatsh..'241-252 St-ltilaire, Qu6bec.Can. Minzral. 18,85-88.

Blacr

BLutvIENBAcHs,J.F. (1791): Auszuge und Kezensioneit Cso, M. & Ltou" J.G. (1987): Prehnite-pumpellyiteto bergmanischer und mineralogischer Schriften. greenschistfacies tansition in the Karmutsenmetabasites, Be rgxnnnis ches J, 2, 489-500, VancouverIsland, B.C. J. Petrol.2.8,417443. CLARK,A.M. (1993): Hey's Mineral Index. Chapman& Hall, Boccs, R.C., Howeno, D.G., Surrs, J.V. & Kr,sN, G.L. London, U.K. (1993): Tschernichite, a new zeolite from Goble, Columbia County, Oregon.Am- MineraL TS,822-826. Cocco, G. & Garurvs.l t, C. (1958):Riesame di alcunezeoliti elbarc.Atti Soc. ToscanaSci. Naturali 65, 262-283. Bolrs, J.R. (1972): Composition,optical properties,cell dimensions, and thermal stability of some heulandite CooMBs,D.S. (1955):X-ray observationson wairakiteand group zeolites.An . Mineral. 57, 1463-1493. non-cubic analcime.Mineral. Mag 30, 699:708,

Boranor, M. (1979): Composition of type dachiarditefrom & WIs"ITEN,J.T. (1967): Compositionof analcime Elba: a re-examinaton. Mineral, Mag. 43, 548-549. from sedimentaryand burial metamorphic rocks. Geol, Soc.Am., Bull. 78, 269-282. Ronnnrs,A.C. & Sasnre,A.P. (1981):Sodium- rich dachiarditefrom the Franconquarry, Montreal Islan4 CnoxsrsDt, A.F. (1756): Observationand description of an Quebec.Can. Mineral. 19, 285-289. unknown kind of rock to be named zeolites, Kongl. VetenskapsAcad. Handl. Stockhobn17, l2O-123 (n Bornr, M., Grurml, W.L., Marrrolr, V. & Morrale, A. Swedish). (1983): Chiavennite,CaMnBqSi5o,r(oH)2.2H2o, a new mineral from Chiavenna (Italy). Am. Mineral. 6E, D'AcrnemI, G. (1906): Zeobtt del filone della Speranza 623-6n. pressoS. Piero in Campo @lba). Atti Soc. ToscanaSci. NaturaliXL,15G165. Bosc D'AMrc, L. (1,792):M6moire sur la chabazie.L d'Histoire Naturelle 2, l8l-184, DAMouR,M. (1842): Descriptionde la faujasite,nouvelle esplce mindrale, Annales desMincs , Sdr 4, l, 395-399. Bnumatrr, A. (1846): Pollux. (Poggendoff's) Awulen der (1914): (6th Physik und Chzmie 69,439. DANA,E.S . A Systemof Mtuuralogy of J.D. Dana ed., with AppendicesI and IT). John Wiley & Sons,New Yorlq BREwsrER,D. (1825a): Description of gmelinite, a new N.Y. mineral species. Ed.inburghJ. Sci.2,262-257 . DANA,J.D. (1868):A Systemof Mbrcralogy (5th ed.).John Wiley & Sons,New York, N.Y. (1825b): Description of levyne, a new nineral spcies. Edinburgh J. Sci.2, 332-334. DAvrs,R.J. (1958):Mordenite, ptilolite, flokite, and arduinite. Mineral. Mag. 3t, 887-888. Bnooru, H.J. (1820): On mesotype, needlestone,and thomsonite.Anrals of Philosoplty L6, 193-194. DE GETINARo,M. & FRANco,E. (L976): La K-chabazite di alcuni "Ttrfi del Vesuvio". Rend.Accad. Naz. Lincei 40, (1822): On the comptonite of Vesuvius, the 490497. brewstedte of Scotland, the stilbite and the heulandite. Edinburgh Philos. J. 6, ll2-115. Dnarutrruarur, J.-C. (1795): Th6orte de la Tbne l. Chez Maradaq Paris,Fra:rce. Casu,rl, R., LuccuErrr, G., PALs{zoN!, A., Quamml S. & Vpzzamu, G. (1993): First occurrenceof a Ba-dominanr Dsia VncruRA, G., Per.opr,G.C. & Bunnececo, F. (1993): brewsterite: structural features. Ear J. Mitu

Dt Fnerco, S. (L942):Mineralagia Emea.Zw*arc1ls &,rzn, Garr-r, E. (1971): Refiaement of the crystal structure of Catania,Italy (158-161). stilbite. Acta Crystallagr. Bn, $3-841.

Dr Rmvzo, F. & GesElrce, Z. (1995): New data on the (1975): Crystal structure refilement of mazz7le. structureand composition of the silicoaluminophosphate Rend Soc.It. Mineral. Petrol.3l,599-6L2. visdite and a discreditation of its status as a zeolrte. In '93: -(1976): Crystal structurerefinement of edinglonite. Natural Zeolites Occurrence,Properties, Use @.W. Acta Crys t aIIo g r. B.32, | 623-l 627. Ming & F.A. Mumpton, eds.).Intemational Committee on NaturalZeolites, Brockport New York, N.Y. (173-185). - (1980): The crystal structure of roggianite, a zeolite-like silicate. hoc. 5th Int. Conf. on Zeolites & _ (1997):Barrerite and other zeolites (L.V.C.Rees, ed.). Heyden, London, U.K. (205-213), from Kuiu and Kupreanofislands,Alaska. Can.Mineral. 35,691-698. & ABERrl, A. (1975a): The crystal structure of stelleita. BuIl. Soc.fr Minlral. Crisnllogn 98, 11-18. Duwr, P.J.,hacon, D.R., NEWBERRY,N. & RArflK, R.A. & (1975b): The crystal stnrctureof (1980): Goosecreekitena new calcium sluminum silleafs - balreite. BuIl. Soc. MindraL Cristallogr. 9E,331-3N. hydrate possibly related to brewsterite and epistilbite. fr, Can. Mineral. 18, 3X-3n . -& GotrenoI, G. (1966):The crystal structureof stibits. Mineral. Petogn Acta (Bolngn) 12, l-l0. Earc:e,A.S. (1898):Erionite, a new zeolite.Am. J. Sci.156, 66-68. & PoNGILUPPLD. (1979): The crystal structureof the zeolite merlinoite.lveaesJahrb, Mineral., EBERLv,P.E., JR. (1964): Adsorption properties of naturally Monatsh."L-9. occurring erionite and its cationic-exchangedforms.,4Ln Mincral. 49.3040. & Loscm Gnnrom, A.G. (1972): The crystal chemistry of phillipsites. Az. Mineral, 57, ll25-LL45. Errrrrrncrn, H., Gresr:en,G., Krausn, W. & Bnnmnnor, H.-J. (1998): Tschiirtnerite,a copper-bearingzeolite from Passecua, E,, PoNGu,uPPI,D. & RNALDI, R. tle Bellberg volcano, Eifel, Germary. Am. Mineral.83, (1974):M;azzl:tB"a new mineral, the natural counterpafi 607-617. of the synthetic zeolite Q. Contrib. Mineral. Petrol, 45, 99-105. ENceI-, N. & YvoN, K. (1984): The crystal structure of parth6ite.Z. Kristallogr. 169, 165-175. & Z^N^z,n, P.F. (1982): Gmelinite: structural refiaements of sodium-rich and calcium-rich Ewclano, B.M. & Osrwar.o, J. (1979): Levyne - offretite natural crystalg. Neues Jahrb. Mineral., Monatsh., intergrowtls from Tertiary basaltsin the Merriwa distict 145-155. HunterValley, New SouthWales, Australia- Aust. Mineral. 25, ll7-r19. Quanrnnr, S., VEzzeu.u, G. & AI-BERTI,A. (1995): Boggsiteand tschernichite-g4tezeolites from Ml ERcrr, T.S. & VeN VsLTnurroN,I. (1994): Gaultite, a new Adamson, Northern Victoria Land (Antarctica). Ean J. zeolite-like mineral species from Mont Saint-Hilaire, Mtureral.7.L029-1032- Quebec, and its crystal structure. Can. Mineral, 32, 855-863. Gottardiite, a new high-silica zeolite fromAntarctica: the Mineral. E, Frnsrraen,A.E. (1908): Materialien zur Untersuchung der natural counterpartof syntheticNU-87 . Ear J. Zpolrthe Russlands. I. Leonhardit und Laumontit aus 687-693. der Umgebung von Simferopol (Krim). Trav. du Musde -&Fharau,M. Pierre le Grand pn l'Acad, hnp. de Science 'pentasil' 96ol. (1997a'):Terranovaite from Antarctica: a new St Pdtersbourg 2, lO3-L50 (abstr. ia Z. Kristallogn 50, zenhte.Am. Mineral. 82,423429. 75-76\. & R-trlAr-DI,R. (1974): The crystal chemistry of (1966): FIScHER.,K. Untersuchungder Kristallstruktur von epistilbites.Am" Mineral. 59, 1055-1061. Gmelinit..tVeaesJahrb. Mineral., Monatsh., l-13. & Mopwe, C. (1981):Crystal chemistry & Scnnamr, V. (1970): Crystal structure of oflevytes. Zzolites l, L57-L60, gismondite, a detailed refinement. /n Molecular Sieve Z,eobtes.Am. Chem.Soc., Adv. Chem.Ser. l0l,250-258. YEzzALrNr,G., Quarrrenr, S., Ar-SERTI,A. & Fnen'a.n, M. (1997b): Mutinaite, a new zeolite from Fhalla{, M. & Pnncrtraa, N. (1994): Portite discredited= Antarctica: the natural counterpart of ZSM-5. Zeolites natrolite and new data on "schneiderite" (= laumontite). 19,31,8-322. Eur J. Mineral. 6, 351-353. Gano, J.A. & Tarr, J.M. (1972):T\e crystal structureof the Fucss, J.N. (1816): Ueber die Zeolitle. (Schweigger's)J. zeolite offretite, K1.1Ca1.1Mg6.7[Si12.sAl5rO36]'15.2H2O. Chem.and Phys.18, l-29. Acta Cry s tallo gn 828, 825-834. 1598 THE CANADIAN MINERALOGIST

Getn:eN,A.F. & Fucus,J.N. (1813):UeberWerner's Zeolith, Ilssss, K.-F. (1983): Refinementof a partially disordered Hatiy's Mesotype und Stilbite. (Schweigger's)J, Chem. natolite, Na2Al2Si3O16.H2O.Z Kristallogr 163, 69-74. undPhys.8, 353-366. tfuv, M.H. (1930): Studieson the zeolites.I. Generalreview. Gtsuouor, C.G. (1817): Osservazionisopra alcuni fossili Mineral. Mag. XL, 422437. particolari de' contomi di Roma. Giornnle Enciclopedico di Napoli, Anno Xl, 2, 3-15. (1960):Glottalite is chabaate.Mineral. Mag.32, 421422. GrusEppE'nr,G,,MAzn, F., Talnrn, C. & Gar-lr, E. (1991): The revised crystal structure of roggianite: -(1962} An Indzx of Mineral SpeciesandVarieties CarfBe(OII)rAlrSiOrrl<2.5HrO. r'feuesJahrb. Mineral., Ananged Chemically(2nded., andAppendices,1963 and Monatsh..3O7-314. 1974).British Museum,Irndon, U.K.

Gottlteno, F. (1890): Sur 1'oft6tite, esp&e min6ralenouvelle. Hnfire, C. (1897): Handbuch der Mineralogia 2. Von Veit, C.R.Acad. Sci.,Paris 111,1002-1003. I*ipag, Germany.

GonooN,E.K., Savsox, S. & Ka,D, W.B. (1966): Crystal Honr, H., Necasnnae, K., Yaveoa, M., Mrvawerr, R. & structure of the zeolite paulingite. Science 154, MARUBASm,T. (1986): Ammonioleucitena new mineral 1004-1007. from Tatarazaw4Fujiok4 lapat Am Mineral. Tl,1022- Lon. Gomenor, G. & Ar-ennrr, A, (1974'l: Domain structure in garronite:a hypothesis.MlzeraL Mag,39, 898-899. How, H. (1864): On mordenite,a new mineral from the trap of Nova Scotia.J. Chern.Soc. l7 (new sen),17,100-1M. & Garrt, E. (1985):Natural Zeolites.Springer- Verlag, Berlin, Germany. HowARD,D.G. (1994): andt$"inning of gaxronite from Fara Vicentina" Yrcenza (Italy). Neues Jahrb. & Mrmn, W.M. (1963): The crystal structure of Mineral,, M onatsh., 9 l-96. dachrardrte.Z Kristallo gr. ll9, 53-fu , TscnaRNrcH,R.W., Surm, J.V. & KLSN" G.L. Gnaqau, R.P.D.(1918): On ferrierite, a new 2solitig minsral, (1990):Boggsite, a new higb-silicazeolite from Goble, from British Columbialwith noteson someother Canadiau Columbia County, Oregon,Arn. Mineral. 75, l20O-12M. minerals.T?ans. R. Soc,Can., Sen 3, t2,185-201. HuANc,WEr.{-Hu, Tu, SnAo-HuA"WANG, K'uNc-HAl CnAo, Gnau;or-I\4m., R., GRArtrLrcH,V. & MEER,W.M. (1985): Grul-Ln:l & Yu, Cnwc-Gm (1958): Ilsiang-hua-shib a The crystal structure of the monoclinic variety of new mineral. Ti-chih-yueh-k'an7 , 35 (abstr.in ferrierite.A Mineral, 70.6L9-623. Am. Mineral. 44, 13217-1328; 6, 244).

Hanmorn, W. (1825): Description of edingtonite, a new HURLBUT,C.S., Jn. (1957):Bikitaite, LiAlSirOu,HrO,a new mineralspecies. Edinbargh J. Sci.3,316-320. mineral from Southern Rhodesia. Am. Mineral. 42. 792-797. Hanena, K., Iwauoro, S. & Kruna, K. (1967): Erionite, phillipsite and gonnardite i:r the amygdales of altered IsRAItnr4,K. & IIeu., A. (1995): New occurrencesof basaltfrom Maz6, Niigata Prefecture,Iapan. Am. MincraL diageneticfaujasite in the Quaternarytuffs of north-east 52,1785-1,794. Jordan.Eun J. Mturcral.7.1129-1135.

Hassan, I. (1997): Feldspathoidsand tleir relationships to IIJITaA,A. & HARADA,K. (1969): Authigenic zeolites in zeolites.Ktwait J. Sci.Engineertng A, rc3-n7. zeolitic palagonite tuffs on Oahu, Hawaii. Am. Mineral. 54, 182-197. IIAtIr, R.-J.(1797): Analcime. J. desMines 5,n8-n9. JArEsoN, R. (1805): System of Mineralogy II. Bell and - (1801): Traitd de min4ralagre3. ChezLouis, Paris, Bradfirte, Edinburgh, U.K. (539). France. Joswrc, W., Barn-, H. & FuBss,H. (1984): Structurerefine- (18O9): Tableau Comparatif des R€sulta* de ment of scolecite by neufron diffraction. Z. Kristallogr Crisallagraphie et de l'Arnlyse ChfuniqueRelativement d t66,219-223. la Classification des Mindraax, Courcier,Paris, France. KAIi,B,W.B. & Orq W.C. (1960):Paulingite, anew zeolife,in HAa!{, R.M. & Fnqcnn,L.W. (1979): Polyhedral tilting: a associationwith erionite and filiform pynte. Aru Mineral. cornmontype ofpure displacive phasetransition and its 45.79-91. relationshipto analciteat high pressue.Phase Tfansitions l,t-22. KAwAHARA,A. & Curuw, H. (1969): La structurecristalline de l'6rionite. Bull. Soc. fn Mindral. Crtstallogn 92, H NEy, P.J. & Vr,rur, D.R. (1990): A high-temperature 250-256. study of the low-high leucite phass hansition using the transmission electron microscope. Am. Mineral. 75, KERR,I.S. & Wu.nus, D.J. (1969): The crystal strucfire of 46+476. yugawaralite.Acta Crystallogn825, 1183-1190. RECOMMENDED NOMENCLATURE FOR 4OLME MD{ERAI,S L599

KHoMrAKov,A.P., CHEREprvsKAyA,G.Ys., Kunove, T.A. & gesamnte Mineralogie mit Hinsicht auf die neuesten KAprsov, V.V. (1982):Amicite, K2Na2AlaSiaO16.5H2O, Entdeckungen ll, 164-168 (extracted from Gismondi frst find in the USSR. Dokl. Akad. Nauk SSSR263. 1817). 978-980(in Russ.). (1.82L):Handbuch der Oryktognosie.Mohr & Sar.rpom.sraya, S.M. & MALNoVSKI, Yu.A. Mnter, Heidelberg, Germany(448). (1980):Kalbonite, K6BAI4Si6O4(OH).C1, a new minetal. Dokl. Akad- Nauk SSSR252, 1465-L468(in Russ.). LsvnrsoN, A.A. (1966): A system of nomenclaturefor rare-earthminerals, Am. Mineral, 51, 152-158. KrM, Y. & Krnrcarnrcr, R.J. (1996):Application of MAS NMR spectroscopyto poorly crystallinematerials: vis6ite. Ldw, A. (1825):Descriptions of two new minerals.fumals of Mineral. M ag. 60, 957-962. Philosophy,new ser.10, 361-363. Lo, H.-J. & Hsnn, Y.-L. (1991): Iligh potassiumnatural KLAPRofiI, M.H. (1803): ChemischeUntersuchung des mordeniteand the chemicalvariation of mordenite.Proc. Natroliths. Ges. Naturforschender Freunde zu Berlin, Geol. Soc. China (Taiwan) 34, 305-312. N eue Sc h rift en 4, 243-248. SoNc,S.-R. &WaN, S.-8. (1991):Highpotassium Koctrrar, V., Garr, R.I. & RucKr.pcs,J. (L974): The crystal mordenitein the andesitefrom the CoastalRange, eastem structureof bikitaite, Li[AlSirO6].I{rO. An Mineral, 59, Taiwaa. Proc. Geol. Soc, China (Taiwan) 34, 293-3M. 7t-78. Luccmru, G., Messa, B. & PsNco,A.M. (1982):Strontian Koraua, K. & TerGucr, Y. (1977): Clinoptilolite: the distri- heulandite from Campegli (easternLigurian ophiolites, bution ofpotassium atomsand its role in thermal stability. Italy). NeaesJahrb. Mineral,, Monatsh,, 541-550. Z. Kristallogr. 145, 216-239. MAln{ovsKrr, Yu.A. (1984): The crystal structure of Knauss, W., BRNHARDT,H.-I., EFFB{BERGER,H. & GIEsrR" K-gmelinite. Kistallagrafirya 29, 426430 (in Russ.). G. (1997):Tschdrtnerite, a copper-bearingzeolite from the Bellberg volcano,Eifel, Germany.Ber Deutsch,Miwral, & BBLov. N.V. (1980): Crystal structure of Ges.1,205 (abstr.). kalborsite. Dokl. Akad.. lVaat S,S,Sft252. 611'-615 (in Russ.). KnmsArnmsml, E., DANo,M. & Psrm.sw, O.V.(1969): A tetragonalnatrohte. Medd- om Gr4nland l.8|, l-19. MAsoN, B.H. (1957): Gonnardite (ranite) from Langesundsfiord. NorskgeoL TId*skr 37, 435437 . Kvrcr, A., ARrroLL G. & Srrnrn, J.V. (1936): Neutron diffraction study of tle zeolite yugawaxaliteat 13 K. Z, M-wt"F. & GAII, E. (1978):Is eachanalcime differcnt? Am- Kristallag n l7 4, 265-281. Mineral. 63,448460. SrAru., K. & Surm, J.V. (1985): A neutron of diffuaction study of the bonding of zeolitic water in & -(1983): The tetrahedralframework scoleciteat 20 K. Z. Kristallogn 171,l4l-154. chabazite.Neues Jahrb. Mincral, Monatsh. 461-480. & GorreroI, G. (1976): The crystal Lecnox, A. (1896): Sur la gonnndrte. Bull. Soc.fn Mindral. 19,426429. sfucture of tetragonallelrcite.Am. Mineral. 6L, L08-115, (1984): LANcHoF, J. & Holsreu, D. (1994): Boron-bearing & - Crystalstructure chiavennite and otler late-stage minerals of tle refinement of two teffagonal ediaglonites. News Jahrb. Proterozoic litiium-pegoatites of Utii, Stockholm, Mfurcral, M onatsh., 37 3-382. Sweden. Int. Mineral. Assoc., l6th Gen. Meet. (Pisa), LARSEN,A.O., GorrARDI, G. & GAul, E. (1986): Abstr.232. Gonnardite has the tetrahedral framework of natrolite: LARSBN,A.O., Asrsnr, A., Raaos, G. & TAFro, J. (1992): experimental proof with a sample from Norway. lfeaas Tvedalite, (CaMn)aBqSi6O,r(OlDa.3HzO,a new mineral Jahrb.Mirral,, Monatsh.,2L9-228, from syenite pegmatitein the Oslo region, Norway. An. McCoNNELL,D. (1964): A zinc phosphateanalogue of Mineral. 77. 438443. analcime:kehoerte. MineraL Mag. 33, 7 99-803. LEn/c& H.W. & Sr.aucrnr,n, M. (1969): The determination McCusGR, L.8., BaBnr-oclrnn,C. & Nawez, R. (1985): and refinementof the crystal structureof yugawaraJite.Z fuetveld refinement of the crystal structure of the new Kristallogr 130, 88-111. zeolite miaeral gobbinsite.Z. Kristallogr. l7l, 281-289, LENGAUER,C.L., Gmsrsn,G. &TnnaarNs, E. (1997):Min- eralogical characterizationof paulingite from Viaarickd Mrten, W.M. (1961): The crystal sffucture of mordenite Hora, CzechRepablic, Mineral. Mag. 61, 591-606. (ptitolite). Z. Kristallo gn ll5, 439450.

voN LBoNITARD,K.C. (1817):Die Zeagonigein neuesMineral OLsoN,D.H. & BeeRrccffi, C. (1996): Atlas of vom Capo do Bove bei Rom. Taschenbuchfrtr die zeolite structure types.kolites t7, L-23O. 1600 THE CANADIAN MINERALOGIST

MrN'snxov, Yu.P. (1984): Perlialite, Krl.{a(Ca,Sr) Ocurane, S. & IIrntA, A. (1990): Exceptionally K-rich [AlrzSizorr]'15Hro, a new potassianzeolite from tle clinoptilolite - heulandite group zeolites from tlree Khibina Massrf. Zap. Vses. Mineral. Obshchest. ll3, offshore boreholesoff northernJapaa. Eutr J. Mineral. 2, 6M-612. 819-826.

- DBr.usov,A.P., UsFElsKAyA,E.I. & Lparova, E.A. PAssAcuA,E, (1969a):Le zeoliti di Albero Bassi (Vicenza). (1973): Lovdarite, a new hydrous beryllosilicate of Pen Mineral. 38, 237-243. alkd;s.Dokl. Akad.lVazl SSSR213 , M9432 (in Russ.). (1969b): Roggianite, a new . Clny MeRxLs,A.B. & Suucurug M. (1968): Dererminationand Minerals8.107-lll. refinementofthe stucture ofheulaadite.Am. Mineral. 53- 1120-1138. (1970): The crystal chemistry of chabazites.An. Mineral. 55, 1278-1301. Mnru,nro, S. (1972): Orizite discredited (= epistilbite). Arz. Mineral. 57,592-593. (1975): The crystal chemistry of mordenites. Contrib. Mineral. Petrol. 50, 65-77. (1974): The crystal structure of wenkite. Acta Cry st allo gn 830, 1262-1268. ARrrou, G. & Gualruru, A. (1998): The crystal (1990):Lovdarite, I!Na12(BesSioOT2)'18H2O, a chemistry of the zeolites erionite and ofhetite. Arz. zeolite-like mineral: structuralfeatures and OD character. Mineral. 83,57'7-589. Eun J. Mineral. 2, 809-817. & CamlBveq R. (1995): Gau,r, E. & Alrrnn, A. (1975): The crystal Diagenetic mordenitefrom PonzqItaly. Eur J. Mineral. structure of levyne. TschermaksMineral. Petrogr. Mitt. 7,429438. 22, rt7-129. GALLT,E., LsoNr,L. & Rossr,G. (1978b):The MnIAro, H. & Tararo, T. (L964): An occurrence of crystal chemistryof stilbites and stellerites.BrrlL Minlral. potassiumclinoptilolite from ltaya, Yamagatahefecture, 101.368-375. Japan.J. CIay Sci.Soc, Japan 4,12-22 (in Japanesewith Englishabsn ). & Rntar-ot,R. (1974): Levynes and erionites from Sardinia, Italy. Contrib. Mineral. Petrol. MIzorA, T., Surrure, G., Snnraezu,M. & TaxssHnA, Y. 43,253-259. (1974):Mineralogical studieson levyne and erionite fron Japan.Geol. Soc. Japan, Mem.11,283-290. & PoNcnuppr,D. (1974):Sodian stellerite from Lithas 7, Monoznwrcz, J. (1909): Uber Stellerit, ein neues Capo I'nla, Sardegna. 69-73. Zeolithmineral. Bull. International de I'Acaddmie des & (1975): Barrerite, a new natural Sciencesde Cracovie. 34+359. _ zeohte,Mine ral. Mag. 40, 208. Mutup.roN,F.A. (1960): Clinoptilolite redefined.Am. Mineral, (1977): 45.35t-369. & Rnqapl R. Merlinoite, a new mineral of the zeolite gtoup. Neres Jahrb. Mineral., Narernae, W. (1983): Disordered wairakite from Hikihara, Motuztsh..355-36l, Haga Town, Hydgo Prefecture.BuIl. Faculty of Educa- G. (1978a):The crystal tion, Kobe Univ.70,3946. & VBzzamu, chemistryof gmelinites.Neues Jahrb. Mineral., MonatslL, 3t0-324. NAIryAz,R. (1983): New data on gobbinsileand garronite. Mineral. Mag 47, 567-568. & SeceRDou,M . (1982): Crystal structuralrefine- ment of Na-exchanged stellerite. Bull. MindraL 105, - (1984): New data on cowlesite from Northern Ireland,.Mineral, Mag 48, 565-566. 338-342. A. (1994): Chabazite - offretite & Melowe, J.F. (1982): Gobbinsite,a new zeolite & Tlcr,ravnu, epitaxial overgrowthsin cornubianitefrom PassoForcel mineralfrom Co. Antrim, N. heland.MineraL Mag.46, 365-369. Rosso,Adamello,Italy. Eur J. Mineral, 6,397405.

NICKEL,E.H. & MANDARI{o,J.A. (1987): Procedures & VBzzar.nu,G. (1985): Crystal chemistry of involving the IMA Commission otr New Miaerals and diagenetic zeolites in volcanoclastic deposits of Italy. Mineral Names,ald guidelineson mineral nomenclature. Contrib. Mineral. Petrol. N. 190-198. Can. Mineral. 25, 353-377. - (1988): Roggianite:revised chemical NoRNBERG,P. (1990): A potassium-rich zeolite in soil formula and zeolitic properties. Mineral. Mag. 52, developmenton Daaian chet. Mineral. Mag 54, 9l-94, 201-206. RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERAIJ 1601

& CanNevALI,R. (1990): Diagenetic Pnrnr, J.J.& Surrl J.V. (1974):Zeolites of the chabazitesand phillipsites in ltaly: crystal chemistry and phillipsite family. '[efinement of the crystal structures genesis.Ean J. Mineral, 2, 8n -$9. of phillipsite and harmotome. Acta Crystallogr. D.30, 2426-2433. Psacon, D.R. (1968): A high temperaturesingle crystal difhactometer study of leucite, (K,Na)AlSi2O6. z, e -(975b): Crystalstructure Krt st allo g r l?:1, 21,3-224. of maz.zitedehydrated at 600"C. Acta Crystallogn R31, 1603-1608. Dr.rm, P.J., SndMoNs,W.B., TnuaNNs, E. & FIscItER,R.X. (1984): Willhendersonite,a new zeolite SIvnru,J.V. & JuNc,G. (1975a):Chenistry and isostructuralwith chabazite,fun, Mineral.69. 186-189. paragenesisof faujasite, phillipsite and offretite from Sasbach,Kaiserstuhl, Germany.Neues Jahrb. Mineral., - Wrcrs, F.J.& RATDSFP,M. Monatsh..433443. (1988): Maricopaite, a new hydrated Ca-Pb, zeolite-like silicate from Arizotu Can. Mineral. 26. 309-313. & VBzemu, G. (1985): Gismondhe; the detailed X-ray structure refinement of two natural samples. PBKov, I.V. & CnureNov, N.V. (1996): New data on In Zeolr:teq' Synthesis, Structure, Technology and kalborsite. fup, Vses.Mineral. Obshchest.125(4),55-59 Application (8. Daj, S. Hodevar& S. Pejovnik,eds.). (in Russ.). Elsevier,Amsterdam" The Netherlands(481492). Prnnorra, A.J. (1967):The crystal structureof epistilbite. & GRIcE,J.D. (1993): The barium analogof Mineral. Mag. 36, 480490. RoBnIso\ G.W brewsteritefrom Harrisville, New York Con Minzral.3L, & SIImH, J.V. (1964): The crystal structure 687-690. of brewsterite, (Sr,Ba,Ca)z(AlaSit0rS.1gl1r6. O"ro Rosn, G. (1826): Ueber den Epistilbit eine neuezur Familie Cry stalla gn 17, 857-862. 's) der Zeolithe gehtirige Mineralgattung, (Poggendodf hssoN, L.V. (1890): On mordenite. An" J. Sci.140,232-237 . Amalender Physikund Chemie6, 183-190.

Pnrnr, J.J. & Slurm, J.V. (1990): Crystal structure of Ross, C.S. & Ssamqon,E,Y. (1924): Mordenite and associ- boggsite, a new high-silica zeolite with the frst ated minerals from near Challis, Custer County, Idalo. three-dimensionalchannel systembounded by both 12- Proc. U.S.Nat Museum@(19), L-19. and lO-rings.Am Mineral.7s, 501-507. Ross,M., Flom., M.J.K. & Ross,D.R. (1992): Crystalline Howano, D.G. & TscnsRNrcg,R.W. solution series and order-disorder within the mtrolite (1989): Boggsite; the first tlree-dimensional channel mineral goup. A;rz,Mineral. 77, 685-703. system with both l2-and l0-rings. /z Zeolites for the Nineties, Recent Research Reports (J.C. Jaasen, L. Rouse, R.C., Dr-Dw,P.J., Gnrce, J.D., SCHI.EI.II{BR,J.L. Moscou & M.F.M. Posl eds.). Eighth Int. Zeolite Conf. & rlrccn{s, J.B. (1990): Montesommaite, (Amsterdam),I I 1-112 (abstr.). (K,Na)qAlqSiBO64'10H2O,a new zeolite related to merlinoite and the gismondinegroup. Am. Mineral.75, Querrcru, S. & VszALru, G. (1987): Crystal chemistry of r4L5-1420. sfilbites: structure refinements of one nornal and four chemically anomaloussamples. kolites 7, 163-170. -& PBAcoR,D.R. (1986): Crystal structureof the zeolite mineral goosecreekite,CaAlrSi6O16.5H2O. An & Ar-anu, A. (1990):Dachiardite from Mineral. Tl. I49+I5OL. Hokiyadake: evidenceof a new tspology Eur J. Minzral, 2.187-193. & - (1994): Maricopaie, an unusuallead calcium zeolite with an interrupted mordenite-like RaalB, G. (1996): Minerals originally described from framework and intrachannelPbo tetrahedral clusters. Ara Norway. Including notes on type material. Norst Mineral.79.175-lU. Be r gv e rksmus e ums Slrift se rie ll. DUNN,P.J., CArvtr'BprI., T.J., RoBERts, -, Artu,r,R., Mr,aoscr, M.H., Dw, V.K., LansBr, W.L., WIcKs,F.J. & NswBURv,D. (1987):Pahasapaite, a A.O. & Asnsu, A. (1983): Chiavennitefrom syenite beryllophosphatezeolite related to synthetic zeolite rho, pegmatitesir the Oslo region, Norway. Am. Mineral. 68, from the Tip Top pegmatite of South Dakota. Neaes 628-633. Jahrb, MineraL, M onatsh, 433444.

RAsrsvETAEvA,R.K., Rrreu,ova, O.Y., ArronraNov, V.I. & & Mm.Lnco,S, (1989): Crystal structure MALD.rovsK[, Yu.A. (1991): Crystal structure of of pahasapaite, a beryllophosphate mineral with a hsianghualite. Dokl. Akad. Naaft ,ISSR 316, 62+628 distorted zeolite rho framework. Am. Mineral. 74, (in Russ.). tr95-1202.

Rwar,or, R. (1976): Crystal chemistry atrd structural epitaxy RoDNosR,8., Ttrluexr.rs, E. & HsN'IscIfiL, G. (1993): of of&etite - erionite from Sasbach.Kaiserstuhl. iVeues Bellbergite- a new mineral with the zeolits sfructre type Jahrb. MineraL, Mottntsh., 145-156. F'AB.Mineral. Petrol. 4E,147-152. 1602

Saxuner, K. & Heyasm, A. (1952): "Yugawaralite", a new PLurH,J.J., Boccs, RC. & Howenp,D.G. (191): zeolite.Jci. Rep.,Yokolwma NaqUniu, Ser.II,l,69-77 . Tschernichite, the mineral analogue of zeolite beta. J. Chem-Soc., Chem. Commun.,363-3il. Sanp,H., Dsm.Ne, J., Bzouann, H. & LnsIctr, B.W. (1979): La parthdite, CaAl2Si2Os.2!12O,un nouveau silicate SrAru K., Kvrcr, A. & Surnr, J.V. (1990):Thomsonite, a naturel d'aluminium et de calcium. Schweiz Mineral. neul:rondiffraction study at 13 K. Acta Crystallogr C46, Petrogr Mitt.59,5-L3. t370-1373.

A. (1955): Wairakite, the calcium analogue of ScHAI,I.R"W.T. (1923): ftilolite and relatedzeolites. /n hoc. SrsnvsR, a new zeolite mineral. Mineral. Mag. 3O, Societies Wherry,ed.). AnL MilrcraL8,93-94. analcime, @.T. 691-698. (1932): - The mordenite ptilolite group; Srnuvz, H. (1956): Die Zeolithe Gmelinit, Chabasil Levyn clinoptilolite, a new species.Arn Mineral. YI,128-134. (Phakolith, Herschelit, Seebachit,Offrett). NeuesJahrb. Mineral., Morwtsh., 25U259. Scru,Buren, J.L., PLUrs, J.J. & St"trll I.Y. (1977a): Refinement of the crystal structure of brewsterite, (L978): Mineralogische Tabellen (7th ed.). Bas5SrlsAlaSirro32.lOHrO.Acta Crystallogn E.33, AkademischeVerlagges., Leipzig, Germany. 2907-29tO. Srucr

Scrfi.OpFBR,L. & Joswrc, W. (1997): Structureanalyses of a TAx€ucrfl,Y., MAzzt,F., Haca, N. & Gau,t, E. (1979):The partially dehydratedsynthetic Ca-garronitesingle crystal crystal sfiucture of wairakite.Ar?. Mineral.64, 993-1001. under differentT, pHrO conditions.Eun J, Mineral.9, 53-65. TAyLoR, W.H. (1930): The structure of analcite (NaAlSirO6'HrO).Z Krtstuilogn74, l-19. SBxr,Y. (1971):Wairakite - analcimesolid solution as an indicator of water pressuresin low-grademetamorphism. & JAcKsoN,R. (1933):The structureofedinglonite. J. Geol.Soc. Japan17,667-674. Z. Krtstallagn86, 53-64.

& Ort, Y. (1969): Wairakite - analcime solid Tezorr, V., Dolrmrecnrrrr, M.C., MAz, F. & Camun o, E. solutions from low-grade metamorphic rocks of the (1995): The crystal structure of chiavennite. Ear J. TanzawaMountains, central Japan.Mineral. J. 6,3645. Mineral. T,1339-13M.

SnsFpARD,R.A. & Fn-aarnrcr, J.J. (1989): Phillipsite from TmrsrRA, D.K. & dERNf,P. (1995):Firstnatural @curences silicic tuffs in saline, alkaline-lake deposits. Clays CLay of end-memberpollucite: a product of low-temperature Minerals 37.243-247. reequilibration. Eur J. Minzral. 7, LL37-1148.

& GIDE,AJ.,Itr (1969a):Diagenesis of tuffs inthe & DvsR, A. (1994): The informal discreditationof Barstow Formation, Mud Hills, San Bernardiao County, "doranite" as the magnesium analogue of analcime. Califomia. U.S.Geol. Surv., Prof. Pap, 6A,l-35, kolites 14.411413.

& - (1969b): Chemical composition and Srm.rurp,8.L., Xu, Zrtr & CTERNf',P. (1994):MAS physical properties of tle related zeolites offretite and DOR NMR study of Al-Si order in the analcine - anderionite. Arz. Mbrcral.54. 875-886. pollucite series.Can Mineral, 32, 69-80.

& Grurrn, J.J. (1970): Chemical com- TsuGLrr, S.J.(1933): O ptylocie z Mydzka na Wolyniu - Sur position and physicalproperties ofphillipsite from the la ptilolite de Mydzk en Volhynie. Arch. Mindral., Soc. Pacific and Indian oceans.Ar?. MfueraL 55.2053-2062. Sci. Varsovie 9, 99-102 (Polish), 103-lM @rench r6sum6).(Mineral. Absn 6, 129). & MuNsoN,E.L. (1965): Chemical composition of diageneticzeolites from tuffaceousrocks Tuuar.rxs, E., FrscHBR,R.X. & Beun, W.H. (1984): of the Mojave Desert and vicinity, California. Arz. Chabazite-type framework in the new zeolite Mineral. 50.24+249. willhendersonite, KCaAl3Si3Orz.SHzO.Neues Jahrb. Mine ral,, M onatsh.,547 -558. Stvrrnr,J.V. (1988): Topochenristryof zeolitesand related materials. 1. Topology and geometry. Chem. Rev, 8E, Tsctmmqr, R.D. & W$q W.S. (1982):Paulingite: variations 149-t82. in conposition. Atn, Mineral. 67, 7 99-803,

KNAwE6, C.R. & Rnt.llpr, R. (1964): Crystal UENo,T. & Haraoa, K. (1982): Chemical conpositions and structures with a chabazite framework. Itr. Hydrated genesesof zeolites from Tsuyazaki,Fukuoka hefecture, Ca-chabaziteat +20 and -150oC. Acta Crystallogn 17, Iapar J. Mineral. Soc.Japan15,259-n2 (in Japanese, 374-3U. with English abstr.). RECOMMENDED NOMENCI.ATI.'RE FOR reOIJTE MINERAI.S 1603

VAUGHAN,P.A. (1966): The crystal structure of the zeolite Vnl.annoal-, H.S. (1983): Sobre la existencia de otras ferrieito Acta Crystallogr 21, 983-990. variedades de estellerita y una forma de reconocerlas. Anais Aca.demiaBrasileira d.eCiercias 55,87-91. VBzzem.u, G. (1984): A refirement of Elba dachiardite: oppositeacentric domainssimulating a centric structure. Wru-rnn, G.P.L. (1962): Garronite, a new zeolite, from Z Krtstuilogr16,63-71. Ireland and lcelard. Mineral, Mag.33, 173-186. (1992): CaBq@O)r(OtlAIlrO, a Anrror4 G. & S. (1992):The crystal Warrm, F. Weinebeneite, Quarnrru, nerv minetal species:mineral data and crystal structure. chemistry of cowlesite,Mturcral. Mag. 56,575-579. Eur J. Mineral. 4, ln 5-Q83.

& OBERTI,R. (1984): The crystal chemistry of Wnqr, H.-R. (1973): The structureof wenkite.Z Kristallogr gismondines:the non-existenceof K-rich gismondines. \37,t13-t26. Bull. Mindral. 1117,805-812. Wnrrs. J.S. & Enp, R.C. (1992): Kehoeite is rot a valid Quamruru, S. & Gar-lr, E. (1996): Relazioni species.Minzral. Mag, 56, 256-258. strutturali nelle zeoliti con topologia CHA alla luce del ritrova:nentodi una Ca-willhendersonite.XXVI Congresso Wrse, W.S. (1982): New occrurence of faujasite in Nazianale dclla Associazioneltaliana di Cristallo grafi.a soutleasternCaliforna. kn MineraL 67, 79+7 98. (Ales sandria), 9 I (abstr.). & Tscsrnrqcu, R.W. (1975): Cowlesite,a new & -(1997a): Occu:renceand Ca-zenhte.Am- Mincral, 60. 951-956. crystal structure of a Ca-purewillhendersonite. kolites 19,75-79. & - (1976): Chemical comPositionof fefieri&. ArL Mineral. 61, 60-66. Ar-sERn,A.,Cnuqaq C. & Wvem, J. (1938):ftude surlaleucite.Bull. Soc.fr Mindral. Kvrcr, A. 9997b): Crystal sffucture of the zeolite mutinaite, the natural analogue of ZSM-S. Zeolites 61.228-238. 19.323-325. Yerc, Pnvc& AnvmRusrtsR,T. (1996): (010) disorder,partial Si,Al ordering, and Ca distribution in triclinic (Cl) & PAssAcLrA,E. (1990): Crystal epistilbite. Ear J. Mineral. 8, 2$-n l. structure of a K-rich natural g'nelinite and comparison with the other refined gmelinite samples.Neues Jahrb. Mineral., Monatsh., 504-516. ReceivedDecember 3, 1997. L604 TTIE CANADIAN MINERALOGIST

Aprnxpx 1. Norss on rm Dnrrnrnon or ^l Znolttr Natural zeolites are known with up to 88Voof tetrahedral sites occupied by Si, as in mutinaite, and Is more than 50Vosubstitution of elementsother than thereis no theoreticalreason why this figure cannotbo Si and Al pennissible in tetrahedral sites? exceeded.If the site occupancy of tetrahedra by Si approacheslffiVo, the exfra-frameworkcation content Therewas completeagteement in the Subcommittee will approachzero, even though the structureand other that somesubstitution of elementssuch as P and Be for characteristicsmay remaintypically zeolitic. It is again Si and Al in tetahedral sites must be permitted in the consideredinexpedient to word the definition so as to definition. Discussionin this context focussedon excludesuch a hypotheticalend-member case from the whethera5OVo rule shouldbe applied.The so-called zeolite category.Melanophlogiteo a low-density SiO2 50Vorule (Nickel L992) is normally applied to split a phase with large cages in its framework, would be binary solid-solution seriesinto two speciesat tle a possible example,but is otlerwise excluded by half-way point accordingto the predominantcations the adopted definition becauseit lacks appropriate concerned,but not to separatemembers of a solid- channelsfor the passageof guestspecies. solution seriesinto two separateclasses of minerals, as could happen if applied in the present context. REIERm{CE Proponents of. a 50c/orule argued tlat the definition of zeolites should be on grounds of both structure Ntcrcr.,E.H. (1992): Solid solutions in mineralnomenclature. and composition, zeolites being aluminosilicates or Can.Mine ral. 30,23 | -234. possibly Al-free silicates.The confiary opinion is that where structuresare topologically equivalentand other essentially identical zeolitic characteristics prevail, Appnmrx 2. Drscnnortatroxs irrespective of Si and Al contentsin tetrahedralsites, any restrictions basedon specific Si and Al contents H erschelite is chabazite -Na would be arbitrary and undesirable.The Subcommittee voted by a substantial majority for this view. The Herschelite,Na[AlSiOo].3HrO, was named by beryllosilicates lovdarite and chiavennite, like tle I-6vy (1825) from materialbroughl to him 6y Herschel zincosilicategaultite, have more than 50Votetrahedral from "Aci Reale" (nowAcireale), on the flanks of Mt. sites occupiedby Si, and are here acceptedas zeolites Etna in Sicily. Contemporaryliterature andpresent-day in spite of having little if any Al. Also included are the exposruessuggest that the actualoccurrence may have beryllophosphates pahasapaite and weinebeneite, been in basaltic lavas at Aci Castello, nearby. L6vy which haveneither Si norAl, but havetypically zeolitic describedherschelite as tabular crystals of hexagonal sructures and other zeolitic characteristics.They can outline that contain'silex, atumina,and potash". It was be regarded as end-member examples of Si-free later identified with chabazite(e.g., Hausmann1847) zeolites or zeolite phosphates. and relegated to synonymy, altlough shown to be A compositional factor is included in the adopted Na-rich, not K-rich. Strunz (1956) confirmed that definition in that the framework consistsessentially of herschelite and chabazite give essentially identical oxygen atoms togetier with cations that enter into X-ray powder patterns.Mason (1962) proposedrevali- tefi?hedml co-ordinationwith oxygen. dation on the basesof a supposedcompositional gap betweenherschelite and'onormal" Ca-rich chabazite, Is thc presenceof H2O and of exta-framework the distinctive habit and lower indices of refraction. cations essential? Passaglia (1970) demonstrated a continuum of compositionsfrom Ca- to frfu-deminantgpes, extending Reversibledehydration is a characteristicfeature of into the field of K-dominancein a ternary series;there zeolitic behavior,but how much I{2O must be presert is no discerniblegap in composition.The lower indices for a mineral to be considered a zeolite? Pollucite of refraction reflect the Na-rich composition. Variant forms a continuous series with analcime, the HzO crystal habit is not an accepted basis for species content declining progressively *i1tr iaslsaging Cs status for minerals, and some examples of strongly contentsuch that fhe Na-free,Cs memberis essentially Na-dominantchabazite have rhombohedral, not tabular anhydrous. It seems unnecessary,impractical, and habit asin the caseof micrometer-scalecrystals aggre- illogical to prescribesome arbihary HrO contentbelow gatedinto flin raggedplates, illushated by Shepparder which pollucite (or other mineral) would be defined as al. (1978). anhydrous,and no longer az,eolrte.Furthermore, it is In view of its chequeredhistory and the above not inconceivable that some typical zeolite might be considerations,tle nameherschelite is suppressedand reversibly dehydratedunder natural conditionswithout tle name chabazite-Na is to be applied to those essentialloss of stnrcture.If so,it hasnot ceasedto be a members of the chabazite series in which Na is tle zeolite.Although zeolites typically arehydrous, it is inex- most abundant extra-framework cation. Herschelite pedientto specifythe presenceof H2Oin the definition. may retain someuse as a term for a distinctive habit. RECOMMENDED NOMENCI.{IT'RE FOR ZEOLITE MINERAI.S 1605

Leonharditeis H2o-poor laumontite faults, and that it is not a topologicatlydistinct member of the mordenite family. Its compositionis within the Ironhardite Caa[AleSiteOar].-L II'O was described range of other samplesof dachiardite.It is regardedas by Blum (1843) for a mineral closely related to a multiply twinned and highly faulted dachiardite laumontite Caa[A\Si16Oa].18HrO, but with different (dachiardite-Ca), and is discredited as a separate morphology. The type locality was near Schemnitz, species. nowadaysBanska Stiavnica, tlen in Hungary,now in Slovakia. Delffs (1843) showed that type-locality Wellsiteis barian phillipsite-Ca and calcian leonharditehas less H2O (ca. 13 moleculesof H2Oper harmotome formula unit) than laumontite. Doelter (1921) agreed tlat leonhardite is identical in composition to The mineralnamed wellsite by hatt & Foole (1897) laumontite, apart from its lower content of H2O. The has beenshown by Galli (L972) and Galli & Loschi name has continued to be used widely for a material Ghittoni (1.972)tobe isostuctural with phillipsite and that forms rapidly andreversibly by partial dehydration harmotome,and dernf et al. (1977) have shown that of laumontite under ambientconditions. This happens zoning in crystals of wellsite coversmost of the range upon exposurein tle field and in the laboratory as a from Ca-rich phillipsite to potassian calcian function of H2Ovapor pressureor by soakingin water harmotome.Wellsite is discredited.Most examplesof giving a readily observablechange in extinction angle wellsite arebarian phillipsite-Ca and othersare calcian and cell dimensions(e.9., Coombs 1952, Annbruster & harmotome. Kohler 1992). Fersman (1908) introduced the term ooprimary leonhardite" for a variety from Kurtsy (nowadays RmsnnNcss Ukrainka), Crimea, witl 14 moleculesof HrO, which neither dehydrates nor rehydrates under ambient Aru,mnusrm,T. & Kon m, T. (1992):Re- and dehydration of conditions. In it, (K,Na)z substitutesfor Caoaltlough laumontite:a single-crystalX-ray studyat 100K. Neaes Ca is still dominant (Pipping 1966). Jahrb,Mineral., Monatsh., 385-397. Tlpe leonhardite of Blum from Schemnitz cata- logued in the Museum of Natural History Vienna, in BLUM,J.R. (1843): Leonhaxdit,ein neues Mineral. (Poggendorffb) Physikund Chemie59, 1843 and type '?rimary leonhardite" of Fersman Annalen'der 336-339. obtainedfrom the FersmanMineralogical Museum in Moscow are shownby Wuest& Armbruster(1997) and GnrV, p.,RnqamI, R. & Sunoarra,R.C. (1977): Welsite and (1997), Stolz & Armbruster respectively,to havethe its statusin the phillipsite-harmotomegroup. lfeaes same Si.Al ordered framework of tetrahedra as Jahrb.Mineral.. Abh. 128. 31'2-320. laumontite. The low H2O content of "primary leonhardite'ois attibuted to spacelimitations resulting Coours, D.S. (1952):Cell size,optical properties and from the introduction of additional cations of larger chemicalcomposition of laumontiteatrd leonhardite. Arn. size. Mineral.37,812-830. In conformity with Rule 4, leonharditeis discredited as the name of a separatespecies. It is an H2O-poor DEITFFs,W. (1843):Analyse des Leonhardits. (Poggendorff's) variety of laumontite. "Primary leonhardite" is Annalen der Physikwtd Chemie59,339-342. H2O-poorsodian potassian laumontite. DoELTER,C. (192L): Handbuchder Mineralchemiefr,3. Svetlo zarite is dnchiardite- Ca Verlag Theodor Steinkopff, Dresden,Gemmny. (1908): Maxerialienzur Untersuchungder (1976) FsnsMAN,A.E. Svetlozaritewas describedby Maleev as Zeolithe Russlands. I. Leonhardit und Laumontit aus a high-silica zeolite occurring as spherulites in der Umgebung von Simferopol (IGim). ?rar. du Musde chalcedonyveinlets in brecciatedandesites west of 96ol. Pierre le Grand. pn l'Acad. Imp. de Science Zvesdel,eastern Rhodopes, Bulgaria. Analysis showed St Pdtersbourg2, 103-150(abstr. in Z. Kristallogn 50, Ca > Na > K, and minor Fe and Mg. From X-ray 75:76). powder-diffraction studies, Maleev suggested an orthorhombicsymmetry, with a c-axis repeatof 7.5 A, Gerr.r, E. (1972): La phillipsite barifera ("wellsite") di M. which is characteristicof the mordenitegroup, to which Calvarina (Verona).Per. Mturcral, 41, 23-33. he attributedthe mineral. & Loscrn GnroM, A.G. (1972): The crystal Gellens (1.982) powder et al. concludedfrom and chemistry of philripsites.Anr- Mfueral. 57, 1125-1'145. single-crystal X-ray and transmission electron microscopy (IEM) studies, tlat svetlozarite, space Gsr-r-srs, R.L., PnrcB, G.D. & SMrH, J.V. (1982): The group Ccma (?), is related to tle ideal dachiardite structual relation between svetlozarite and dachiardite. structure by irregular periodic twinning and stacking Mineral. Mag. 45, 157-161. 1606 THB CANADIAN MINERALOGIST

HAUSMANN,J.F.L. (1847): Handbuch der Mineralogie Snrrreno, R.A., GUDB,A.J. & Eosor.t,G.M. (1978):Bowie (2nded.). 2,1600. zeolite deposit, Cochise and GrahamCounties, Arizona. 1z Natural Zeolites - Occurrence, Properties and Use LEw, A. (1825): Descriptionsof two new minerals.Annals of (L.8. Sand& F.A. Mumpton,eds.). Pergamon, oxford, Philosophy,ns-w ser, 10, 361.-363. u.K. (319-328).

Merwv, M.N. (1976): Svetlozarite,a new high-silicazeohte, Srorz, J. & AnMsnusrER,T. (1997): X-ray single-crystal 7ap. Vses.Mineral. Obshchest,105,449453 (in Russ.). structurerefinement of a Na,K-rich laumontite,originally designated"primary leonhardite"'.lfeues Jahrb. Mineral., MAsoN, B. (1,962):Herschelite - a valid species?Ant Monatsh. I3L-I34. Mineral. n.985-987. Srmrxz, H. (1956): Die Zeolithe Gmelinit, Chabasit,Levyn Passeclre, E. (1970):The crystal chemistryofchabazites. (Phakolith, Herscheli! Seebachit,Ofuetit). NeuesJahrb. Am^Mineral. 55. 1278-1301. M ineral., M onatsh., 250-259,

PFFD{c,F. (1966):The dehydrationand chemicalcomposition Wuesr, T. & AnvsRusrsn, T. (1997): Tlpe locality of laumontte.Mbzeral. Soc. India, IMAVol.,1.59-166. leonhardite:a single-crystalX-ray study at 100K, kolite '97, 5th Int, Conf. on the Occurrence, Properties, and PRATT,J.H. & Foorn, H.W. (1897): On wellsite, a new Utilization of Nanral Zeolites (Ischia, Italy), Program mineral. Am. "/. Sci. 153. M3-448. Absn.327-328.